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Abstract 

In recent years, the biological activity of plant polysaccharides has received increasing attention. Polysaccharides, 
as one of the main components of lilies, have pharmacological effects in regulating immunity, anti-tumor, antioxidant, 
antibacterial, and hypoglycemic effects. To systematically analyze the structural characteristics of the polysaccharide, 
the polysaccharide LP-1 was prepared from Lilium lancifolium bulbs by water extraction and ethanol precipitation, 
ion exchange chromatography and gel filtration chromatography. Structural characterizations show that the weight-
average relative molecular weight of LP-1 is 5.3 kDa. LP-1 consists of mannose and glucose at a molar ratio of 1.4:1. 
Its primary structure is Glcp-α-D-(1 → {4)-β-D-Glcp-(1 → 4)-β-D-2-O-acetyl-Manp-(1 → [4)-β-D-Glcp-(1 → 4)-β-D-
Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1]2}2 → 4)-α-D-Glcp. Acetylation 
occurs at the O-2 site of mannose. Acetyl substitution degree is 8.21%. The results of structure elucidation showed 
that LP-1 was a low-molecular weight linear O-acetylated glucomannan. The results of oxidative stress experiments 
indicate that LP-1 exerts antioxidant effects on HUVEC by activating the Nrf2/HO-1 signaling pathway, thereby 
improving endothelial cell damage induced by H2O2, and has the potential to be developed as an antioxidant drug.
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Graphical Abstract

Introduction
Lilium is widely cultivated for its edible bulb, which has 
been considered a food and traditional herb with high 
nutritional and medicinal value in East Asia for hundreds 
of years. Bulbs are not only rich in nutrients such as car-
bohydrates, amino acids, dietary fiber, and minerals, but 
also contain abundant physical and chemical substances 
such as phenols, flavonoids, polysaccharides, and alka-
loids [1, 2]. Therefore, Lilium has been included in the 
first batch of medicinal and edible homologous plant lists 
approved by the Ministry of Public Health of China [3]. 
As a traditional Chinese medicine, Lilium was first iden-
tified in Shen Nong’s Herbal Classic in the Eastern Han 
Dynasty of China. It is known to moisten the lung, relieve 
fever, calm nerves and treat continuous cough, hem-
optysis, anxiety, insomnia and dreaminess [4]. Polysac-
charides, as one of the main ingredients of Lilium, exert 
pharmacological effects on immune regulation, anti-
tumor, anti-oxidation, bacteriostasis and blood sugar 
reduction [5–13]. Therefore, the content of polysaccha-
rides in Lilium is an important indicator for evaluating 
the quality of this herb in the Chinese Pharmacopoeia.

Glucomannans (GMs), most of which have acetyl 
groups, widely exist in Orchidaceae, Liliaceae, Araceae, 
Dioscoreaceae and other plants. In GMs, one or multiple 

acetyl groups generally connect to the O-2, O-3 or O-6 
sites of mannose and/or glucose residues [14]. Acetyl 
groups have important effects on the solubility, viscos-
ity, three-dimensional structure and other physical prop-
erties of GMs; they can also modulate the biological 
properties of these molecules, such as their antioxidant, 
immune regulatory, anti-radiation and bacteriostatic 
activity [14–19].

Lilium lancifolium is one of the original plants of 
medicinal Lilium recorded in the Chinese Pharmaco-
poeia. Recent research on L. lancifolium mainly focuses 
on molecular weight of its polysaccharides, monosaccha-
ride composition and immune regulatory and antioxidant 
activity [3, 5, 6]. However, there have been no reports on 
the fine structure analysis and antioxidant stress research 
of polysaccharides from Lilium lancifolium. In this study, 
a low-molecular weight linear O-acetylated glucoman-
nan (LP-1) is isolated from L. lancifolium bulbs. The 
structural characteristics of LP-1 are analyzed by Fourier 
transform infrared spectroscopy (FT-IR), methylation 
analysis, gas chromatography-mass spectrum (GC–MS) 
and 1D and 2D nuclear magnetic resonance spectroscopy 
(NMR), and its protective effect on H2O2-induced oxi-
dative stress in Human Umbilical Vein Endothelial Cells 
(HUVEC) was studied.
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Materials and methods
Materials and reagents
Bulbs of L. lancifolium collected from the Tibetan Medi-
cine Planting Base of Tibet Agricultural and Animal Hus-
bandry University (N: 29.77, E: 94.74) in October 2019, 
and the impurities were removed and dried at normal 
temperature for later use.

