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Abstract
Background
Drought is a major problem limiting the growth and development of plants in the world and especially in Tunisia. Halophytes constitute a renewable wealth and they offer great flexibility with regard to abiotic stresses, and they are evaluated for their ecological and potential food use.

Results
The proposed work identifies the response of Atriplex hortensis var. rubra to the germinal stage and the reproductive stage under a deficient water regime to measure the drought resistance of this plant that has very interesting forage production abilities. The morphological and water parameters are used to characterize the physiological response of this species to the effects of water deficit. For the germination test, four levels of osmotic potential caused by PEG-6000 solutions at different levels of water potential (− 0.1, − 0.5, − 1.0, − 1.5 MPa) were adopted in seed of A. hortensis germination media. The methodology adopted in the second experiment is based on the cultivation of potted plants stored in a semi-controlled greenhouse at flowering stage. The water deficit was imposed on the plants by watering stop for a week, and the control plants are subjected to a water regime maintained irrigated at 100% of the capacity in the field. Drought tolerance was scored 30 days after the drought stress commenced based on the number of branches and leaf, dry biomass, relative water content, leaf water potential, and nitrogen content. No significant difference was observed in germination rates for all PEG concentrations throughout the experiment which are still close to 60%. The results obtained for the second experiment show a high tolerance of A. hortensis under water stress. Drought induced decreases in two physiological parameters, the number of branches and leafs, and the relative water content of annual Atriplex. Heatmap and PCA data revealed that physiological parameters are more sensitive than morphological parameters in distinguishing the control and drought treatments.

Conclusions
Indeed, the orache is distinguished by a great ability to retain water potential after a month of stress. Thus, height, number of branches, leaf and shoot dry weight, and percentage of nitrogen were significantly similar for controls and stressed for A. hortensis. On the other hand, measured root length and basic and midday water potential show significant variability between controls and stressors. In addition, these results highlight the importance of the resistance of Atriplex halophyte forage to drought.
[image: ../images/40538_2021_218_Figa_HTML.png]


Keywords
Water deficit
                        Atriplex hortensis L.GerminationPEGMorphophysiological parametersWater potentialNitrogenPCA
Abbreviations
	GP
	Germination percentage

