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Abstract 

Background β-1,3-Xylooligosaccharides (XOS-3) extracted from Caulerpa lentillifera have shown potential antioxida-
tive and anti-tumor properties, but research on their biological activities, particularly their anti-osteoarthritis effects, 
is still in early stages.

Results XOS-3 were produced by eco-friendly enzymatic hydrolysis, displaying a semi-crystalline structure 
with predominant xylose, xylobiose, xylotriose, and xylotetraose components which were confirmed by IC, SEM, 
FT-IR, and XRD analysis. Compared with β-1,4-xylooligosaccharides, XOS-3 had stronger antioxidant properties, 
and the scavenging rate of  O2

•− and  DPPH• radicals was 82.31% and 58.44% at 2.0 mg/mL respectively. In vitro studies, 
XOS-3 significantly improved cell viability in IL-1β-induced rat chondrocytes from 43.41 to 73.5% at 100 μg/mL, dem-
onstrating anti-inflammatory and cartilage-protective effects by modulating MMP13 and COL2A1 expression.

Conclusions The study displayed the potential antioxidative and anti-osteoarthritis effects of XOS-3, offering new 
visuals for the development of marine polysaccharides in the treatment of osteoarthritis.

Keywords β-1,3-xylan, β-1,3-xylooligosaccharides, Antioxidant, Osteoarthritis, Enzymatic hydrolysis

*Correspondence:
Honglin Wang
hmlovewhl@outlook.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40538-024-00581-1&domain=pdf


Page 2 of 11Cai et al. Chem. Biol. Technol. Agric.           (2024) 11:54 

Graphical Abstract

Introduction
β-1,3-xylan, a unique polysaccharide composed of β-1,3-
linked D-xylose, was found in some marine red or green 
algae, such as Caulerpa, Bangia, and Porphyra spp [1, 
2]. Unlike land plants, the cell walls of these algae com-
pletely lack cellulose and mainly rely on β-1,3-xylan to 
maintain their mechanical strength which has not been 
found in land plants that contain β-1,4-xylan instead 
[3–5]. The high molecular weight, degree of polymeri-
zation, and poor solubility of xylan limit their biological 
activity across cell membranes [6]. Therefore, degrad-
ing macromolecular plant polysaccharides into smaller 
xylooligosaccharides (XOS) presents a significant oppor-
tunity for enhancing their biological utilization [7, 8]. 
However, research on the XOS production from marine 
biomass remains scarce [9, 10]. In this context, explor-
ing an increasing variety of marine algae as feedstocks 
for XOS production is a promising avenue [11, 12]. β-1,3-
xylooligosaccharides (XOS-3), the degraded products 
extracted from β-1,3-xylan, demonstrate notable bio-
logical activities distinct from β-1,4-xylooligosaccharides 
(XOs-4), attributed to their unique structural linkages 
[13, 14]. Liang et al. demonstrated that XOs-3 extracted 
from Caulerpa lentillifera (C. lentillifera) exhibited anti-
oxidant and anticoagulant activities [15]. Maeda et  al. 

reported that XOs-3 extracted from C. lentillifera could 
have anti-tumor and anti-microbial therapeutic effects by 
enhancing the functions of macrophage RAW264.7 cells, 
including cell phagocytosis, NO production, cytokine 
induction, and regulation of host immune response [16]. 
Such findings provide a solid basis for future investiga-
tions into activities, mechanisms and utilization of algal 
XOS-3 resources.

Producing XOs-3 by β-1,3-xylanase hydrolysis is an 
efficient way. It neither requires any expensive equipment 
nor generates undesirable byproducts. These factors 
make it a fast and economical method which is more eco-
friendly compared to physical and chemical hydrolyses 
[17–19]. However, only a few scholars in Japan, Taiwan, 
and China have begun to study β-1,3-xylanase, and only 
nine β-1,3-xylanases have been found and verified [20–
22]. Thus, the information on XOS-3 and their potential 
biological activities is scarce, and the study on the XOS-3 
from C. lentillifera and their biological activities is of 
great significance.