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazo-
lium bromide (MTT), Monosaccharide standards were 
obtained from Sigma-Aldrich (USA). DEAE Sepha-
rose Fast Flow and Sephacryl S-200HR were obtained 
from GE Healthcare (Sweden). Dextran standards were 
obtained from Waters Co. (USA). Fetal bovine serum 
(FBS) was obtained from ExCell Bio (China). Trypsin–
EDTA, penicillin and streptomycin were obtained from 
Procell (China). The Nuclear factor E2 related factor 2 
(Nrf2) and Nuclear Loading Control (laminB) antibod-
ies were obtained from Affinity (China). The Hemeoxy-
genase-1 (HO-1) antibodies were obtained from Wuhan 
Sanying (China). Other reagents and chemicals were of 
analytical grade.

Preparation of the L. lancifolium polysaccharide LP‑1
Exactly 250  g of L. lancifolium bulbs was leached at 
90 ℃ for 2  h according to a solid–liquid ratio 1:12 and 
extracted three times. The leach liquor was combined 
and concentrated to 1/10 of the original volume. Four 
volumes of 95% ethanol were added to the liquor, and the 
mixture was allowed to precipitate for 24 h. The precipi-
tation was collected after centrifugation at 4000 rpm for 
10  min. The precipitate was dissolved in distilled water 
and freeze-dried to obtain crude polysaccharide CLP, 
weighed, and yield calculated.

CLP was subjected to ion exchange chromatography on 
DEAE Sepharose Fast Flow (3.5 × 47.0  cm), eluted with 
distilled water to obtain the neutral polysaccharide CLP-
1. Then, CLP-1 was purified using Sephacryl S-200HR 
(2.5  cm × 100.0  cm) and eluted with 0.9% sodium chlo-
ride. Subsequently, one homogeneous neutral polysac-
charide component LP-1 was obtained.

Structural analysis of LP‑1
General analysis of LP‑1
The proportions of sugar and protein in LP-1 were deter-
mined using the phenol–sulfuric acid and Bradford 
methods.

Molecular weight determination
Glucans with different molecular weights (MW 1,152, 
11,600, 23,800, 48,600, 80,900, 148,000, 273,000, 
410,000  Da) were precisely weighed. Distilled water 
prepared as 5 mg/mL standard solution was added, and 
the clarified liquid filtered by a 0.22-μm microporous 

membrane was taken. Standard curves of glucans with 
different molecular weights were determined by high-
performance gel permeation chromatography (HPGPC). 
The purified LP-1 solution was prepared according to the 
same steps, and the concentration was 5 mg/mL polysac-
charide solution. The molecular weight and homogene-
ity of the polysaccharide sample were determined by 
HPGPC method. HPGPC: LC-10A (Shimadzu Co., Ltd., 
Japan); chromatographic column: BRT105-104–102 tan-
dem gel column (8 × 300 mm); mobile phase: 0.05 mol/L 
NaCl solution; flow rate: 0.6  mL/min, column tempera-
ture: 40 °C; injection volume: 20 μL; detector: differential 
detector RI-10A.

Monosaccharide composition
A Dionex Ion Chromatography ICS 5000 system (Thermo 
Fisher Scientific Inc., USA) and a CarboPac PA20 ana-
lytical column (150 × 3  mm) (Thermo Fisher Scientific 
Inc., USA) were used to analyze the monosaccharide 
composition of the LP-1. LP-1 (4  mg) was hydrolyzed 
for 4 h with 1 mL of 2 M trifluoroacetic acid at 120 ℃. 
Excess trifluoroacetic acid was removed through reduc-
tion vaporization at 55 ℃. The residues were dissolved in 
4  mL of methanol and evaporated to dryness; this step 
was repeated four times. The residue was re-dissolved 
in 10 mL of distilled water. Solvent A was water, solvent 
B was 250  mM NaOH and C was 50  mM NaOH and 
500  mM CH3COONa. Flow rate: 0.3  mL/min; injection 
sample volume: 5 µL; column temperature: 30 °C; detec-
tor: electrochemical detector.

