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Abstract 

The application of near-infrared spectroscopy (NIRS) for rapid quantitative analysis of soil total nitrogen (STN) 
is of great significance to recycling nitrogen in the ecosystem and crops growth. However, collecting thousands 
of soil samples and chemical analysis are impracticable, more importantly a deviation from NIRS advantages of rapid, 
inexpensive and nondestructive. To more efficiently improve the estimation performance and reduce uncertainty 
of the model when working with small sample sizes (less than 100), solutions from soil particle size decomposition 
and model fusion were investigated. Elaborately, 123 Latosols samples were collected and decomposed them accord-
ing to particle sizes to extend limited data at multiple scales. Based on all soil groups decomposed, a hyperspectral 
data recapture and model decision fusion method were implemented. The results demonstrated that the proposed 
method increased the scale of spectral data, extracted more STN-related spectral information, improved estimation 
accuracy, and reduced uncertainty. The fused model based on data from all decomposed groups yielded the best 
estimated results (root mean square error (RMSE) = 0.075g.kg−1 , R2 = 0.784 , and a ratio of performance to inter-
quartile distance (RPIQ) = 3.787 ) on the validation set. Through a tenfold cross-validation, the weighted fusion 
model with six groups of particle sizes data showed an improvement of 0.307 in R2c v and an improved RPIQ of 1.015 
compared to models constructed using conventional machine learning (ML) techniques and limited pristine data 
( R2c v = 0.442, RMSE = 0.119 ). Therefore, when utilizing NIRS to build rapid and accurate STN predictive models, 
the proposed method demonstrates great potential in improving the reliability of soil spectral models under small 
sample sizes.
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Introduction
Quantitative knowledge of soil total nitrogen (STN) is 
of great significance to society, as it helps to ensure crop 
growth and reduce leakage of N from agricultural activi-
ties into the environment [1, 2]. Latosols, highly weath-
ered and dystrophic soils, dominated by low-activity 1:1 
clay minerals and Fe and Al oxyhydroxides [3]. They are 
primarily used for the cultivation of rubber trees (Hevea 
brasiliensis) in Hainan Island. Estimating STN content in 
Latosols is thus essential, not only for natural rubber pro-
duction, but also for the health and income of the local 
population.

In recent years, the fast and nondestructive character-
istics of NIRS technology has facilitated its use in STN 
quantification [4–6]. However, insufficient soil samples 
owing to the difficulty and expense in densely collecting 
and chemically analysing thousands of samples, result in 
large deviations in spectral estimation models and weak 
generalization capabilities [7–9].

To more efficiently enhance the reliability of spec-
tral models under small sample sizes, machine learning 
approaches have been proposed, including ensemble 
regression techniques, spectral dimensionality reduc-
tion, and data pretreatment [7, 10, 11]. However, solu-
tions from increasing sample sizes from physical levels 
are hardly discussed to generate more spectral observa-
tions efficiently. Providing comprehensive observations 
is a practical approach to mitigate the high uncertainty 
and poor robustness of models under small sample 
sizes (n<100) [12]. In view of this, we attempt to offer 
models with the multi-scale data by recapturing spec-
tra of Latosols samples decoupled into different particle 
sizes. Based on multiple sizes data, assure that model 
comprehensively captures the pattern between soil 
spectral characteristics and STN content. Currently, 
there is a little discussion on dealing with small samples 

by means of soil particle decomposition. Hence, a strat-
egy from this new perspective deserves further explo-
ration, and soil samples augmenting framework should 
be developed to deal with the challenge of small sample 
size in modelling.

Previous studies have demonstrated that soil particle 
sizes are closely related to spectral information [13]. 
When soil with a particle size of less than 1  mm was 
further divided into multiple groups, for each group, 
the measured spectral data exhibited a high correla-
tion with soil organic matter in different degrees [14, 
15]. This conclusion provided sufficient motivation and 
evidence for the utilization of physical-scale variation 
on pristine soil to generate more spectral information 
and augment limited data. Furthermore, decision-level 
model fusion framework have been introduced to gen-
erate more stable estimations with satisfactory accu-
racy [16, 17].

