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Abstract 

Arbuscular mycorrhizal fungi (AMF) trigger beneficial effects on their hosts, but it is unknown how plants modu‑
late their defense responses during root colonization of AMF and the symbiotic benefits are initiated. The purpose 
of this study was to analyze the root mycorrhizal colonization process of trifoliate orange and the responsive patterns 
of plant growth, root peroxide hydrogen (H2O2), antioxidant enzymes and their encoding gene expression, and sugar, 
lipid and phosphate transporter protein gene expression at 7‒56 days of inoculation (doi) with Funneliformis mos-
seae (Fm). Fm developed appressoriums on the root surface at 7 doi, followed by abundant arbuscules in root cortical 
cells at 28 doi, intracellular vesicles at 42 doi, and root mycorrhizal colonization rate of 41.54% at 56 doi. Plant growth 
improvement by Fm started at 28 doi. The immune defense response of roots was initiated at 7 doi, as evidenced 
by the increase of H2O2 levels and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity, as well 
as the up-regulation of PtMn-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT​ expression, which lasted until 14 doi. Starting at 28 
doi, a sugar transporter gene (PtSWEET), a lipid transporter gene (PtSTR), and a phosphate transporter gene (PtPT6) 
were initiated to be up-regulated, followed by the up-regulation of PtSTR2, PtPT3, and PtPT5 at 42 doi and PtFe-SOD 
at 56 doi. Arbuscule formation and plant growth improvement together at 28 doi suggested that arbuscules trigger 
improved growth responses of host plants. This study also reveals the initiation of host immune defense response 
and function in early root AMF colonization.
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Graphical Abstract

Introduction
Citrus, one of the widely grown fruit trees worldwide, 
is heavily dependent on arbuscular mycorrhizal fungi 
(AMF) to facilitate its access to nutrients and water from 
the soil due to its shallow root systems and few root hairs 
[1]. AMF roles in citrus plants have garnered a lot of 
interest [2]. AMF are a widely distributed group of soil 
fungi that can establish symbiosis with most terrestrial 
plants, including citrus [3]. AMF can promote growth 
performance, nutrient acquisition, and stress tolerance of 
the host plant, as well as crop yield and quality [4–8].

AMF colonization of plant roots starts with the germi-
nation of fungal spores in the soil, followed by the contin-
uous growth of hyphae [9]. Under the action of signaling 
molecules, fungal hyphae contact the surface of root epi-
dermal cells and/or root hairs to form an appressorium, 
and enter the roots, where fungal hyphae colonize the 
cortical cells of roots, some of which continuously remi-
fying and fill a cortical cell to form a complex tree-like 
structure, the arbuscule [9–11]. The tip expansion of 
intraradical hyphae in AMF of some genera excluding 
Gigaspora and Scutellospora forms vesicles within corti-
cal cells [9]. Hydrogen peroxide (H2O2) is an important 
signaling molecule in plants that broadly regulates plant 
growth and development, responds to stresses, and is 
involved in plant–microbe interactions [12]. Accord-
ing to Liu et  al. [13], H2O2 levels in white clover plants 
increased significantly at the beginning of microbial inoc-
ulation and then decreased at the later stages, showing a 
signaling of H2O2 in response to microbial colonization 
in roots. H2O2 burst is necessary and sufficient to induce 
immune responses [14]. Antioxidant enzymes and their 

encoding genes, as a natural plant defense system, induce 
a transient defense response in the early stages of AMF‒
host plant interaction [15]. Antioxidant enzyme activities 
are increased significantly at the beginning of root AMF 
colonization and then decreased in the later stages of 
AMF growth as the symbiosis develops [16]. Therefore, 
the response patterns of H2O2, antioxidant enzymes, and 
their encoding genes can reveal the defense response 
mechanisms of plants to microbial colonization.