FT‑IR spectroscopy
KBr and LP-1 were pressed into disks. A Fourier trans-
form infrared spectrophotometer (is50, Thermo Fisher 
Scientific Inc., USA) was used to collect the FT-IR 
spectra of the samples over the wavenumber range of 
4000–400 cm−1.

Methylation analysis
Methylation and GC–MS analyses were conducted 
according to a previously reported method [20]. LP-1 
(3.0  mg) was dissolved in anhydrous DMSO (1.0  mL), 
and 20–30  mg NaOH and 1  mL CH3I were added for 
60  min. Methylation was terminated by addition of 
2  mL of ultrapure water. Methylated LP-1 was hydro-
lyzed with 2 M CF3COOH (1 mL) at 120  °C for 90 min 
and then evaporated to dryness. The hydrolysate was 
then reduced with 60 mg NaBH4 for 8 h and acetylated 
with 1  mL Ac2O-pyridine (1:1, v/v) at 100  °C for 1  h. 
Analytical instruments: GCMS-QP2010 plus (Shimadzu 
Co., Ltd., Japan) equipped with a Rxi-5Sil MS column 
(30 m × 0.25 mm × 0.25 μm). Temperature programmed: 
initial temperature of 120 °C, which was raised to 250 °C/
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min at 3  °C/min and maintained for 5  min; ion source 
temperature 250 °C; injector temperature of 250 °C; and 
flow rate of He at 1 mL/min. Characterization of the par-
tially methylated alditol acetates (PMAAs) peaks was 
achieved by determining their retention times and cleav-
age modes and comparison with the mass spectrometric 
data in the literature [21].

NMR spectroscopy
Exactly 50  mg of LP-1 was dissolved in 0.5  mL of D2O 
for freeze-drying. The above process was repeated to 
exchange active hydrogen in the sample completely. 
Then, the sample was dissolved in 0.5  mL of D2O and 
NMR (1D and 2D) spectra, inclusive of 1H(500  MHz), 
13C(126  MHz), 1H-1H COSY, HSQC, HMBC, and 
NOESY were recorded at 25  °C with a Bruker AV500M 
NMR spectrometer (Bruker, Germany). MestReNova 
software was used to process and analyze data.

The DA of LP-1 could be determined from the 1H NMR 
data by the following formula [22]:

where ICH3 refers to the integral of the hydrogen atom 
in –COCH3 group and I∑H1 the total integral of the ano-
meric proton in glucose and mannose.

Effect of LP‑1 on H2O2 induced oxidative stress in HUVEC 
cells
Cell culture
HUVEC cells (GuangZhou Jennio Biotech Co., Ltd., 
China) were maintained in ECM (ScienCell Research 
Laboratories, Inc., USA) supplemented with 10% FBS, 
1% penicillin and streptomycin, at 37  °C with 5% CO2. 
All treatments were performed when the cells density 
reached about 80%.

Cell viability determination
Control group, Model group (0.2  mM H2O2), Vc group 
(0.2 mM H2O2 + 100 μg/mL Vc), and LP-1 group (0.2 mM 
H2O2 + 100, 400, 800  μg/mL LP-1) were established for 
cell viability studies. HUVEC cells (5.0 × 103 cells/mL) 
were inoculated into a 96-well cell culture plate. After 
culture overnight at 37 °C, Vc and LP-1 of different con-
centrations were added to the Vc group and LP-1 group. 
The control group and model group were given equal 
volume complete culture medium, and co-cultured with 
cells under conventional conditions for 20 h. Discard the 
medium, and serum-free medium (100  μL) with H2O2 
concentration of 0.2 mM to each well for 24 h and then 
added with 10 μL of MTT. After incubation at 37 °C for 
4  h, the culture was terminated. The absorbance (A) of 

DA =

[

(

ICH3
× 100%

)/

3

I
∑

H1

]

,

the solutions in each well at a wavelength of 568 nm was 
detected. Inhibition rate (%) = [(Control group − Experi-
mental group)/(Control group-Blank group)] × 100%.