In terms of this, a potential solution for increas-
ing sample sizes is to decompose limited soil sam-
ples into multiple groups and fuse established models 
based on multi-scale soil data. However, before apply-
ing this approach to fill the research gap, the follow-
ing questions need to be addressed: Can soil particle 
size decomposition yield more informative data? Can 
decomposition into more samples and a model fusion 
strategy further improve estimation performance under 
small sample sizes? Can this new method provide a 
rapid and flexible way to estimate STN under small soil 
sample sizes?

To answer these questions, our study aims to: (1) inves-
tigate the effect of soil particle size decomposition on 
model performance; (2) propose a new framework for 
rapid soil spectral observations expansion and multi-
model fusion to improve model estimation performance 
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under small sample sizes; and (3) efficiently estimate STN 
in Latosols using the NIRS technique.

Materials and methods
Soil samples collection
Latosols samples were collected from Danzhou, Hainan 
Province, in the southern part of China. The details of the 
location of uniform distributed sampling sites are shown 
in Fig. 1a, which were recorded with a handheld GPS. For 
each site, a drill was used to dig 20 cm below the surface 
layer, and 4 soil sub-samples within 400 m2 were collected 
by using a four-point sampling quadrat, which is shown 
in Fig. 1b. They were mixed and packed into a white plas-
tic bag as one soil sample. Subsequently, a total of 123 soil 
samples were fast labelled and sent to the laboratory.

The oven-drying method was employed to dry the soil 
samples at 100◦C for 24  h [18]. After drying, they were 
stood for 8 h and sieved 2 mm uniformly, to minimize the 
systematic and random effects for subsequent spectral 
measurements [19]. Notably, a dry soil sample with a par-
ticle size of less than 2  mm and room temperature was 
considered as the pristine soil sample for further study.

Soil particle sizes decomposition
To efficiently provide a greater number of spectral obser-
vations for soil samples, we implemented an extension of 
soil sample sizes at the physical level. Namely, the mixed 
pristine soil was modified through particle size decom-
position, generating additional spectral data from limited 
pristine soil samples. This hyperspectral recapture for 

each soil sample aimed to ensure that the model learned 
from the augmented spectral data and accurately cap-
tured the representation of soil total nitrogen (STN).

Specifically, the soil samples with sizes less than 2 mm 
were further sieved using five sieves with gaps of 1, 
0.5, 0.25, 0.15, and 0.09 mm. As a result, the soil parti-
cles were decomposed into the following size ranges: 
1.0− 2.0 , 0.5− 1.0 , 0.25− 0.50 , 0.15− 0.25 , 0.09− 0.15 , 
and < 0.09 mm. This decomposition process yielded a 
total of seven groups, including the pristine soil sample 
with sizes less than 2 mm. The sieved soil samples in the 
cylinders are shown in Fig. 1c, where the pristine mixed 
soil samples ( < 2mm) are presented first on the left, and 
the rest are the six groups of sieved soil.

To demonstrate that particle size decomposition can 
provide more informative data, we conducted canoni-
cal correlation analysis (CCA) to assess the correlation 
between each group of particle sizes and STN [20]. Fig. 2 
shows the correlation coefficients obtained from the six 
groups of decomposed soil spectra, which are higher 
than those of the pristine soil. This indicates that the 
decomposition method can extract various information 
with high relevance from the limited soil samples. This 
conclusion is consistent with the work of Wu et al. [14].

Spectral measurement and data prepossessing
Before acquiring spectra reflectance, the instrument was 
calibrated using a 99% reference white board [21, 22]. 
Subsequently, the reflectance data for each soil sample 
were measured using a spectrometer (GaiaField-F-N17E). 
An interesting observation is that as the soil particle size 

Fig. 1  Sampling sites location (a). The left image shows the sampling sites in Arcgis, and the figure to the right is the remote sensing image (b). 
A four-point sampling quadrat used in our study (c). Seven groups sieved soil samples. The particle size ranges of soil samples from left to right 
in the figure are < 2.0mm, 1.0−2.0 mm, 0.5−1.0 mm, 0.25−0.50 mm, 0.15−0.25 mm, 0.09−0.15 mm, and < 0.09 mm
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Fig. 2  Barplot of correlation coefficients between spectrum of different particle sizes and total nitrogen content

(a) Decomposed soil samples with seven particle sizes and NIR Hyperspectral reflectance images.