Mutual sensing of signals and the exchange of signal-
ing molecules between AMF and the host plant initiate 
the establishment of symbionts [17]. Arbuscular mycor-
rhizae are manifested by a bidirectional exchange at the 
symbiotic interface, where the host plant provides car-
bon sources (fatty acids and sugars) to the arbuscular 
mycorrhizal fungus, while the arbuscular mycorrhizal 
fungus provides the host plant with nutrients, especially 
phosphorus (P) [18, 19]. Sugar transport and distribu-
tion in plants requires the involvement of sugar trans-
porter proteins such as SWEET (sugar will eventually 
be exported transporters) [20]. Inoculation with AMF 
in citrus increased the expression of CsSWEET gene in 
fruits [21]. Multiple SWEET gene expression was up-
regulated in AMF‒host plants (e.g., Medicago truncatula 
and soybean) [22, 23]. During AMF colonization pro-
cess, lipids are transported from plant roots to AMF [24] 
as its main source of carbon [25]. It has been reported 
that lipid transport proteins (STR/STR2) were involved 
in mycorrhizal symbiosis in alfalfa [26]. Jiang et  al. [27] 
found that AMF induced lipids synthesis in plants, and 
lipids entered AMF mainly through STR/STR2, estab-
lishing arbuscular mycorrhizae. Yang et  al. [28] also 
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reported that inoculation with AMF in trifoliate orange 
(Poncirus trifoliata; a rootstock used in citrus industry) 
enhanced host P uptake, mainly through phosphate tras-
nporter genes (PtPT3, PtPT5, and PtPT6). Thus, sugars, 
lipids, and PT genes play important roles in the symbio-
sis of AMF and plants, but the underlying mechanisms 
involved are very complex and need to be studied in 
depth.

The aim of this study was to further shed light on the 
mechanism of symbiosis between AMF and trifoliate 
orange by analyzing the changes in plant growth per-
formance, H2O2 levels, antioxidant enzyme activities, 
and expression of antioxidant enzyme genes and sym-
biosis-associated genes during the process of root AMF 
colonization.

Materials and methods
Preparation of AMF inoculum
An arbuscular mycorrhizal fungus Funneliformis mos-
seae (BGC XZ02A) was chosen, because the fungus has 
been demonstrated to have positive effects on trifoliate 
orange [29]. This fungus was trapped using white clover 
as the host plant for about 10 weeks under potted con-
ditions, and the inoculum consisted of fungal colonized 
root segments, spores (22 spores/g), hyphae, and growth 
substrates, stored at 4 °C, and used within three months.

Plant culture and experimental design
In March 2022, seeds were removed from trifoliate 
orange fruits, treated with 10% NaOH to remove pec-
tin from the seed surface, disinfected with 70% alcohol 
for 10  min, and rinsed three times with distilled water 
before being placed in pre-autoclaved (121 °C, 0.11 MPa, 
2 h) sand (< 2 mm in the diameter) for their germination, 
where environmental conditions were 30  °C/23  °C (day/
night temperature, 16 h / 8 h), with a constant relative air 
humidity of 75% and a light intensity of 1500 Lux.

After one month, uniformly sized seedlings with four 
leaves were transplanted into pots (16 × 11 × 15 cm) pre-
supplied with 2.5 kg of autoclaved soil-sand mixture (3: 1, 
v/v). Meanwhile, 150 g of mycorrhizal fungal inocula was 
placed around roots of trifoliate orange seedlings as the 
inoculated treatment, whereas the uninoculated treat-
ment also received an equivalent amount of autoclaved 
mycorrhizal fungal inocula plus 2 mL of inoculum filtrate 
through a 20-µm nylon mesh.

Treated seedlings were placed in a controlled green-
house as described by Cao et  al. [30]. This experiment 
was conducted between May 19 and July 13, 2022. The 
plants were harvested at 7, 14, 21, 28, 42, and 56  days 
of inoculation (doi), with 4 pots per treatment har-
vested each time for a total of 48 pots. The experiment, 

therefore, consisted of a total of two treatments, each 
with twenty four replicates.

Determination of plant growth and root mycorrhizal 
colonization
On the day of each harvest, plant height was measured. 
After harvest, the taproot length was determined using 
vernier calipers, and the shoot and root biomass was 
weighed. Subsequently, root segments with 1‒2 cm long 
were cut and stained with the protocol of Phillips and 
Hayman [31] with 0.05% trypan blue in lactophenol for 
30 s. Root mycorrhizal colonization was observed under 
a microscope. Root length colonization rate (%) = colo-
nized root length / observed total root length × 100.

Determination of root H2O2 concentrations
Root H2O2 concentrations were determined as per the 
protocol outlined by Velikova et  al. [32]. The 0.20  g of 
fresh sample was ground into a homogenate with 5  mL 
of 0.1% trichloroacetic acid in an ice bath and centrifuged 
at 10,000 × g for 15  min. The 1  mL of supernatant was 
reacted with 1  mL of 10  mmol/L phosphate buffer (pH 
7.0) and 2 mL of 1 mol/L KI, and their absorbance values 
were recorded at 390 nm.