	PEG
	Polyethylene glycol

	VI
	Vigor index

	RWC
	Relative water content

	SW
	Saturated weight

	DW
	Dry weight

	PCA
	Principal component analysis

	ANOVA
	Analysis of variance

	SD
	Standard deviation




Background
The environmental stress such as salinity (soil or water) and drought are serious obstacles for horticulture and field crops in further areas of the world, especially arid and semiarid regions. Stresses caused by abiotic and biotic factors have long-threatened sustainable development of agricultural production. Water-deficit stress is a major problem in agriculture and most crop plants show high sensitivity to this stress than others abiotic constraint conditions. Caused by reduced precipitation and increased temperature [1], drought has been the most important limiting factor for crop productivity and, ultimately, for food security worldwide [2]. Drought is considered as a major threat, limiting growth and yield of plants [3, 4], water stress is caused by insufficient rainfall that results in soil drying. High temperature, low humidity in atmosphere, and water deficiency are the main causes of drought [5, 6]. Drought stress affects germination rate and early seedling growth of the plant [7, 8]. Under water-deficit conditions, a significant reduction in germination, hypocotyl length, root and shoot fresh, and dry weight were observed, whereas the root length is increased [9]. It also affects the carbon assimilation and phenology of the plant [10]. Germination of each seed is considered as one of the first and most fundamental life stages of a plant, so that the success in growth and yield production is depending on this stage. Among the stages of the plant life cycle, seed germination, seedling emergence, and establishment are the key processes in the survival and growth of plants [11]. Germination is regulated by duration of wetting and the amount of moisture in the growth medium [12, 13]. Water stress acts by decreasing the percentage and rate of germination and seedling growth [14]. Water stress not only affects seed germination, but also increases mean germination time in crop plants [15].
The germination rate, germination potential, and germination index of the seeds mirror the germination speed, uniformity and the strength potential of seedlings, all of which declined dramatically with the increasing of drought stress intensity [16, 17]. Polyethylene glycol is the best solute that we are aware of for imposing a low water stress that is reflective of the type of stress imposed by a drying soil [18–20]. Water stress due to drought is probably the most significant abiotic factor limiting plant and also crop growth and development.
Over 100 plant species belong to Atriplex genus. The common cultivated crop is garden orache (Atriplex hortensis L.), named also as mountain spinach, sea purslane, or saltbush [21]. This species, same as spinach (Spinacia oleracea), belongs to Chenopodiaceae family. Atriplex hortensis, a glycine betaine natural accumulator also called mountain spinach, can tolerate harsh conditions such as cold, drought, and high salinity [22–24],). Garden orache herb (Herba Atriplicis hortensis) is characterized by a high content of flavonoids, vitamin C [25], mineral components [26], and amino acids [27]. Garden orache belongs to a group of plants of leaves being a rich source of protein [28]. Leaves of orache can be consumed either fresh or boiled, separately or together with other vegetables [29].
Atriplex hortensis has been recognized for its medicinal properties which were shown to improve digestion, increase circulation, and boost the immune system [30]. Additionally, A. hortensis has been used in land rehabilitation projects because of its ability to establish well, grow rapidly, reduce soil erosion, and compete with native plants [31, 32]. As a result, A. hortensis is important for both domestic and wild browsing animals where other forage crops are lacking. Despite its affinity for low-to-moderate saline areas where it has little competition from non-halophytes, A. hortensis can also grow where total soluble salts are low, making it well suited to a multitude of different environments [33]; in addition, A. hortensis as well, a promising potential cash crop halophyte for revegetation or fodder production in arid environments [34, 35]. Pathways required for flowering have response systems that mediate survival under various stresses. In response to stress, such as drought, flowering pathways are accelerated to produce flowers and seeds more rapidly [36, 37].
The aim of the presented experiment was to estimate physiological and morphological traits associated with germinative and reproductive stage of annual Atriplex (A. hortensis L. var. rubra) under water stress. In this work, pot experiment with randomized block design was conducted for garden orache for assaying the physiological response to drought tolerance during flowering stage.
Materials and methods
Germination analysis
Six replicates of 20 seeds were set in Petri dishes containing three germitest papers. Papers were moistened with 7 ml of different polyethylene glycol (PEG-6000) solutions to simulate drought stress at different water potential levels (− 0.1, − 0.5, − 1.0, and − 1.5 MPa). Distilled water was used as the control (0.0 MPa). The amounts of PEG used in the experiment were calculated following Villela et al. (1991) [38]. Samples were stored in germination chambers at 25 °C, 12-h photoperiod. Seeds were transferred to new petri dishes every 3 days to maintain osmotic levels.
The variables analyzed to verify seed water stress tolerance were germination percentage and vigor index (VI) as described by Maguire [39]. The experiment was conducted for 15 days. Seeds were considered as germinated when radicle protrusion reached 2 mm.
The final germination percentage (GP) was calculated using the following equation:[image: $${\text{GP }} = \, \left( {{\text{Total number of germinated seeds}}/{\text{total seed}}} \right) \times {1}00.$$]




The vigor index was calculated according to the following formula:[40]
Vigor index (VI) = [seedling length (cm) × germination percentage].
Experimental design and data processing
A second experiment was conducted under reproductive stage drought stress condition with the objective to determine the effect of water-deficit stress on morphophysiological parameters of Atriplex hortensis. Growth conditions and stress treatments of garden orache (A. hortensis L.) was conducted in a greenhouse at the Experimental Station of INRAT in Tunisia (35°87 N, 9°96 E). When plants reached flowering, drought was imposed to stress pots with similar weight by withholding water for a week, while non-stressed plots continued receiving irrigation. The experiment design was split-plot with six replications.
Leaf water potential analysis
Measurements of leaf RWC and Ψleaf were made on the same leaf. Ψleaf was measured with a pressure chamber following the precautions recommended by Turner [41] between 6:30 and 7:30 a.m., each treatment included six replications.
Leaf relative water content analysis
The methods used to determine leaf RWC as follows: first, leafs (4–5 leaves from top 2 or 3 branches) were sampled and weighed immediately to obtain the fresh weight (FW), and then, the leafs were placed in tubes with freshly distilled water for 8 h, surface dried with filter paper and weighed to obtain the saturated weight (SW), and then dried it at 80 °C in a forced-draught oven for 24 h to obtain the dry weight (DW). The leaf RWC was calculated as:[image: $${\text{RWC }} = \, \left[ {\left( {{\text{FW}} - {\text{DW}}} \right)/ \, \left( {{\text{SW}} - {\text{DW}}} \right)} \right] \, \times {1}00.$$]