Determination of NO
The concentration of nitric oxide (NO) in cell superna-
tant of each group was detected by Griess method (Nan-
jing Jiancheng, China). Cultivate HUVEC cells according 
to the method in 2.4.2 and collect the supernatant. Take 
a 96-well plate and add 50 μL standard and sample, then 
add 50  μL Griess Reagent I and Griess Reagent II solu-
tions respectively, incubate at room temperature for 
10  min, and measure the absorbance of each well at a 
wavelength of 550  nm using an enzyme-linked immu-
nosorbent assay (ELISA) reader (Flexstation3, Molecular 
Devices, USA). Calculate the concentration of NO in the 
sample based on the standard curve.

Determination of SOD, GSH‑Px and MDA
Cultivate HUVEC cells according to the method in 2.4.2 
and cells in the culture plate were washed with PBS. Then 
cells were detached from the plate by adding 200  μL 
of trypsin solution per well, resuspended in complete 
medium and centrifuged at 4000 rpm for 15 min. After-
ward, the supernatant was discarded, and the process 
was repeated once. Then, the 1.0 mL lysate was added to 
the cell, and the lysate cells were centrifuged for 5  min 
(12,000  rpm), and the supernatant was taken out. The 
levels of SOD, GSH-Px and MDA in the cell homogenate 
were determined according to the instructions of the cor-
responding kits (Nanjing Jiancheng Bioengineering Insti-
tute, China).

Western blot
After each group of cells were treated, they were washed 
thrice with pre-cooled PBS. Cell lysate containing ben-
zoyl sulflulfluoride and protease inhibitors were added 
for lysis. The lysate was collected and then centrifuged 
at 12,000  rpm for 20  min at 4  °C. The cell liquid was 
retained, and the BCA method was used to determine 
protein concentration. After adjusting to a uniform 
mass concentration, it was cooked at 100  °C for 10 min 
to denature the protein. Denaturing polyacrylamide gel 
electrophoresis was carried out, and the membrane was 
transferred, blocked, and added with corresponding pri-
mary antibody for subsequent incubation overnight at 
4  °C. The mixture was washed for five times with TBST 
to incubate the HRP-labeled secondary antibody. ECL kit 
was used for development, and the imaging system devel-
opment and IPP software were used to analyze the band 
gray value.
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Statistical analysis
IBM SPSS 19.0 statistical software was used for statisti-
cal analysis. The experiment was repeated three times, 
and relevant data were expressed as the mean ± standard 
deviation (mean ± SD). The significance of differences 
between the groups was analyzed with completely ran-
dom one-way ANOVA, and Origin 8.1 software was used 
for plotting. A p value of less than 0.05 was considered 
statistically significant.

Results and discussion
Analysis of physical and chemical properties of LP‑1
The extraction temperature was 90 °C, and the extraction 
time was 2 h. Under the optimal technological conditions, 
the yield of CLP was 11.72% (calculated by the quality of 
dry sample). LP-1 was obtained by ion exchange chro-
matography and gel filtration chromatography. The 
total sugar and protein contents of LP-1 were 93.34% 
and 1.59%, respectively. The HPGPC results of polysac-
charides in L. lancifolium are shown in Fig. 1a. A single 
symmetric peak could be observed in the figure, thereby 
indicating that LP-1 has good uniformity. The regression 
equation log MW =  − 0.1981x + 12.519 (R2 = 0.9941) was 
obtained by taking the retention time as the abscissa and 
the log MW as the ordinate. The retention time of LP-1 
was 44.406 min. Thus, according to the regression equa-
tion, the molecular weight of LP-1 is 5.3 kDa.