Determination of root antioxidant enzyme activities
Superoxide dismutase (SOD) activity was determined 
according to the method described by Wu [33]. The 
reaction solution consisted of 50 µL of the enzyme 
extract, 300 µL of 130 mmol/L L-methionine, 300 µL of 
750 µmol/L nitroblue tetrazolium, 300 µL of 100 µmol/L 
EDTA-Na2, 300 µL of 20 µmol/L riboflavin, and 250 µL of 
distilled water. CAT activity was measured as per the pro-
tocol described by He et al. [34]. A 4-mL reaction solu-
tion consisted of 0.2  mL of the enzyme extract, 2.0  mL 
of 0.1  mmol/L phosphate buffer (pH 7.8), and 1.8  mL 
of distilled at 25  °C for 3  min, followed by the addition 
of 0.3  mL of 0.1  mol/L H2O2. Peroxidase (POD) activ-
ity was assayed using the procedure outlined by Chance 
and Maehly [35]. A 5-mL mixture contained 2.9  mL 
phosphate buffers, 1.0 mL of 0.1 mol/L H2O2, 1.0 mL of 
0.05 mol/L guaiacol, and 0.1 mL of the enzyme extract.

Analysis of relative expression of genes
Root total RNA was extracted by the MiniBEST plant 
RNA kit (No. 9769; TaKaRa, Dalian, China). The RNA 
integrity was detected by 1.0% agarose gel electropho-
resis, and the concentration of the extracted RNA was 
calculated by A260/A280 ratio. The qualified RNA was 
reverse transcribed to cDNA using a PrimeScript™ RT 
reagent kit with gDNA Eraser (RR047A; Takara). Five 
antioxidant enzyme genes (PtFe-SOD, PtMn-SOD, PtCu/
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Zn-SOD, PtPOD, and PtCAT​) [34], a sugar transporter 
protein gene (PtSWEET) [36], two fatty acid transporter 
protein genes (PtSTR and PtSTR2) [26], and three phos-
phorus transporter protein genes (PtPT3, PtPT5, and 
PtPT6) [28] were selected based on previous studies. 
The genes were identified through the NCBI database 
(www.​ncbi.​nlm.​nih.​gov) and the genome-wide of trifoli-
ate orange (http://​citrus.​hzau.​edu.​cn). The Primer Pre-
mier 5.0 software was used to design primer sequences of 
selected genes for qRT-PCR (Additional file 1: Table S1). 
The cDNA was used as the template. qRT-PCR was per-
formed on an Fast Real-time PCR System (7900HT, ABI, 
Nanjing, China). The β-actin was employed as an internal 
reference gene. Each gene had three biological replicates, 
with three technical replicates per biological replicate. 
The relative expression of genes was calculated according 
to the method of Livak and Schmittgen [37], normalized 
to the gene of the no-Fm treatment.

Data analysis
All data analysis was performed in the SAS software 
(v8.1), where one-way analysis of variance and LSD tests 
were used at the 0.05 level for significant differences 
among treatments. The SigmaPlot (v10.0) was used for 
figure production.

Results
Changes in root length AMF colonization
At 7 doi, Fm was found at the root surface, showing a 
branching pattern and the formation of appressorium 
(Fig.  1a). At 14 doi, mycorrhizal hyphae had colonized 
into the roots and formed intraradical hyphae. At 21 doi, 
well-developed intraradical hyphae were formed in the 
roots, with obvious branching and visible arbuscules. 
At 28 doi, intraradical hyphae formed a large number 
of arbuscules within the cells. At 42 doi, a large number 
of intercellular vesicles formed by the apical expansion 
of hyphae could be clearly observed. At 56 doi, a large 
number of both intraradical hyphae and intercellular 
vesicles were clearly observed. The mycorrhizal coloniza-
tion rate of Fm-inoculated roots ranged from 2.93% at 7 
doi to 41.54% at 56 doi, and the root length colonization 
rate increased with the increase of Fm inoculation time 
(Fig. 1b).