Osteoarthritis (OA) is a progressive degenerative joint 
disease that affects nearly half of the elderly population, 
posing enormous pressure on healthcare systems and 
society as a whole [23–25]. The pathological changes of 
OA are closely associated with cellular aging, chronic 
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inflammation, and matrix degradation in joint tissues, 
which may be caused by mitochondrial dysfunction and 
oxidative stress [26, 27]. Therefore, mitigating oxida-
tive stress-induced chondrocytes damage emerges as a 
promising strategy for OA treatment. Previous research 
has explored the potential applications of various types 
of XOS in OA treatment, including those derived from 
sucrose, chitosan, acetylated chitin, glycosaminoglycans, 
chondroitin sulfate E, and hyaluronic acid, offering good 
insights into a range of therapeutic mechanisms and out-
comes [28–33]. Currently, XOS-3 has demonstrated anti-
oxidative, antitumor, and anti-inflammatory properties 
[16, 18]. However, its specific potential and application 
in OA treatment remain unexplored. Given this, we first 
prepared β-1,3-xylan from C. lentillifera, and used β-1,3-
xylanase (Xyl3088) with the highest activity isolated and 
reported by our laboratory, to hydrolyze and control its 
degree of hydrolysis [2, 34]. This study not only verifies 
the advantages of XOS-3 in reducing oxidative stress 
but also aims to elucidate the protective mechanisms 
of XOS-3 on chondrocytes. It provides a scientific basis 
for using XOS-3 in OA treatment and aim to discover 
the significant active components in XOS-3, which will 
provide a theoretical basis for the deep product develop-
ment, and utilization of biological seaweed resources.

Materials and methods
Polysaccharide isolation
β-1,3-xylan was prepared from C. lentillifera 
(Nhatrang,Vietnam) by adopting the laboratory-mod-
ified method of Iriki et  al. [35]. Briefly, C. lentillifera 
were washed, dried and ground into a powder that can 
pass 200 mesh screens. The resulting powder (20 g) was 
treated successively with NaOH (0.3  mol/L, 1 L) and 
 H2SO4 (0.25 mol/L, 1 L) with stirring for 30 min at 100 °C 
respectively. The precipitate was bleached with  NaClO4 
(1%, 1 L) for 2  h at 25  °C, and re-suspended in  ddH2O. 
NaOH (2.5 mol/L, 0.8 L) was added to the bleached resi-
due treated in the ice bath for 3 h, and the extracted poly-
saccharide was then mixed with four volumes of ethanol 
and left to precipitate overnight at 4 °C. The precipitated 
β-1, 3-xylan was neutralized with 5.7  mol/L acetic acid 
followed by washing with  ddH2O, and finally freeze-dried 
overnight. The total concentration of polysaccharides 
was quantified by the phenol sulfuric acid method with 
D-xylose as the standard [34].

Preparation of XOS
Xyl3088 (GenBank accession No. MK253053), derived 
from Flammeovirga pacifica strain WPAGA1, was 
expressed in Escherichia coli L21(DE3) cells. The expres-
sion was induced by loading 0.5 mmol/L IPTG, followed 
by incubation at 18  °C, and 180  rpm for 16 h. The cells 

were collected and lysed via sonication at 300 W for 
20 min on ice. The resulting lysate was then centrifuged at 
12,000 × g for 20 min to remove the insoluble cell debris. 
The supernatant which containing the crude Xyl3088 was 
filtered through 0.45  μm sterilized filters before being 
loaded onto a nickel affinity column (1.4 × 6.5 cm, Smart-
Lifesciences, China) for purification. Elution of proteins 
were performed using an elution buffer composed of 
50  mmol/L Tris–Cl, 500  mmol/L NaCl, and imidazole 
concentrations of either 250  mmol/L or 80  mmol/L, 
respectively.