(b) Averaged spectrum curves and corresponding transformed data. The abscissa is the wavelength, 
and the ordinate is the reflectance under the wavelength.
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Fig. 3  NIR reflectance images of decomposed soil samples with seven particle sizes and averaged spectrums with multiple transformed methods. 
MSC refers to multiplicative scatter correction and S-G refers to Savitzky–Golay
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decreases, the reflectance images become brighter in 
Fig. 3a, which aligns with the findings of Xie et al. [14]. 
Simultaneously, an increasing trend occurs as the soil 
particle size scale decreases, and the averaged spectrum 
has higher value, which can be viewed in Fig. 3b.

The spectrometer used for data collection had a wave-
length range of 840-1700 nm, resulting in a total of 254 
reflectance bands for each soil sample. However, the first 
30 and last seven bands were found to contain significant 
high-frequency noise. Therefore, to ensure data qual-
ity, 217 bands were selected and reserved as soil spectral 
data within the wavelength range of 942-1678 nm. Sub-
sequently, the acquired hyperspectral images with 217 
bands were further averaged, as depicted in Fig. 3.

During the data collection process, random noise and 
outliers are inevitable, particularly in environments with 
high air humidity [23–26]. A clear example of this inter-
ference can be seen in the raw spectral data observed at 
wavelengths 1400 to 1450 nm (Fig.  3a). Consequently, 
raw spectral data cannot be directly used for modelling 
purposes without any preprocessing.

To address this issue, the three-sigma rule [27] was 
applied to identify and remove 12 abnormal samples that 
deviated significantly from the majority of collected sam-
ples. This step was crucial to prevent the training mod-
els from being biased by these outliers. Furthermore, 
a Savitzky–Golay (S-G) filter [28] was conducted to fil-
ter high-frequency noise in spectral signals at 1400nm. 
Multiplicative scatter correction (MSC)[29] was imple-
mented to remove the scattering interference during 
spectrum measurement. The pretreated single group 
spectrum curve and particle sizes decomposed curves 
can be shown in Fig. 3b.

Moreover, the spectrum contained redundant and col-
linear bands that distorted the estimated model param-
eters, resulting in model’s weak generalization ability. 
Thus, two classical spectral bands algorithms were con-
ducted,  the successive projection algorithm (SPA) [30]
and uninformative variables elimination (UVE) [31].

Chemical analysis
The most widely employed method in chemical analysis 
is the Kjeldahl determination method [32, 33], which is 

generally used as a reference method for nitrogen con-
centration estimation. Thus, the semi-micro Kjeldahl dis-
tillation method was used in this study to determine the 
total nitrogen content in the soil, and the absolute error 
between the measured and standard values was less than 
0.01 g/kg for the collected soil samples. This is the pre-
requisite for establishing an accurate STN spectral esti-
mation model. Notably, samples of different particle size 
groups decomposed from the same pristine soil have a 
consistent STN. Physical variation does not change the 
STN of Latosols in different particle sizes.

Descriptive statistics
To ensure an objective evaluation of the model’s perfor-
mance, we employed sample set partitioning based on 
joint x–y distance to split the data into calibration and 
validation sets [34, 35]. The calibration set accounted for 
70% of the samples, which corresponded to 78 samples 
for calibration and 33 samples for validation.

We performed soil particle size decomposition sepa-
rately for the calibration and validation sets, generating 
six different particle size groups for each dataset. The 
calibration set was used to train the model, while the vali-
dation set was utilized to assess the model’s performance.

Additionally, a descriptive statistic chart of soil total 
nitrogen (STN), obtained through chemical analysis, is 
provided in Table 1.