Changes in plant growth performance
The growth performance of trifoliate orange seedlings 
changed significantly with the extension of the days of F. 
mosseae inoculation (Fig. 2a). At 7‒21 doi, plant height, 
taproot length, and shoot and root biomass did not differ 
significantly between Fm- and no-Fm-inoculated treat-
ments (Fig. 2b–e). Starting from 28 doi, the growth per-
formance in Fm-inoculated seedlings was better than that 

in no-Fm-inoculated seedlings. The plant height of Fm-
inoculated seedlings was significantly higher than that 
of no-Fm-inoculated seedlings by 42.73%, 71.64%, and 
84.21% at 28, 42, and 56 doi, respectively. Similarly, shoot 
biomass was increased by 64.71%, 68.00%, and 96.97% 
under Fm- versus no-Fm-inoculated treatment at 28, 42, 
and 56 doi, respectively, along with 54.55%, 81.25%, and 
66.67% significantly higher root biomass in Fm-inocu-
lated seedlings than no-Fm-inoculated seedlings, respec-
tively. The taproot length of Fm-inoculated seedlings 
showed significant changes from 42 doi, increasing by 
31.16% and 24.03% at 42 and 56 doi, respectively, com-
pared with no-Fm-inoculated seedlings.

Changes in root H2O2 levels
Compared with no-Fm inoculation, H2O2 levels in roots 
of Fm-inoculated seedlings were significantly increased 
only at 7 and 14 doi by 63.47% and 34.73%, respectively, 
along with no significant difference at 21‒56 doi (Fig. 3).

Changes in root antioxidant enzyme activities
Compared with no-Fm inoculation, Fm inoculation sig-
nificantly increased root SOD activity at 7 and 56 doi by 
60.00% and 29.38%, respectively (Fig.  4a). There was no 
significant difference in SOD activity between the two 
treatments from 14 doi  to 42 doi. Root POD and CAT 
activities were significantly elevated at 7, 14, and 56 doi 
after Fm inoculation, with 69.46%, 43.26%, and 49.54% 
increase in POD activity and 199.22%, 93.89%, and 
64.46% increase in CAT activity, respectively, plus no sig-
nificant changes at 21‒42 doi (Fig. 4b, c).

Changes in the expression of root antioxidant enzyme 
genes
Compared with no-Fm inoculation, Fm inoculation did 
not significantly affect root PtFe-SOD expression at 7‒42 
doi, but up-regulated root PtFe-SOD expression (1.46 
folds) at 56 doi (Fig.  5a). Fm inoculation also up-regu-
lated root PtMn-SOD expression at 7 and 14 doi by 2.43 
and 1.78-fold, respectively, compared with no-Fm treat-
ment, along with no significant difference at the subse-
quent 21‒56 doi (Fig. 5b). PtCu/Zn-SOD expression just 
got significantly up-regulated (1.60-fold) at 7 doi by Fm 
versus no-Fm inoculation, plus no significant change at 
14‒56 doi (Fig.  5c). Compared with no-Fm inoculation, 
Fm inoculation distinctly up-regulated PtPOD expression 
at 7, 14, and 56 doi by 2.43-, 3.36-, and 1.85-fold, respec-
tively, as well as PtCAT​ expression at 7, 14, and 56 doi by 
4.06-, 3.46-, and 2.14-fold, respectively, accompanied by 
no significant difference at 21‒42 doi (Fig. 5d, e).

http://www.ncbi.nlm.nih.gov
http://citrus.hzau.edu.cn
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Changes in the expression of root SWEET and STR genes
The expression of root PtSWEET was not initiated by 
Fm inoculation at 7‒21 doi, whereas the expression of 

root PtSWEET was up-regulated at 28, 42, and 56 doi 
by 1.50-, 2.00-, and 2.17-fold, respectively, compared 
with no-Fm inoculation (Fig.  6a). Similarly, at 7‒21 
doi, Fm inoculation also did not affect the expression 

Fig. 1  The colonization process a and change in root length colonization rate b of Funneliformis mosseae in trifoliate orange seedlings. 
Data (means ± SD, n = 4) with different letters on the bar indicate significant (p ≤ 0.05) differences between treatments. A arbuscule, doi days 
of inoculation, Eh extraradical hyphae, Ih intraradical hyphae, V vesicles
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of PtSTR and PtSTR2 in roots (Fig.  6b, c). Start-
ing from 28 doi, PtSTR expression was up-regulated 
by Fm inoculation by 1.33 folds at 28 doi, 1.45 folds 

at 42 doi, and 2.30 folds at 56 doi, respectively, com-
pared with no-Fm inoculation. PtSTR2 expression was 
up-regulated only at 42 and 56 doi under Fm- versus 

Fig. 2  Changes in plant growth performance (a), plant height (b), taproot length (c), shoot biomass (d), and root biomass (e) of trifoliate orange 
seedlings after inoculation with Funneliformis mosseae. Data (means ± SD, n = 4) with different letters on the bar indicate significant (p ≤ 0.05) 
differences between treatments
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no-Fm-inoculation conditions by 1.49- and 2.12-fold, 
respectively.