The monosaccharide composition of LP-1 is shown in 
Fig.  1b. LP-1 is composed of mannose and glucose at a 
molar ratio is 1.4:1.

The FT-IR spectrum of LP-1 is shown in Fig.  1c. The 
broad and strong absorption peak at 3,400 cm−1 is attrib-
uted to the stretching vibrations of O–H, and the peak 
at 2930  cm−1 is attributed to the stretching vibrations 
of C–H [23]. C=O covalent vibrations, C–H bending 
vibrations and C–O vibrations of the acetyl group are 
indicated by peaks at 1731, 1377 and 1249 cm−1 [24, 25]. 
These results indicate that LP-1 is a type of acetylated 
polysaccharide. The characteristic peaks of β-glucose and 
β-mannose are mainly observed at 890 and 807  cm−1, 
respectively [26, 27].

The methylation products of LP-1 were hydrolyzed 
and acetylated for GC–MS analysis, and the results are 
shown in Fig. 1d and Table 1. LP-1 is mainly composed of 
Glcp-1 → , → 4-Manp-1 → and → 4-Glcp-1 → at a molar 
ratio of 1.0:8.8:5.3.

NMR spectroscopy
The 1H NMR spectrum of LP-11 (500  MHz, D2O) is 
shown in the Fig. 2a. Five anomeric proton signals could 
be observed in the spectrum, and the chemical shifts of 
these signals are 5.33, 5.32, 4.85, 4.67 and 4.41 ppm. The 
sugar residues were numbered as A–E according to the 
decreasing chemical shift of anomeric proton. The 13C 

Fig. 1  Physical and chemical properties of LP-1. a HPGPC profiles of LP-1; b monosaccharide composition of LP-1 analyzed by HPAEC-PAD 
chromatograms; c FT-IR spectrum of LP-1; d the total ion chromatogram from methylation analysis of LP-1
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NMR spectrum (126  MHz, D2O) is shown in Fig.  2b. 
The chemical shifts of the main anomeric carbons of 
LP-1 are observed at 103.90, 101.46, 100.94, 100.41 and 
93.51  ppm. The signals near 2.10  ppm in the 1H NMR 
spectrum and the signals of 21.69 and 174.77  ppm in 
the 13C NMR spectrum are characteristic signals of the 
O-acetyl group. Substitution of O-acetyl groups leads to 
the chemical shifting of non-anomeric hydrogens on the 
sugar ring to a lower field (4.3–5.9  ppm). The 1H NMR 
spectrum of LP-1 also shows a characteristic absorption 
signal between 5.40 and 5.50  ppm (~ 5.41  ppm), which 
could be attributed to → 4)-β-Manp-(1 → residues with 
O-2 substituted by acetyl groups [28–32].

The anomeric proton of LP-1 and the integral of the 
hydrogen atom in the –COCH3 group are shown in 
Fig.  2a. The degree of acetylation substitution of LP-1 
DA = [(1 × 100%)/3]/(0.24 + 0.17 + 2.25 + 1.40) ≈ 8.21%.

The HSQC spectrum (Fig.  3a) revealed five coupling 
peaks in the heterocephalic region; these peaks are 

located at δ 5.33/93.51, δ 5.31/100.41, δ 4.85/101.46, 
δ 4.66/100.94 and δ 4.40/103.90 and respectively cor-
respond to H-1/C-1 of → 4)-α-D-Glcp (A), Glcp-
α-D-(1 →  (B), →  4)-2-O-acetyl-β-D-Manp-(1 →  (C), 
→ 4)-β-D-Manp-(1 → (D) and → 4)-β-D-Glcp-(1 → (E). 
A δ 5.41/72.52 coupling peak, which is attributed to 
H-2/C-2 of C, is also detected in the HSQC spectrum. 
The chemical shifts of C and H in LP-1 were determined 
by analyzing the HSQC and H–H COSY (Fig.  3b) data 
based on the anomeric carbons and proton , while refer-
ring to the methylation results of the same sugar residues 
and the relevant literature.  [29, 33–42]. The attribution 
results are shown in Table 2.