STN content estimation modelling
Based on expanded spectral dataset, we established mul-
tiple regression sub-models separately, and performed 
decision fusion on multiple output results to establish 
a more reliable model for small sample sizes. We con-
ducted two fusion strategies: average fusion section , 
and weighted fusion section . Additionally, partial least 
squares regression (PLSR), Gaussian process regression 
(GPR) and multivariate linear regression (MLR) were 
employed for sub-model establishment in section . Fur-
ther, common model ensemble methods were introduced 
as a contrast to comprehensively reflect the effect of the 

Table 1  Soil sample total nitrogen content distribution of different data set

Data set Size Range(g.kg−1) Mean(g.kg−1) CV(%)

Total 111 0.13 ∼ 1.45 0.582 41.6

Calibration set 78 0.13 ∼ 1.45 0.589 45.1

Validation set 33 0.31 ∼ 0.97 0.567 27.7

Calibration set (six particle sizes) 468 0.13 ∼ 1.45 0.589 45.1

Validation set (six particle sizes) 198 0.31 ∼ 0.97 0.567 27.7
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proposed method, including Bagging (Random Forest), 
Stacking, and Cubist methods.

Decision‑averaged fusion
To further improve the estimation accuracy and reduce 
uncertainty under small samples sizes, an average deci-
sion fusion on multiple sub-models is indispensable, 
instead of generating results, respectively [16, 36]. There-
fore, we implemented the fusion framework of Bagging, 
which is the representative work of ensemble learning 
[37]. Specifically, Bagging yields numerous outputs with 
the subset selected from an original training set through 
bootstrapping [37]. The average of these outputs was 
used as the final result. The detailed construction is 
shown in Fig. 4a, and the algorithm is as follows.

Assume a fusion with T estimators, where T is equal to 
6 in this study. For i = 1, ...,T  , repeat following steps:

•	 Step 1. Bundle spectral data with the whole T groups 
of soil spectral data to construct a new set, D.

•	 Step 2. mb samples are randomly picked from D.
•	 Step 3. The ith estimator is built with the mb samples 

picked from D, and train the estimator by the follow-
ing function:  ˆθ = argmin

θ

E(x,y)∼mb
log(y− f iθ (x)).

•	 Since acquiring the T estimators, average the outputs 
of the T estimators as the final result.

Decision‑weighted fusion
Considering that there exist differences in effects 
of STN sub-models learning, stacking method was 
employed to train a weighted fusion model that fuses 
multiple sub-models via different weights obtained 
from training stage [7, 17]. To obtain suitable weights, 
the outputs of all sub-models and true STN value are 
deemed as new features and labels. A last-layer regres-
sor was further trained to determine fusion weights 
[38]. The framework used in our study is shown in 
Fig. 4b, and the detailed procedure as follows.

A fusion with (T=6) models was assumed. For 
i = 1, ...,T  , start following steps:

•	 Step 1. Enter the spectral data of the ith particle size, 
xi.

•	 Step 2. Build a proprietary predictive model for the 
ith data to generate a mapping between data and 
STN value. 

•	 Step 3. Collect the output of entire T models.
•	 Step 4. Build a final-layer regression model, which 

is used to learn the optimal weights of each model’s 
output.

•	 Step 5. Compute ωi by solving the following equation: 

(1)ŷi = f iθ (xi)

Fig. 4  Charts of averaged fusion (a) and weighted fusion (b) framework used for STN value estimation modelling
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•	 Finally, output the stacking result 

 where ωi is calculated from the equation in Step 5, yp 
is the prediction result of the fusion model, where, ŷi 
is the prediction outcome of the ith model, ωi is the 
stacking weight for the ith model’s output, and y rep-
resents the STN label.

Sub‑regressor modelling method
In this study, the PLSR, MLR, and GPR algorithms were 
used to establish the sub-model with spectral reflectance 
data. MLR and PLSR have been used as reference linear 
modelling methods in the field of analytical chemistry 
[39, 40]. Further, UVE and SPA were employed to select 
the key bands from enhanced data, and thus, we used 
the UVE-PLSR and SPA-MLR methods to build the sub-
models. Meanwhile, popular ensemble learning methods, 
including RF, Stacking, and Cubist [41], were imple-
mented to be comparisons to our proposed method as 
well.