Changes in the expression of root PT genes
Fm inoculation did not significantly alter root PtPT3 and 
PtPT5 expression at 7‒28 doi and root PtPT6 expression 
at 7‒21 doi (Fig.  7a–c). Root PtPT3 and PtPT5 expres-
sion was up-regulated by Fm inoculation by 2.46- and 
2.30-fold at 42 doi and by 3.22- and 4.76-fold at 56 doi, 
respectively. Root PtPT6 expression was up-regulated by 
Fm inoculation at 28, 42, and 56 doi by 1.59-, 1.86-, and 
2.13-fold, respectively.

Discussion
The present study showed that Fm was able to contact 
roots of trifoliate orange and form appressorium at 7 doi, 
and the mycorrhizal colonization rate increased with 
time, reaching 41.54% at 56 doi. At 7‒56 doi, roots of tri-
foliate orange went through four stages: the formation of 

appressorium at 7 doi, further expansion of hyphae within 
mycorrhizal roots at 14‒21 doi, formation of arbuscules 
at 28 doi, and formation of vesicles and numerous intra-
radical hyphae at 42‒56 doi. At 7‒21 doi, Fm contacted 
with root surface to form colonization points and appres-
sorium, penetrated epidermal cells into cortical cells to 
form intraradical hyphae, and then branched to form a 
developed hyphal network, which was consistent with 
the results of Sheng et al. [38] in Pinellia ternata plants. 
At 28 doi, the hyphae in roots branched continuously, 
forming arbuscules and filling the cell. Arbuscules are 
important sites for nutrient exchange between plant cells 
and AMF [13, 39, 40], where arbuscules are ensheathed 
by a host membrane, termed the periarbuscular mem-
brane, which facilitates nutrient exchange [39, 41]. This 
indicates the functional initiation of arbuscular mycor-
rhizae in trifoliate orange at 28 doi. In general, the forma-
tion of arbuscules precedes the formation of vesicles in 
some Glomus species [42]. Therefore, we found that the 
apical expansion of hyphae formed intercellular vesicles 
at 42 doi. Vesicles contain lipid-like droplets that func-
tion as nutrient stores, and AMF can use the nutrients 
stored in the vesicles when mycorrhizal metabolism is 
reduced [43]. Subsequently there was a large number of 
intraradical hyphae as well as vesicles in roots at 56 doi, 
showing the maturation of arbuscular mycorrhizae.

AMF contribute to the growth and development of 
the host plant after forming a symbiosis in roots [44]. 
The present study showed that Fm inoculation produced 
a significantly positive effect on plant height (r = 0.82, 
p < 0.01), taproot length (r = 0.70, p < 0.01), shoot (r = 0.79, 
p < 0.01) and root biomass (r = 0.75, p < 0.01) starting 
from 28 doi (the stage of arbuscule formation), indicating 
that AMF colonization triggered a positive effect on plant 
growth of the host, in correlation with the formation 
of arbuscules in root cortical cells. In white clover, the 
positive effect of Paraglomus occultum on the improve-
ment of shoot and root biomass also occurred at 20 doi, 

Fig. 3  Changes in H2O2 levels in roots of trifoliate orange seedlings 
after inoculation with Funneliformis mosseae. Data (means ± SD, 
n = 4) with different letters on the bar indicate significant (p ≤ 0.05) 
differences between treatments

Fig. 4  Changes in superoxide dismutase (SOD) (a), peroxidase (POD) (b), and catalase (CAT) (c) activities in roots of trifoliate orange seedlings 
after inoculation with Funneliformis mosseae. Data (means ± SD, n = 4) with different letters on the bar indicate significant (p ≤ 0.05) differences 
between treatments
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Fig. 5  Changes in relative expression of PtFe-SOD (a), PtMn-SOD (b), PtCu/Zn-SOD (c), PtPOD (d), and PtCAT​ (e) genes in roots of trifoliate orange 
seedlings after inoculation with Funneliformis mosseae. Data (means ± SD, n = 3) with different letters on the bar indicate significant (p ≤ 0.05) 
differences between treatments