Growth analysis
At harvest, plant height, the number of branches and leafs and root length on the main stem were recorded. Stems, leaves, and roots were separated from each plant, and total dry weight per plant was calculated by adding the dry weight of different plant components after oven drying at 80 °C for 5 days.
Estimation of total proteins
N content was estimated by Kjeldahl method and N percentage was calculated by the following equation [42]:
N% = 0.56 × t × a − b × VW × 100DM.
t = the concentration of acid used for titration (mol kg−1),
a = the amount of acid used as a sample (ml),
b = the amount of acid used as control (ml),
V = the volume of extract obtained from digestion (ml),
W = the weight of plant sample for digestion (g),
DM = dry matter percentage.
Data processing
All data were processed with Satistica. The two-way analysis of variance and the least significant difference (LSD) were used to compare the differences between different data sets. All results are given as means ± SE. The significance of the correlations between different parameters was determined by bivariate correlations based on Pearson's correlation (two‐tailed). Origin statistical software (PCA analysis) was used to determine the correlations between physiological and morphological traits, and to perform principal component analysis of the traits.
Results
Germination under drought stress
Seeds need a suitable condition to have a good germination, with polyethylene glycol (PEG-6000) used to simulate drought stress, and the percentage of Atriplex seeds were affected by levels of drought stress. Drought stress simulated by polyethylene glycol PEG-6000 significantly reduced seed germination percentage (Fig. 1). Under the action of severe drought stress (− 1.5 MPa), the seed germination rate was extremely high (60%), and the difference between the drought treatments reached a no significant level (P < 0.05), showing that it is feasible to study the drought resistance of Atriplex with PEG solution of different osmotic potential gradients to simulate drought stress.[image: ../images/40538_2021_218_Fig1_HTML.png]
Fig. 1The effect of increasing water stress (0, − 0.1, 0.5, 1.0, and − 1.5 MPa) on cumulative percent germination and vigor index of Atriplex hortensis after 15 d. The data are the average SD of eight independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05


Drought significantly (p < 0.05) affected vigor index (Fig. 1), and it was considerably reduced under stress condition as compared to control. The data presented in Fig. 1 revealed that the average seedling vigor index of different concentrations of PEG was ranging between 260 and 450. Seedling vigor index of A. hortensis is considerably decreased with increasing PEG concentrations. The highest Vigor Index was achieved with control associated with their more shoot lengths as compared to other treatments.
Evaluation of growth performance
The effect of drought stress on plant performance was evaluated by analysis of the changes in the DW and RWC after 30 days of withholding irrigation. Essential traits, root length, and shoot length are also important indicators in response to water stress. Drought stress imposed during the reproductive stages of Atriplex plants also had a transferable effect on shoot growth and developmental traits (Figs. 2 and 3). Parameters measured at 30 days after water stress, decreased in response to increasing soil moisture stress for plant height and biomass components. The plant height (Fig. 2) and the shoot and leaf dry weights (Fig. 4) of the Atriplex plants grown under both control (100% FC) and after withholding irrigation were significantly similar from control treatment (100% FC) and stressed. Nearly, a significant variation was measured on root length and number of branches and leafs among the plants under normal growth conditions and drought‐affected plants (Figs. 3 and 5).[image: ../images/40538_2021_218_Fig2_HTML.png]
Fig. 2The effect of water deficit on plant height of Atriplex hortensis harvested 30 days after withholding irrigation. The data are the average SD of five independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05

[image: ../images/40538_2021_218_Fig3_HTML.png]
Fig. 3The effect of water deficit on root length of Atriplex hortensis harvested 30 days after withholding irrigation. The data are the average SD of five independent replicates. Each bar represents the mean of six replicated data with ± SE. Bars that are labeled with different letters are significantly different from one another at p = 0.05

[image: ../images/40538_2021_218_Fig4_HTML.png]
Fig. 4Dry weight (DW) of A. hortensis under control and drought stress (30 days after withholding irrigation) conditions. The data are the average SD of five independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05

[image: ../images/40538_2021_218_Fig5_HTML.png]
Fig. 5Number of branches and leafs of A. hortensis under control and drought stress (30 days after withholding irrigation) conditions. The data are the average SD of five independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05


Leaf osmotic potential analysis
Similar to shoot and root traits, physiological and gas-exchange traits of the Atriplex plants were also affected by water deficit. Drought stress treatment significantly reduced the midday and pre-dawn leaf water potential of A. hortensis relative to the control (Fig. 6).[image: ../images/40538_2021_218_Fig6_HTML.png]
Fig. 6Midday and Pre-dawn leaf water potential of A. hortensis under control and drought stress (30 days after withholding irrigation) conditions. The data are the average SD of five independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05