However, both MLR and PLSR are types of linear 
regression algorithms, and the fitting ability is limited. 
Considering this, we further implemented a non-linear 
and non-parametric learning algorithm, GPR, to build 
predictive a sub-model that is equivalent to kernel ridge 
regression. In brief, GPR assumes that a Gaussian process 
prior governs the set of possible latent functions (which 
are unobserved). Then, the likelihood of the latent func-
tion and observations shape this prior to produce poste-
rior probabilistic estimates [42].
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ω
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Evaluation metrics
The root mean square error (RMSE), determination coef-
ficient ( R2 ) and ratio of performance to inter-quartile dis-
tance (RPIQ) [43] were used to evaluate the performance 
of the prediction model, following eqs. (4), (5), (6), (7). 
Generally, an ideal model exhibits higher R2 , RPIQ values 
and lower RMSE value:

where IQ represent the inter-quartile distance.
Notably, the uncertainty is another key issue in soil 

mapping, especially in our scenario of applying NIRS 
model to predict STN under small sample sizes [36, 44]. 
A tenfold cross-validation method was supposed to vali-
date the estimation uncertainty, where R2

cv and RPIQcv 
were used. To illustrate our method comprehensively, the 
experimental workflow presented in Fig. 5 demonstrated 
the experiment methodology of the study.

Results
Comparison of model fusion strategies
Table  2 summarizes the evaluation metrics of all esti-
mated models constructed using the enhanced data. The 
performances of the models using the multi-model fusion 
were better in general. For instance, the R2

v and RMSEv of 

(4)RMSE =

√

∑n
i=1 (yi − ŷi)2

n
,

(5)R2
=





�n
i=1 (yi − yi)(ŷi − ŷi)

�
�n
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�

�n
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



2

,

(6)SD =

√

∑n
i=1 (yi − y)2

n
,

(7)RPIQ =

IQ

RMSE
=

Q3 − Q1

RMSE
,

Fig. 5  The experimental workflow of our study
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simply using SPA-MLR and GPR algorithms were 0.553 
and 0.117 g .kg−1 , 0.627 and 0.107 g .kg−1 , respectively, on 
the sieved soil data, as summarized in Table  2. Particu-
larly, the results of the fusion modelling approach of SPA-
Stacking was the best in our study, and the R2

v and RMSEv 
reached 0.784 and 0.075 g .kg−1 , respectively, as shown in 
regression scatter diagram (Fig. 6).

Additionally, the stacking construction can be more 
effective to elevate the STN model performance than 
Bagging, as shown in Fig. 4. When the SPA-Bagging-MLR 
framework was implemented, the R2

v and RMSEv of the 
model were 0.709 and 0.087g .kg−1 , respectively; whereas, 
the R2

v of the SPA-Stacking-MLR model improved by 

0.075 than SPA-Bagging-MLR model. Simultaneously, 
when UVE-PLSR a were offered with stacking fusion, 
the R2

v was 0.139 higher than that without model fusion, 
and the RMSEv decreased by 17.5%, as summarized in 
Table 2.

Model performance comparison of using soil particle size 
decomposition method
The record of estimation results of modelling by using 
groups of soil data decomposed and using original soil 
data is summarized in Table  3. This table indicates that 
using the size of 666 data can generate a higher accuracy 
model than the pristine soil dataset. The R2

v and RMSEv of 

Table 2  Estimation results of using different fusion strategies and sub-regressors

[1] Single implies without using any model fusion strategy, a single model is directly implemented on the expanded dataset

[2] GPR represents using Gaussian progress regressor to build sub-models

[3] UVE-PLSR is to use the combination of uninformative variable elimination techniques and partial least regressor to build sub-models

[4] SPA-MLR is to implement the successive projections algorithm to remove co-linear variables and establish multiple linear regression sub-models