Fig. 6  Changes in relative expression of PtSWEET (a) and two fatty acid transporter genes (b, c) in roots of trifoliate orange seedlings 
after inoculation with Funneliformis mosseae. Data (means ± SD, n = 3) with different letters on the bar indicate significant (p ≤ 0.05) differences 
between treatments

Fig. 7  Changes in relative expression of PtPT3 (a), PtPT5 (b), and PtPT6 (c) genes in roots trifoliate orange seedlings after inoculation 
with Funneliformis mosseae. Data (means ± SD, n = 3) with different letters on the bar indicate significant (p ≤ 0.05) differences between treatments
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accompanied by the formation of arbuscules [13]. Similar 
improvement in host growth by AMF was also reported 
in sugarcane and drought-stressed trifoliate orange [4, 
45]. The mycelium network formed by AMF expands 
the contact between plant roots and soil, thus promoting 
plant growth and development [46]. In contrast, before 
28 doi, Fm inoculation did not significantly improve 
growth performance of trifoliate orange, because it takes 
some time for AMF to colonize the host plant and form 
a symbiotic relationship. It remains to be further deter-
mined whether the host supplies more photosynthetic 
products to root mycorrhizae for their growth in the 
early stage of mycorrhizal formation [47].

Plant H2O2 is dramatically increased after microbial 
infestation, which is a defense response of the host plant 
to microbial infestation [48]. The results of the present 
study showed that root H2O2 levels were significantly 
increased at 7 and 14 doi of Fm inoculation, and then 
no significant change started at 21 doi. This is in agree-
ment with the findings of Song and Song [49] in alfalfa 
after root colonization of Glomus intraradices. Fester and 
Hause [43] also reported the increase in root H2O2 levels 
after inoculation of Medicago truncatula with G. intra-
radices, especially when the mycelium started to pene-
trate root cortical cells and during arbuscular formation. 
This suggests that roots of trifoliate orange initiated an 
immune defense response at 7‒14 doi in response to Fm 
colonization through elevated H2O2 levels.

Antioxidant enzymes are activated as a defense sys-
tem during the early stages of AMF colonization of host 
plants and then inactivated as the symbiosis continues 
to develop [15, 50, 51]. In this study, activities of root 
antioxidant enzymes (SOD, POD, and CAT) were sig-
nificantly increased at the beginning of Fm inoculation 
(7 doi), while root POD and CAT activities continued to 
be elevated at 14 doi as well, which was consistent with 
changes in root H2O2 levels. Significantly elevated CAT 
and POD activities were also observed in alfalfa during 
root early colonization of AMF [49]. Interestingly, at 56 
doi, Fm inoculation again significantly raised root SOD, 
POD, and CAT activities. Lokhandwala et al. [52] found 
in a meta-analysis that AMF inoculation increased anti-
oxidant enzyme activities of host plants by 16%, regard-
less of stress or not. The increase in antioxidant enzyme 
activities is a response of plant immune defense in the 
early stages of AMF colonization [53]. In the later stages 
of root AMF colonization, AMF enhance the host’s 
antioxidant capacity to resist oxidative damage [54]. 
In addition, the expression of stress-responsive genes 
is significantly up-regulated during the early stages of 
microbial infection of plants [55]. In the present study, 
the expression of PtMn-SOD, PtCu/Zn-SOD, PtPOD, 
and PtCAT​ gene was distinctly increased at 7 and 14 doi 