β-1,3-xylan (1%, w/v) or β-1,4-xylan (Macklin, 
X823251, 1%, w/v) were incubated with β-1,3-xylanase 
or β-1,4-xylanase in a total volume of 2 mL at 37  °C for 
24  h. Then enzymes were inactivated by heating at 100 
℃ for 5 min. To detect the enzymatic hydrolysis product, 
3,5-dinitrosalicylic acid (DNS) was loaded into the reac-
tion liquid and heated at 100  °C for 5  min, then centri-
fuged at 12,000 × g for 5 min. The supernatant was taken 
for assay at 540 nm using D-glucose as the standard for 
total reducing sugar.

XOS-3 prepared by trifluoroacetic acid (TFA) method 
was performed as follows: β-1,3-xylan (1 g) was incubated 
with TFA (1 mol/L, 20 mL) at 70  °C for 3 h. The super-
natant was taken by centrifugation at 25  °C (12,000 × g, 
10 min) to remove the residual insoluble β-1,3-xylan and 
then was neutralized with NaOH (1 mol/L).

Ion chromatography
The XOS-3 were identified by ion chromatography (IC; 
Dionex ICS3000, American) equipped with a Dionex 
CarboPacPA-100 (4  mm × 250  mm). Eluent was sepa-
rated at a flow rate of 0.3 mL/min using different gradi-
ents of 100  mmol/L NaOH (200  mM NaOAc) with the 
column temperature maintained at 30 °C, the pump and 
the sample amount was 20 μL [21].

Characterization of XOS
The morphology and size of XOS-3 were detected 
by scanning electron microscopy (SEM, HITACHI, 
SU8010). The elementary composition of XOS-3 was 
characterized by energy-dispersive X-ray spectrometry 
(EDS). Then, the Fourier transform infrared spectros-
copy (FT-IR, Nexus-870) of XOS-3 was obtained in the 
range of 4000   cm−1 to 400   cm−1. Finally, X-ray diffrac-
tion (XRD) patterns were performed at 40 kV and 15 mA 
using a Tongda TD-3500 X-ray diffractometer to analyze 
the average particle size of XOS-3.

Free radicals scavenging activity
XOS-3 and XOS-4 were prepared at final concentra-
tions of 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 mg/mL, respectively. 
The antioxidant activities of samples were evaluated by 
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2-diphenyl-1-pyridyl hydrazine  (DPPH•), hydroxyl  (OH•), 
superoxide  (O2

•−), and 2,2′-azino-bis(3-ethylbenzothi-
azoline-6-sulfonate)  (ABTS•+) radical scavenging abil-
ity respectively, Vitamin C (Vc) was the positive control 
group. The test method was described by Ji et al. [36].

The reducing abilities of the XOS-3 and XOS-4 were 
performed as follows: 2.5 mL of XOS-3 and XOS-4 (0.1, 
0.2, 0.5, 1, 1.5, 2.0  mg/mL) were cultured with 2.5  mL 
Tris–HCl(pH 7.0) and 2.5  mL  K3Fe(CN)6 (1%) at 50 ℃ 
for 20  min and then 0.5  mL trichloroacetic acid (10%) 
was loaded into the mixture, followed by centrifugation 
at 3000 × g for 10 min, 5 mL supernatant was taken with 
0.1 mL  FeCl3 and 5 mL  ddH2O for assay at 700 nm. Vc 
was the positive control group.

where Ax was the absorbance of the sample reaction mix-
ture,  AX0 was the absorbance of the sample color removal 
group,  A0 was the absorbance of the reaction mixture 
replacing the sample solution with  ddH2O.