The combined results of the HMBC (Fig.  3c) and 
NOESY (Fig.  3d) spectra were used to analyze the con-
nection mode of the polysaccharide. The anomeric 
hydrogen of → 4)-α-D-Manp-(1 → (D) and its C-4 show 
a correlated signal peak (δ 4.67/77.93), and the ano-
meric carbon of D and its H-4 show a correlated signal 

Table 1  Methylation analysis of LP-1

Methylated sugars Linkages Molar ratio Major mass fragments (m/z)

2,3,4,6-Me4-Glcp Glcp-(1 →  1.0 43,71,87,101,117,129,145,161,205

2,3,6-Me3-Manp  → 4)-Manp-(1 →  8.8 43,87,99,101,113,117,129,131,161,173,233

2,3,6-Me3-Glcp  → 4)-Glcp-(1 →  5.3 43,87,99,101,113,117,129,131,161,173,233

Fig. 2  NMR spectra of LP-1. 1H- (a) and 13C- (b) NMR spectra
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(δ 100.94/3.71). The NOESY spectrum reveals a cor-
related signal between the anomeric hydrogen of D 
and its H-4 (δ 4.67/3.71e), which indicates a connec-
tion mode of → 4)-α-D-Manp-(1 → 4)-α-D-Manp-(1 →. 
Other connection modes were analyzed according 
to the above method. The HMBC and NOESY cor-
relation signal for the linkage sequence are shown in 
Table  3. The structure of LP-1 was finally obtained as 

follows: Glcp-α-D-(1 → {4)-β-D-Glcp-(1 → 4)-β-D-
2-O-acetyl-Manp-(1 → [4)-β-D- Glcp-(1 → 4)-β-D-
G l c p - ( 1  →   4 ) - β - D - M a n p - ( 1  →   4 ) - β - D -
M a n p - ( 1  →  4 ) - β - D - M a n p - ( 1  →  4 ) - β - D -
Manp-(1]2}2 → 4)-α-D-Glcp.

In recent years, there are many reports on the struc-
tural identification of Lilium polysaccharides, mainly 
concentrated on L. brownii F. E. Br. ex Miellez, L. davidii 

Fig. 3  NMR spectra of LP-1. 1H-13C HSQC (a), 1H-1H COSY (b), HMBC (c) and 1H-1H NOESY (d) spectra
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var. unicolor Cotton, L. lancifolium Thunb, etc., whose 
molecular weight distribution is wide, ranging from 
4.79 × 103 to 8.52 × 106 Da, mainly composed of glucose, 
arabinose, rhamnose, xylose and galactose. Only Pan 
et  al. reported an acetylated modified Lilium polysac-
charide [43]. The structural characteristics of acetylated 
modified Lilium polysaccharides were analyzed in detail 
for the first time in this paper. This study laid a founda-
tion for the structure–activity relationship analysis of 
LP-1.

Effect of LP‑1 on oxidative stress induced by hydrogen 
peroxide in HUVEC cells
LP‑1 increases the activity of HUVEC cells induced by H2O2
Compared with the control group, the cell viability of 
HUVEC induced by 0.2  mM H2O2 alone decreased sig-
nificantly, while after pretreatment with LP-1 of different 
concentrations (100, 400, 800  μg/mL), the cell viability 
of HUVEC cells increased to a significant level (p < 0.05) 
(Fig. 4a).

LP‑1 attenuates H2O2‑induced HUVEC cell damage
The production or impaired bioavailability of NO is 
a common sign of endothelial dysfunction, and the 

production of nitrite (a stable metabolite of NO) is an 
indicator of NO production [44, 45]. Consistent with the 
loss of cell viability, H2O2 can reduce the formation of 
NO in HUVEC cells (Fig.  4b). However, the addition of 
LP-1 can inhibit the reduction of NO production induced 
by H2O2. Therefore, LP-1 can inhibit H2O2-mediated 
endothelial dysfunction in HUVEC cells.