following Fm colonization, further indicating that tri-
foliate orange recognized root colonization of Fm and 
activated defense responses, triggering the host plant to 
generate an immune response at the early stage of myc-
orrhizal fungal colonization [56, 57]. After being rec-
ognized as a beneficial fungus, the defense system was 
removed [49], and thus no change in the antioxidant 
defense system was found between inoculated versus 
uninoculated plants. Additionally, PtFe-SOD, PtPOD, 
and PtCAT​ expression was again up-regulated at 56 doi 
of Fm. This is in agreement with the findings of Li et al. 
[58] who reported that AMF inoculation resulted in up-
regulation of CsFe-SOD, CsPOD, and CsCAT​ expression 
in field citrus, suggesting enhanced antioxidant potential 
of the host plant at the late stage of AMF colonization. 
In addition, in the early stage of root colonization of Fm, 
the response of different PtSOD genes to mycorrhizal 
colonization was variable, with PtMn-SOD and PtCu/
Zn-SOD responding first and PtFe-SOD responding later. 
The intrinsic mechanism is not well defined. Van Camp 
et al. [59] also found that Fe-SOD was closely related to 
endosymbioint. At 7 doi, SOD activity in roots was sig-
nificantly increased, along with the up-regulation expres-
sion of PtMn-SOD and PtCu/Zn-SOD and no change in 
PtFe-SOD expression. Similarly, at 56 doi, SOD activity in 
roots was significantly increased, along with the up-reg-
ulation expression of PtFe-SOD. This indicated that SOD 
activity changes under mycorrhizal inoculation condi-
tions are associated with PtSOD gene species at different 
times. The inconsistent results in the enzyme activity and 
gene expression may be due to differences in transription 
and translation after gene expression and the distribution 
and functions of these SOD isoenzymes in plant orga-
nelles. Kim et al. [60] also proposed that the down-regu-
lated expression of a SOD type can cause changes in the 
expression of other SOD types.

In addition, the establishment of symbiotic associations 
relies on bidirectional nutrient exchange, such as sugars, 
lipids, and PT gene expression [61]. This study showed 
that PtSWEET gene was significantly up-regulated from 
28 doi of Fm, which was accompanied by the formation 
of arbuscules. This suggests that the host plant began 
providing sugars to the Fm at 28 doi. Arbuscules are 
sites of of nutrient exchange between plants and AMF 
[62]. Several SWEET genes were up-regulated in potato, 
alfalfa, and soybean with mycorrhizal formation [19, 22, 
63], among which the expression of SWEET1b in alfalfa 
was up-regulated in arbuscule-containing cells [19]. The 
localization of PtSWEET protein in mycorrhizal root cells 
needs further study. AMF induce lipid synthesis in plants, 
and plants’ lipids enter AMF through STR and STR2 
proteins located in the periarbuscular membrane as the 
main carbon source of nutrients [27, 64, 65]. This study 



Page 10 of 12Liu et al. Chem. Biol. Technol. Agric.            (2024) 11:3 

showed that PtSTR expression was up-regulated from 28 
doi, while PtSTR2 was up-regulated from 42 doi, imply-
ing that the host has supplied fungal partners with lipids 
at 28 doi, of which PtSTR was preferentially initiated.

An important function of mycorrhizal mycorrhizae is 
to up-regulate the expression of host PT genes to pro-
mote P uptake by the host [66]. For example, StPT3 in 
potato, MtPT4 in alfalfa, and OsPT11 in rice were identi-
fied to import phosphate released by AMF from the sym-
biotic interface into plant cells to increase plant P levels 
[67, 68]. In this study, PtPT6 expression was up-regulated 
in Fm-inoculated plants from 28 doi, while PtPT3 and 
PtPT5 started to be up-regulated only at 42 doi, implying 
that the mycorrhiza traveled to promote host P uptake at 
this time, accompanied by the preferential initiation of 
PtPT6. Mycorrhizal extraradical hyphae take up soil inor-
ganic phosphate and transport it within the intraradical 
hyphae as polyphosphate particles, which are hydrolyzed 
upon arrival at the fungus-root cell interface (arbus-
cules) and translocated within the plant as H2PO4

− [69]. 
P exchange occurs during arbuscular formation, so that 
the response of PtPTs expression was initiated only after 
28 doi.

Conclusion
During root colonization of Fm in trifoliate orange, root 
defense systems (such as H2O2, SOD, POD, and CAT and 
their corresponding encoding genes) were initiated at 
7‒14 doi and subsequently maintained unchanged, com-
pared to no-Fm (Fig.  8a). At 28 doi, massive formation 
of arbuscule in the roots was accompanied by growth 
improvement, up-regulated expression of PtSWEET and 

PtSTR and subsequent up-regulated expression of PtPTs 
(Fig. 8b), suggesting the initiation of bidirectional nutri-
ent functions. These results reveal the defense response 
of the host plant to mycorrhizal fungal colonization and 
the establishment of a symbiotic association, and also 
provide a clear understanding of the exchange of nutri-
ents between AMF and the host plant.
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