Culture of primary articular chondrocyte cell
Primary articular chondrocytes were isolated from the 
femoral heads, femoral condyles, and tibial plateau of 
10-day-old Wistar rats (purchased from Wusi Labora-
tory Animal Co., Ltd.). After the cartilage was digested 
with trypsin (0.25%; Hyclone) at 37  °C for 30  min and 
collagenase II (0.2%; Sigma–Aldrich) at 37 °C for 4 h, the 
primary chondrocytes were resuspended and cultured 
in dulbecco’s modified eagle medium/nutrient mixture 
F-12 (DMEM/F12; Hyclone) supplemented with 1% 
streptomycin-penicillin (Hyclone) and 10% fetal bovine 
serum (Gibco, Australia) at 37 °C under 5%  CO2 atmos-
phere. Chondrocytes in the second passage were used in 
our study. Chondrocytes were stained with toluidine blue 
(Solarbio) according to the manufacturer’s instructions.

Cell viability assays
The cell counting kit-8 (CCK8, Beyotime) assay was 
applied to test the cellular viability. Chondrocytes were 
plated into 96-well plates at a density of 1,0000 cells per 
well and cultured with IL-1β (10 ng /mL) to induce cell 
death in OA. XOS-3 (0, 0.05, 0.1  mg/mL) were applied 
to rescue chondrocyte death. Then, 10 µL of CCK8 solu-
tion was loaded to each well after 24  h to detect the 
absorbance at a wavelength of 450 nm by the microplate 
spectrophotometer (Mode ELx800, Biotek, USA) after 
another 2 h culture at 37 °C.

Fe2+radical scavenging activity(%)

=

[

1−
AX − AX0

A0

]

× 100%

Western blot analysis
Chondrocytes were lysed with 100 μL radio immunopre-
cipitation assay lysis buffer (Beyotime, China) that con-
tained a 1% proteinase inhibitor cocktail and separated 
by 12% SDS polyacrylamide gel electrophoresis (SDS-
PAGE). After transferring to the polyvinylidene fluoride 
membranes (PVDF), the membranes were incubated 
with primary antibodies overnight at 4  °C and with sec-
ondary antibodies for another 2 h at room temperature. 
Protein bands were visualized using a Bio-Rad ChemiDoc 
XRS + system. Proteins were analyzed with antibodies 
recognizing MMP13 (1:2000, Proteintech Cat# 18165-
1-AP), COL2A1 (1:1000, Immunoway Cat# YT-1022), 
GAPDH (1:1000, Immunoway # YM-3029).

Statistical analysis
SPSS 27 was applied for all statistical analyses. Data from 
multiple experiments were expressed as mean ± S.E.M 
and compared by one-way ANOVA multiple compari-
sons test. All experiments were performed independently 
at least 3 times.

Results and discussion
β‑1, 3‑xylan isolation
The extraction rate of β-1,3-xylan from C. lentillifera was 
13.45% ± 0.67% by alkali extraction which was suitable 
for large-scale production. Zhang et  al. employed water 
extraction, alcohol precipitation, and ultrasonic-assisted 
extraction methods to extract the polysaccharide from 
C. lentillifera with  ddH2O as extracting solvent for 9.07 h 
at 100 °C with 1:40 g·mL−1 of the solid–liquid ratio [37]. 
However, the final yield was only 3.22%. In contrast, the 
yield from alkali extraction was 4.18 folds that of water 
extraction, making it ideal for mass production.

XOS generation and characterization
β-1,3-xylanase (Xyl3088), with the highest activity iso-
lated and reported by Zhang et  al., was used to hydro-
lyze β-1,3-xylan and control the degree of hydrolysis of 
XOS-3 [20]. This hydrolysis process stood as the most 
environmentally friendly alternative for producing XOS-
3, not requiring any special equipment (low temperatures 
and pressure) or strong chemical compounds [38]. It also 
doesn’t create any unwanted byproducts. Compared to 
physical and chemical hydrolyses, it’s quicker and better 
for the environment, displaying an alternative strategy for 
generating the bioactive compounds such as XOS from 
renewable resources [39, 40].