MDA is a toxic substance produced by ROS acting on 
the cell membrane to produce chain reaction, causing 
lipid peroxidation. Its excessive accumulation will dam-
age the cell membrane structure, leading to the overflow 
of cytoplasm and damaging the cell function [46]. There-
fore, the oxidative damage of cells can be detected by the 
content of MDA [47]. As shown in Fig.  4c, compared 
with the control group, the MDA level in the model 
group increased significantly (p < 0.05). In the experimen-
tal group, after the cells were treated with 100–800  μg/
mL LP-1, the MDA level decreased compared with the 
model group, and the 800  μg/mL LP-1 group reached 
the extremely significant level, indicating that LP-1 can 
alleviate the damage caused by ROS to cells to a certain 
extent, and its protective effect gradually increased with 
the increase of concentration.

Table 2  1H and 13C NMR spectrum assignments for LP-1

Glycosyl residues H1 H2 H3 H4 H5 H6a H6b
C1 C2 C3 C4 C5 C6

 → 4)-α-D-Glcp
(A)

5.33 3.45 3.67 3.95 4.32 3.73

93.51 72.44 72.57 81.91 76.82 63.73

Glcp-α-D-(1 → 
(B)

5.32 3.56 3.89 3.57 3.76 3.78 3.66

100.41 72.88 74.67 75.11 73.34 61.95

 → 4)-2-O-acetyl-β-D-Manp-(1 → 
(C)

4.85 5.41 3.91 3.78 3.37 3.76 3.63

101.46 72.60 71.30 77.60 76.10 61.82

 → 4)-β-D-Manp-(1 → 
(D)

4.67 4.02 3.72 3.71 3.45 3.81 3.65

100.94 71.38 72.43 77.93 76.07 61.84

 → 4)-β-D-Glcp-(1 → 
(E)

4.41 3.24 3.57 3.58 3.41 3.89 3.73

103.90 74.17 74.63 79.46 76.69 61.67

O-acetyl group 174.77/21.69–21.94/2.06–2.10

Table 3  HMBC and NOESY spectrum assignments for LP-1

– Not detected

Connection mode B → E E → C C → E E → E E → D D → D D → E D → A

H1
Cn

– 4.41
77.60

4.85
79.46

– 4.41
77.93

4.67
77.93

4.67
79.46

4.67
81.91

C1
Hn

100.41
3.58

– 101.46
3.58

103.90
3.58

– 100.94
3.71

100.94
3.58

100.94
3.95

H1
Hn

5.33
3.58

4.41
3.78

4.85
3.58

4.41
3.58

4.41
3.71

4.67
3.71

4.67
3.58

4.67
3.95
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ROS is composed of hydrogen peroxide, superoxide 
anion, hydroxyl radical, singlet oxygen, etc. Inflammatory 
reaction, cold and heat stress, aging, ultraviolet radia-
tion, and other internal and external factors will lead to 
the accumulation of ROS in cells. The elimination of ROS 
is an important way to protect organisms from oxidative 
stress damage, which is mainly achieved by antioxidant 
enzymes in the human body. SOD, CAT and GSH-Px 
belong to common antioxidant enzymes, which partici-
pate in the formation of biological defense system against 
oxidative damage and reduce the damage of ROS to cells 
[48–51]. The experiment preliminarily evaluated the anti-
oxidant capacity of LP-1 by detecting the changes of SOD 
(Fig. 4d) and GSH-Px (Fig. 4e) activities in HUVEC cells. 
After H2O2 modeling, the activities of both enzymes 
were significantly reduced compared with control group 
(p < 0.01), and H2O2 significantly inhibited the activities 
of cell antioxidant enzymes. Compared with the model 
group, the activity levels of both enzymes in LP-1-treated 
cells were enhanced in a concentration-dependent 
manner. In the 800  μg/mL LP-1 group, SOD and GSH-
Px activity increased significantly compared with the 
model group (p < 0.01). The above results showed that 
LP-1 could enhance the activity of SOD and GSH-Px in 

HUVEC cells under oxidative stress, and the effect was 
positively correlated with its concentration.