Fusion strategy Regressor Calibration Validation Tenfold validation

R2c RMSEc(g.kg
−1) R2v RMSEv(g.kg

−1) R2cv RPIQ

Single[1] GPR[2] 0.695 0.140 0.627 0.107 0.598 2.895

Bagging GPR 0.702 0.138 0.711 0.088 0.651 2.942

Stacking GPR 0.711 0.131 0.723 0.085 0.653 2.951

Single UVE-PLSR[3] 0.645 0.156 0.597 0.113 0.550 2.937

Bagging UVE-PLSR 0.715 0.140 0.737 0.083 0.693 3.324

Stacking UVE-PLSR 0.734 0.123 0.714 0.087 0.677 3.340

Single SPA-MLR[4] 0.429 0.198 0.553 0.117 0.484 2.501

Bagging SPA-MLR 0.683 0.147 0.709 0.087 0.680 3.314

Stacking SPA-MLR 0.773 0.125 0.784 0.075 0.720 3.511

Table 3  Result comparison of using soil decomposed data and particle size of 0.15 mm−0.25 mm to build the model

[1] Pristine soil data refer to using a mixture soil sample data with particle size < 2 mm for modelling

[2]  0.15–0.25 mm data are for modelling based on the soil data of particle size ranging from 0.15 mm to 0.25 mm, which superior to the rest five particle sizes group

[3]  Six groups of particle sizes data means using the whole particle sizes data to build the model

Data size Data category Regressor Calibration Validation Tenfold 
validation

R2c RMSEc ((g.kg
−1)) R2v RMSEv ((g.kg

−1)) R2cv RPIQ

111 Pristine mixed soil data[1] UVE-PLSR 0.514 0.181 0.457 0.118 0.433 2.105

GPR 0.737 0.132 0.543 0.108 0.522 2.603

SPA-MLR 0.374 0.198 0.418 0.132 0.385 2.032

0.15-0.25mm data[2] UVE-PLSR 0.645 0.156 0.597 0.113 0.550 2.937

GPR 0.695 0.140 0.627 0.107 0.598 2.895

SPA-MLR 0.429 0.198 0.553 0.117 0.484 2.501

0.15-0.25mm data Bagging 0.568 0.172 0.608 0.101 0.579 2.514

Stacking 0.625 0.161 0.548 0.103 0.510 2.227

Cubist 0.719 0.139 0.631 0.098 0.589 2.631

666 Six groups of particle sizes data[3] PLSR 0.643 0.167 0.637 0.097 0.600 2.650

Stacking 0.773 0.125 0.784 0.075 0.720 3.511

Bagging 0.715 0.140 0.737 0.083 0.693 3.324
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the estimation model built with pristine mixed soils data 
and UVE-PLSR method were 0.457 and 0.118 g .kg−1 , 
respectively. The model’s performance was not adequate. 
Moreover, the estimation model was established using 
the filtered soil spectrum with particle size range of 0.15−
0.25 mm, and the results were superior to the rest of the 
particle size groups. The entire results of using seven 
groups data modelling are shown in Table 4. When total 

six groups data (n=666) were implemented, the identical 
UVE-PLSR and GPR methods generated the better per-
forming model, where the R2

v and RMSEv reached 0.637 
and 0.098 g .kg−1 , 0.620 and 0.104 g .kg−1 , respectively.

In particular, the R2
v score of model based on ensem-

ble method (RF, Stacking and Cubist) without soil spec-
tral recapture were 0.608, 0.548 and 0.631, respectively, 
which were all lower than UVE-Stacking-PLSR with six 

Fig. 6  Regression scatter diagram of using different model fusions. The first row of images are the scatter plots of the prediction results using 
pristine soil data, the second row of images are the resulting scatter plots of using sieved data with the particle size of 0.15–0.25mm, the third row 
are the scatter plots of regression results using model fusion method and sieved data, and the last row are the scatter plots of regression results 
using six group data and model fusion method
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groups spectral data. To visualize the effectiveness of soil 
particle sizes decomposition and spectral recapture to 
assist spectral model learning, the regression scatter dia-
grams are shown in Fig.6.