To evaluate the degree of damage caused by water stress on Atriplex plant, relative water contents (Fig. 7) of A. hortensis leaves under different treatments were determined. Compared to the control, the relative water content of the leaves treated with drought stress decreased compared with the control; however, the change of water content was significant with increasing water deficit.[image: ../images/40538_2021_218_Fig7_HTML.png]
Fig. 7Effect of drought stress on relative water content (RWC) in leaves of A. hortensis plant, RWC will be analyzed immediately after withholding irrigation treatment of the plant. The data are the average SD of three independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05


Nitrogen content and correlation analysis
Subsequently, we studied the percentage of nitrogen of A. hortensis under control and drought stress (30 days after withholding irrigation) conditions in differently treated samples showed no significant difference (Fig. 8).[image: ../images/40538_2021_218_Fig8_HTML.png]
Fig. 8Percentage of nitrogen of A. hortensis under control and drought stress (30 days after withholding irrigation) conditions. The data are the average SD of five independent replicates. The mean values represented by the different letters were significantly different in Tukey's test P < 0.05


Significant and positive correlations were observed between plant dry biomass and nitrogen content (R2 = 0.69; p < 0.001) under drought stress condition (Fig. 9). However, changes of nitrogen percentage were positively correlated with dry biomass, suggesting that tolerant plants of Atriplex contain less nitrogen in their shoots but keep it better under drought stress conditions. The current study indicated that the physiological and biochemical traits have direct or indirect effect on yield performance of Atriplex plant under water stressed environment at reproductive stage.[image: ../images/40538_2021_218_Fig9_HTML.png]
Fig. 9Correlation of plant biomass to percentage of nitrogen (%). **p < 0.01 indicate significant differences by a two tailed test


Physiological and morphological evaluation of the drought responses of Atriplex plants by PCA methods and heatmap
Furthermore, complete data sets, one showing the relative physiological changes under drought stress, were subjected to principal component analysis (PCA). Principle component analysis was performed using the relative values of all physiological traits to comprehensively evaluate the differences in plant physiological responses and the final total score was calculated to represent physiological responses. Pearson correlations were calculated to determine the relationship among the physiological parameters of physiological responses. To evaluate the contributions of each parameter in the control and drought-treated Atriplex plants, we performed PCA using four physiological parameters [(leaf water potential midday (LWPmid), LWPpre leaf water potential pre-dawn, nitrogen content, and relative water content (RWC)] and seven morphological traits [dry weight shoot (DWsh), dry weight leaf (DWlf), plant height, root length, number of branches (NubBran), number of leafs (Nubleaf), and dry weight leaf/shoot (DWleaf/shoot)]. The physiological parameters contributed more than the morphological parameters to the separation of the control and drought-treated groups (Fig. 10). The seven morphological measurements, which reflect relative long-term response to abiotic stress, were clustered together (top of Fig. 10, circled). The principal components reflected different aspects of physiological responses in A. hortensis under drought stress.[image: ../images/40538_2021_218_Fig10_HTML.png]
Fig. 10Principal component analysis (PCA) for physiological responses in Atriplex plant. PC1–PC2 variables loading plots during drought stress. PC1–PC2: the first and second principal component. DWsh dry weight shoot, DWlf dry weight leaf, LWPmid leaf water potential midday, LWPpre leaf water potential pre-dawn, Nitrogen content, DWleaf/shoot dry weight leaf/shoot, RWC relative water content, Height, Root length, NubBran number of branches, Nubleaf number of leafs


We evaluated the Atriplex plants for their responses to drought treatment. Drought responses in both well-watered and drought-stressed plants were measured using both physiological (LWPmid, LWPpre, Nitrogen content, and RWC) and morphological (DWsh, DWlf, plant height, root length, NubBran, Nubleaf, and DWleaf/shoot) parameters collected from plants after 30 days of drought treatment. To identify the key parameters for assessing drought tolerance in Atriplex, both physiological and morphological measurements were used to plot a heatmap. As shown in Fig. 11, the morphological and physiological measurements of A. hortensis, grown under either drought treatment or well-watered conditions (control), were used for hierarchical (row) clustering. This clear clustering demonstrates that in comparison to control conditions, drought stress treatment alters both the physiological and morphological characteristics for Atriplex plants. The heat map clearly reveals considerable variation among Atriplex plants in their physiological responses to drought stress and well watered (Fig. 11).[image: ../images/40538_2021_218_Fig11_HTML.png]
Fig. 11Heatmap for morphological and physiological parameters under well-watered and drought stress conditions in Atriplex hortensis plants after 30 days of treatment. DWsh dry weight shoot, DWlf dry weight leaf, LWPm leaf water potential midday, LWPp leaf water potential pre-dawn, N% nitrogen content, DWlf/sh dry weight leaf/shoot, RWC relative water content, Height, Root length, Nbran number of branches, Nleaf number of leafs