The composition of XOS-3, degraded by enzyme 
and trifluoroacetic acid was qualitatively detected by 
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ion chromatography. As shown in Fig.  1A and B, two 
hydrolysis products consisted of similar compositions 
of XOS-3: xylose (X1), xylobiose (X2), xylotriose (X3), 
and xylotetraose (X4), with X3 and X4 being the most 
abundant. These results were consistent with the IC 
results of XOS-3 composition of Cai et  al. [21]. Unlike 
the enzymatic hydrolysis products, xylan was not or little 
detected in the products of trifluoroacetic acid (Fig. 1A). 
It was speculated that the differences in the composition 
of XOS-3 between enzymatic and acid hydrolysis were 
due to the more intense reaction conditions and the more 
thorough reaction of xylan by trifluoroacetic acid.

The surface morphologies and microstructures of 
XOS-3 were analyzed by SEM. Figure 2A and B demon-
strated that XOS-3 was relatively smooth with irregular 
blocklike structures. It might be due to oligosaccharides 
with high molecular weight being more likely to form 
hydrogen bonds between oligosaccharides [36, 41], there-
fore, XOS-3 showed a relatively aggregate state.

The functional groups and chemical bonds of XOS-3 
were detected by FT-IR spectrum (Fig.  2C). The O–H 
and C–H stretching vibrations were demonstrated by 
absorption peaks at 3423 and 2921   cm−1, respectively. 
The peak at 1743   cm−1 indicated the presence of uronic 
acid, while the peak at 1631   cm−1  suggested symmetri-
cal C=O-stretching vibrations [42]. Peaks at 1411   cm−1 
and 1041   cm−1 indicated the typical absorption of C-H 
bands and the pyranose form’s C–O–stretching vibra-
tions, respectively. The weak characteristic peaks 
appearing at 800–900   cm−1 may indicate the presence 
of α- and β- configuration [43]. In short, FT-IR analysis 
confirmed that XOS-3 exhibits typical absorption peaks 
of oligosaccharides.

XRD analysis was commonly used to evaluate the 
crystallinity of polysaccharides and XOS. The diffrac-
tion intensity curve of XOS-3 within the range of 5–80◦ 
shown sharp and narrow peaks at 2θ of  26◦,  31◦,  45◦, 

 55◦ and  75◦ (Fig. 2D), indicating that XOS-3 tends to be 
semi-crystalline.

Antioxidant effects of XOS
The accumulation of free radicals typically increases 
during both acute and chronic diseases in humans [44]. 
Some XOS have been reported to protect the body from 
oxidative damage, suggesting potential biomedical appli-
cations. Hydroxyl radical  (OH•), the most reactive and 
toxic of all free radicals, can damage DNA and even lead 
to cell mutation and death. As shown in Fig. 3A, both Vc 
and XOS-3 reduced the colored substances until they dis-
appeared; the yellow color in XOS-3 was due to the origi-
nal color of XOS-3, while the removal ability of XOS-4 
for  OH• was very low, and the colored substance did not 
disappear. At the concentration of 1.5 mg/mL, the scav-
enging rate of XOS-3 reached 98.13%, almost identical to 
that of Vc (98.65%), while the removal rate of XOS-4 was 
only 7.44% (Fig. 3B). The results indicated that the scav-
enging activities of XOS-3 on  OH• radicals were signifi-
cantly higher than that of XOS-4.

DPPH• radical has been used as a classical model for 
determining the antioxidative activity in  vitro of XOS. 
The scavenging activities of Vc and XOS-3 on  DPPH• 
radical were in a dose-dependent manner (Fig. 3C). The 
scavenge rates of Vc and XOS-3 were 62.83% and 58.44% 
at a concentration of 2 mg/mL respectively, higher than 
that of XOS-4 (20.36%).