Comparison of sub‑model modelling methods
In this study, we implemented the UVE-PLSR, GPR, 
and SPA-MLR methods to establish multiple sub-mod-
els. The R2

v and RMSEv results of using different regres-
sors modelling are shown in Fig. 7. As evident, GPR was 
the best among the three methods in general, although 
the best performance of the fusion model UVE-Stack-
ing-PLSR was constructed by the regressor UVE-PLSR. 
When only analysing the effect of sub-regressor selec-
tion on model accuracy, the mean R2

v metrics of the 
GPR modelling method was 0.560, while the SPA-MLR 
and UVE-PLSR were 0.463 and 0.527. To better com-
pare and analyse the estimation effect of the models 
used in this study, the performance of all models on the 
validation set is shown in the form of boxplots (Fig. 7).

Discussion
Validity interpretation analysis of soil particle sizes 
decomposition methods
As summarized in Table  3, the estimation results 
obtained from modelling with seven groups of spec-
tra are more desirable, even when employing the same 
model fusion strategies. We attribute this improvement 
to three main reasons.

First, for data equality, proposed decomposition 
method can eliminate the interference of physical 
properties caused by excessive particle size [45]. When 
combined with pretreatment methods, the informa-
tion related to STN in the curve was highlighted, and 
the correlation between STN content and spectrum 
improved [10, 46]. The detailed results of using seven 
groups of data modelling are shown in Table 4.

Second, by providing multi-scale data, the approach 
mitigates the drawbacks associated with high-dimen-
sional spectral data, such as spectral overlap and high 
levels of noise [47]. This enables the model to confi-
dently capture STN-related information and reject 
noise interference.

Third, the idea of this method is aligned with the clas-
sic bootstrap integration idea [48]. This idea involves 
collecting spectral estimation and analysis results of 
the same target (STN) from different observations and 
integrating these estimates to enhance the accuracy and 
robustness of the model, particularly in small sample 
sizes.

Validity interpretation analysis of multi‑model fusion 
strategy
As Table  3 suggests, the results of using model fusion 
outperformed other methods both on single group and 
six groups particle sizes data. There are three main rea-
sons why the fusion method implemented in this study 
can improve the estimation model performance. First, 
compared with the single model, the integrated model 
learned from multi-scale information, which generated 
more reliable results based on more complete estima-
tion. Second, the output of a single model obtained via 
small samples size had a high uncertainty and massive 
variation, thus, it is necessary to integrate outputs of 
multiple models at decision-level to reduce uncertainty 
[16]. Third, a multi-modal fusion model has the larger 
and deeper parameter scales than a single model to fit 
data. The introduction of decision fusion model can 
further reduce the bias in the regression results and 
improve the training approximation when the amount 
of data is suitable [7].

Table 4  Regression results of using different particle sizes soil data

[1] Best method means implemented to get the optimum results among all methods

Data (n=111) Best method[1] Calibration Validation

R2c RMSEc(g.kg
−1) R2v RMSEv(g.kg

−1)