LP‑1 inhibits oxidative stress by activating Nrf2/HO‑1 
signaling pathway
Nrf2 is a key regulator to maintain redox homeostasis 
and cell antioxidant defense [52, 53]. It can regulate the 
expression of a variety of antioxidants and phase II detox-
ification enzymes through antioxidant response elements 
(ARE), HO-1, quinone oxidoreductase (NQO1), and 
SOD [54]. HO-1 can be used as an antioxidant enzyme 
to catalyze the degradation of heme to produce iron, car-
bon monoxide (CO), biliverdin and other metabolites, 
thus playing an anti-inflammatory, antioxidant, anti-
apoptotic and other roles. A large number of studies have 
confirmed that the up-regulation of HO-1 expression 
helps cells resist external stimuli and respond to oxidative 
stress damage [55–57]. To explore the potential mecha-
nism of LP-1 protecting endothelial cells from injury, we 
treated HUVEC cells induced by H2O2 with HO-1 inhibi-
tor and activator, and measured the levels of NO, MDA, 
SOD, GSH-Px (Fig.  5a–d). The results showed that the 
protective effect of LP-1 on H2O2-induced endothelial 
cell injury was eliminated by HO-1 inhibitor, indicating 

Fig. 4  LP-1 ameliorates H2O2-induced oxidative stress. a Effect of LP-1 on cell viability in H2O2-treated HUVEC cells. b Effect of LP-1 on NO levels 
in H2O2-treated HUVEC cells. c Effect of LP-1 on MDA levels H2O2-treated HUVEC cells. d Effect of LBP on SOD activity in H2O2-treated HUVEC cells. e 
Effect of LBP on GSH-Px activity in H2O2-treated HUVEC cells. Data are presented as the mean ± SEM (n = 3). Compared with control group, *p < 0.05, 
**p < 0.01; Compared with model group, △p < 0.05, △p < 0.01
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that the protective effect of LP-1 in oxidative stress 
depended on the activity of HO-1, and HO-1 activator 
could enhance the protective effect of LP-1. Further-
more, we detected the expression of Nrf2 and HO-1 pro-
teins through the WB experiment (Fig. 5e, f ). The results 
showed that LP-1 could up-regulate the expression of 
Nrf2 and nuclear translocation, and activate Nrf2/HO-1 
signaling pathway. After the use of the HO-1 specific 
inhibitor SnPP, the effect of LP-1 on the up-regulation of 
Nrf2 and HO-1 protein expression in cells was lost, while 
the HO-1 activator could enhance the expression of Nrf2 
and HO-1 protein, indicating that LP-1 could activate 

Nrf2/HO-1 signaling pathway to play a protective role 
and alleviate H2O2-induced endothelial cell damage.

The antioxidant activity of Lilium polysaccharides is 
one of their main biological activities. The results of this 
study indicate that LP-1 has an inhibitory effect on oxi-
dative stress, which is consistent with the antioxidant 
effects of various Lilium polysaccharides reported by 
Guo et al. [43].

Conclusions
In this paper, a low-molecular weight linear O-acetylated 
glucomannan (LP-1) was separated from bulbs of L. 
lancifolium. The structural characteristics of LP-1 were 

Fig. 5  LP-1 alleviates H2O2-induced HUVEC cell damage via the Nrf2/HO-1 pathway. a–d Effects of HO-1 inhibitor and activator treatment on NO, 
MDA, SOD, GSH-Px levels in H2O2-induced HUVEC cells. e The relative protein expression levels of Nrf2 and HO-1 were determined via western 
blotting. f Western blot analysis was performed to detect the protein expression levels of nuclear Nrf2. Compared with control group, *p < 0.05, 
**p < 0.01; compared with model group, △p < 0.05, △p < 0.01
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analyzed by high-performance liquid chromatography, IR 
spectroscopy, methylation analysis, NMR spectroscopy 
and other technologies. The repeating structural units 
of the polysaccharide were also predicted. The results 
of oxidative stress experiments indicate that LP-1 exerts 
antioxidant effects on HUVEC by activating the Nrf2/
HO-1 signaling pathway, thereby improving endothelial 
cell damage induced by H2O2, and has the potential to be 
developed as an antioxidant drug.
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