ABTS•+ radicals were also frequently used to evaluate 
antioxidant capability. As shown in Fig. 3D, the  ABTS•+ 
radicals scavenging activities of XOS-3 (96.18%) and Vc 
(100.30%) were more potent than that of XOS-4 (29.73%) 
at 0.5  mg/mL, indicating that XOS-3 was an effective 
scavenger for  ABTS•+ radicals.

O2
•− radical is one of the precursors of singlet oxygen 

and hydroxyl radicals with a strong oxidation capacity. 
As shown in Fig. 3E, XOS-3 and Vc exhibited significant 

Fig. 1 Ion chromatography analysis of the product profiles: A Prepared by trifluoroacetic acid; B Prepared by β-1,3-xylanase
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scavenging activities for  O2
•− radicals in a dose-depend-

ent manner. The scavenging ability of XOS-3 (82.31%) 
was slightly lower than that of Vc (97.32%), but much 
stronger than that of XOS-4 (39.83%) at 2.0  mg/mL. 
Although the scavenging capacity of XOS-3 was slightly 
lower than Vc, it is still considered as an effective electron 
donor adjuvant due to its low side effects and toxicity.

The  Fe2+ chelating has been widely used in antioxi-
dant tests for XOS [45]. Figure 3F showed that the  Fe2+ 
chelating activities of Vc, XOS-3, and XOS-4 all gradu-
ally increased as the sample concentration increased. 
The scavenging ability of XOS-3 (68.92%) was lower than 
that of Vc (86.24%), but significantly higher than that of 
XOS-4 (11.33%) at a concentration of 2.0  mg/mL, indi-
cating XOS-3 had a certain reduction energy.

The superior antioxidant capacity of XOS-3 com-
pared to XOS-4 is attributed to differences in pro-
duction methods, substrate origins, degrees of 
polymerization and molecular structures. Valls et  al. 
found that XOS derived from glucuronoxylan by dif-
ferent xylanases exhibited varied antioxidant activi-
ties [46]. Xue et al. demonstrated that the antioxidant 
activity of XOS was affected by the sources of xylan 
and the degree of polymerization, especially some 
extracts from algae displayed superior antioxidant 
activities [47]. Ji and Yuan revealed that the position 
and type of glycosidic bond would influence biologi-
cal activity of polysaccharides or XOS, and shown 
that (1 → 3) glycosidic bonds played an important role 
in enhancing anti-inflammatory effects and immune 

Fig. 2 The physicochemical analysis of XOS-3: A Scanning electron microscopy × 1000; B Scanning electron microscopy × 10000; C FT-IR spectrum; 
D X-ray diffraction pattern
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Fig. 3 Antioxidant activity of XOS-3, XOS-4, and Vc: A Effect diagram of scavenging activity of  OH•; B The scavenging activity of  OH• radical; C The 
scavenging activity of  DPPH• radical; D The scavenging activity of  ABTS•+ radical; E The scavenging activity of  O2

•− radical; F The chelating activity 
of  Fe2+
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regulation [48, 49]. Consequently, a comprehensive 
study of the structural characteristics of XOS-3 and 
its antioxidant mechanisms should be performed for 

elucidating the structure-bioactivity relationship and 
identifying high-potential antioxidants.

Fig. 4 Primary articular chondrocyte cells and their cell viability: A Toluidine blue staining of primary articular chondrocyte cells. B Effect of XOS-3 
on IL-1β-induced chondrocyte proliferation. Data were presented as the mean ± SD; *p < 0.05, ***p < 0.001

Fig. 5 Immunoblotting results of MMP13 and COL2A1, and the quantification of MMP13 and COL2A1, with β-actin as the endogenous control. 
Data were presented as the mean ± SD; *p < 0.05
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Anti‑osteoarthritis activity
To assess the anti-inflammatory effects of XOS-3, pri-
mary articular chondrocyte cells were chosen for anti-
osteoarthritis studies. Toluidine blue staining revealed 
that chondrocyte cells were triangular or polygonal 
with purplish-blue nuclei and light purplish-blue cyto-
plasm (Fig. 4A). The cells were consistent with the char-
acteristics of chondrocytes and suitable for subsequent 
experiments.