Pristine mixed soil data GPR 0.737 0.132 0.543 0.118

0.1 - 0.2mm data UVE-PLSR 0.613 0.148 0.505 0.124

0.5 - 0.1mm data GPR 0.739 0.132 0.570 0.107

0.25 - 0.50mm data GPR 0.855 0.093 0.575 0.110

0.15 - 0.25mm data Cubist 0.719 0.139 0.631 0.098

0.09 - 0.15mm data Cubist 0.697 0.139 0.583 0.102

< 0.09mm data GPR 0.542 0.157 0.490 0.128
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Important wavebands for predicting STN
To enhance the interpretability of the model, it is nec-
essary to visualize the key band selection progress of 
model. In this study, UVE was employed to select the 
key bands, which is a method of variable filter based on 
stability analysis of the regression coefficient; those less 
than the cut-off threshold were regarded as uninforma-
tive and thus eliminated [31, 49]. The specifics of the 
key band selection for different particle sizes data are 
documented, and the distribution of the b-coefficients 
for important bands retained from the PLSR cross-
validation for STN estimation is depicted in Fig.  8a. 
The selection results varied across different particle 
sizes; however, the overall distributions are similar, 
with approximate ranges of 992 -1078, 1352-1521 and 
1589-1607nm. Basically, these selected bands demon-
strate strong associations with the first N–H overtone 
(1500nm), the second N–H overtone (1000nm), and the 
first O–H overtone (1400  nm) [6]. Despite the drying 
of the soil in our experiments, significant O–H is still 
evident in the curves. The work of Xiao et al. [50] dem-
onstrates that this may be influenced by the response 
of fundamental Fe(OH)3 and Al(OH)3 from latosols, 
as well as being affected by the high humidity in the 
environment.

The wavelength subset obtained after eliminat-
ing the spectral collinearity using SPA is shown in the 

right picture in Fig.  8b, where the marked red points 
are the selected wavelengths. Additionally, SPA algo-
rithm shares a similar distribution of selected key 
wavelengths, although the particle sizes are distinct. 
In general, the UVE method obtains a larger range of 
wavelengths, larger number, and better results for 
modelling.

Limitations and future prospects
While our work appears practical, several potential limi-
tations exist. Firstly, the climate of Hainan is an inevita-
ble factor that may affect our experiments. The average 
annual relative humidity at our experimental site ranges 
from 75% to 86%, introducing noise at a wavelength of 
1400 nm (Fig.  3b), which corresponds to the first O–H 
from the water in the air. Although S-G smoothing has 
been applied to mitigate interference in the raw spectral 
data, there might be an uncertain gap between the meas-
ured data and the true soil properties. Notably, it is very 
common to observe obvious noise at 1400nm, especially 
during the capture of hyperspectral data by drone-based 
spectrometers [51]. Thus, an intractable urgent should be 
viewed as. For future work, we intend to use a radiative 
transfer model [52] to theoretically calibrate our data. We 
hope to be able to make a sensible compromise between 

Fig. 7  Boxplots of estimation results of different model establishment methods. PD is an abbreviation for using pristine data to build models. SD 
is to use sieved data. ED refers to expanded data by soil particle decomposition and RF means random forest
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theoretical data and low-quality data captured in the 
field.

Secondly, our research area was limited, and the soil 
samples obtained were of a single type. The effective-
ness of using our proposed method for rapid and accu-
rate estimation of STN in other soil categories needs 
to be verified. In terms of this, we are actively seeking 
to cooperate with researchers in other regions to verify 
our results with data from multiple soil varieties. In this 

manner, the influence of geographical and environmen-
tal noise factors can be effectively eliminated. In addition, 
we will use deep learning methods in future experiments 
to build better performance estimation models.

Conclusion
Soil particle size decomposition was proposed to extract 
multi-scale spectral information, thereby improving the 
flexibility and reliability of applying NIRS technology to 

Fig. 8  Result diagrams of key bands for all groups of soil data. Bottom figures are the wavelength selection results of all particle decomposed soil 
data by using uninformative variables elimination and successive projection algorithm. The rest of the pictures correspond to the selection results 
of different particle size data. The left figure shows the b-coefficients associated with the partial least regression cross-validation models (k=10) 
for predicting the STN. The horizontal lines represent thresholds for the b-coefficients based on the standard deviations of the STN. The diagram 
on the right is the bands selection result of SPA, where red scatters represent the selected key bands
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quickly assess STN. The SPA-Stacking-MLR model pro-
posed in this study was conducted to assess the total 
nitrogen value in Latosols soil. Compared with the estab-
lishment of a predictive model with limited pristine data, 
the RMSEv decreased to 0.075 and R2

v increased to 0.784. 
As a result, the proposed approach demonstrated signifi-
cant potential in improving the accuracy of STN estima-
tion models and reducing uncertainty, particularly under 
conditions of limited sample sizes. Moreover, our study 
provided a new perspective for enhancing the perfor-
mance of STN estimation models under small sample 
sizes without an intensive and expensive process of large-
scale data construction. The results could be applicable to 
soils derived from other parent materials.
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