To simulate the inflammatory environment of osteo-
arthritis in  vitro, rat chondrocytes were induced with 
10 ng/ml IL-1β. As shown in Fig. 4B, the cell viability 
of simulated chondrocytes significantly decreased to 
43.41% (p < 0.001), while after treatment with LXOS-3 
(50  μg/mL) and HXOS-3 (100  μg/mL), the cell viabil-
ity of chondrocytes increased to a significant level at 
63.22% (p < 0.05) and 73.5% (p < 0.05), respectively.

The cartilage anabolic factor COL2A1 and the cat-
abolic factor MMP13 were critical for maintaining 
articular cartilage homeostasis. To evaluate the role 
of XOS-3 in anti-osteoarthritis function, the expres-
sion levels of MMP13 and COL2A1 were investigated 
using Western blot analysis (Fig. 5), The MMP13 level 
in IL-1β-stimulated chondrocytes markedly increased 
to 2.39 compared to the control group (p < 0.05), which 
decreased to 1.63 with LXOS-3 treatment and 0.70 
with HXOS-3 treatment respectively. The COL2A1 
level was significantly reduced to 0.44 (p < 0.05), which 
increased to 0.83 with LXOS-3 treatment and 0.84 
with HXOS-3 treatment. XOS-3 may inhibit the pro-
gression of OA through several mechanisms. Firstly, 
the antioxidant properties of XOS-3 may directly 
neutralize ROS, thereby reducing oxidative stress and 
promoting the expression of COL2A1[50, 51]. Fur-
thermore, XOS-3 can mitigate inflammation by reduc-
ing the production of inflammatory cytokines. This 
reduction may lead to the downregulation of MMP13, 
thereby reducing cartilage degradation and enhancing 
the repair or maintenance of cartilage tissue. Over-
all, these findings indicated that XOS-3 potentially 
slowed down the degeneration of cartilage during OA 
progression, highlighting the therapeutic potential of 
XOS-3 in treating oxidative stress-related diseases and 
osteoarthritis [52].

Conclusions
A novel approach for the production of XOS-3 by eco-
friendly enzymatic hydrolysis was tailored, marking a 
major advance in the sustainable extraction of marine 
polysaccharides. The detailed structural characterizations 
by IC, SEM, FT-IR, and XRD have revealed the semi-
crystalline nature of XOS-3 with predominant xylose, 
xylobiose, xylotriose, and xylotetraose components and 

their specific functional groups. It indicated the intrinsic 
relationship between their molecular structure and bio-
logical activity. While, XOS-3 exhibited excellent antioxi-
dative capacities with quantifiable scavenging activities, 
displaying its strong antioxidant potential in biomedical 
applications.

The anti-osteoarthritic activity of XOS-3, particularly 
its role in improving cell viability and regulating markers 
of cartilage homeostasis was also elucidated. It provides 
promising insights for its therapeutic applications. These 
findings not only help us understand the biological activi-
ties of marine-derived polysaccharides but also highlight 
the therapeutic potential of XOS-3 in treating oxidative 
stress-related diseases and osteoarthritis.

In short, XOS-3 have been displayed a variety of func-
tional biological activities including anti-inflammation, 
antioxidative, antitumor, and antimicrobial proper-
ties. These properties make it a potential candidate for 
functional oligosaccharides, prebiotics, and new drugs. 
Future research will hope to explore the mechanisms 
by which XOS-3 exerts its biological effects and then 
generate novel therapeutic strategies. The promising 
results of this study promote further exploration of 
marine polysaccharides and XOS, followed by develop-
ing new treatments for a range of medical conditions to 
expand the scope of carbohydrate-based therapies.
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