Discussion
Drought stress is a serious threat which decreases crop production. Seeds are an important stage in the life history of a plant, and an important time for the study of drought resistance of the plant [43]. The present study was taken up to study the effect of drought stress at germination and reproductive stages on potential physiological and biochemical responses in garden orache. Seed germination data are important to explain the total viability of seed and lead to estimate the number of seed that will grow into successful seedlings in the field. Under the action of drought stress, the seed germination rate of A. hortensis was extremely great (more than 60%), the seedling vigor index is considerably decreased, implying that even if the seeds were germinated, the growth of the seedlings was significantly inhibited. Drought stress delayed or inhibited seed germination and seedling growth by creating low osmotic potential preventing water uptake [44, 45].
It is known that the reproductive stage of plants is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage of A. hortensis will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. Root length, shoot height, and leaf area are considered as major determinants to evaluate drought response during reproductive stage. A positive relationship exists between root traits and resistance to drought [46, 47]. At reproductive stage, drought stress affects relative growth, leaf water potential, and relative water content of leaves (RWC %). Nosalewicz et al. [48] reported that exposing barley (Hordeum vulgare (L.)) to drought stress during reproductive stages decreased the shoot:root ratio and the number of thick roots. Moreover, exposing Astragalus nitidiflorus to drought stress increased seed dormancy [49]. In this study, the shoot growth and developmental parameters of A. hortensis also decreased in response to water stress. In addition, relative water content and the number of branches and leafs were also lower in soil water stressed compared to the optimum irrigation. Root growth of A. hortensis increases relatively to shoot growth to acquire more water under drought stress conditions. Roots are the first organs to sense drought stress and have been proposed as an important avenue of research to improve crop adaptation for their regulation of water availability to drought stress. Screening root traits at early stages of plant development could be a proxy trait at mature stages under drought stress [50]. Having a longer tap root system could be a drought-adaptive mechanism to increase water and nutrient uptake under stressed conditions [51, 52].
Significant and positive correlations were observed between plant dry biomass and nitrogen content under drought stress condition of Atriplex plant at reproductive stage. A significant linear correlation was observed between plant N accumulation and dry biomass, indicating that plant N accumulation was intimately associated with dry biomass accumulation [53, 54]. Drought induces decreases in the soil water content and increases in plant water deficit, which cause subsequent decreases in the leaf carbon assimilation rate and soil available nutrients, leading to plant N limitation [55, 56].
It is still challenging to reliably analyze and interpret large physiological datasets collected from plants grown under drought and well-watered conditions. Various methods and statistical models have been proposed for such analyses. Correlation analysis, PCA, and clustering are considered to be good methods for evaluating the relationships between the parameters and their principal components for drought tolerance [57, 58]. In this study, PCA and correlation analysis showed that the differences in drought tolerance among Atriplex plants were largely due to variations in physiological parameters. A heatmap is a visual method that can be used to explore complex associations between multiple parameters collected from various treatments. It is often useful to combine heatmap with hierarchical clustering, which is a way of arranging items in a hierarchy based on the distance or similarity between treatments [59]. After drought stress, most of the measured traits in Atriplex plant approached to control levels, but there was still considerable variation in physiological parameters (Fig. 11).
Conclusion
Drought has become major abiotic limitation factor on forage production under warming climate. The improved performance of drought tolerant Atriplex was associated with more efficient physiological and biochemical factors under conditions of stress where drought is frequent, particularly at reproductive stage. To combat water stress, there is need to explore the resilient genetic resources and their utilization in breeding program. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying annual Atriplex tolerance to drought.
Acknowledgements
The authors acknowledge the National Academies of Sciences, Engineering, and Medicine (USA) for the financial support to publication the present work. The assistance provided by lab staff of Animal and Forage Production of INRAT is also gratefully acknowledged.

Authors' contributions
SS and SB conceived and designed the experimental strategies and manuscript. SS performed all experiments and data analysis. AZ helped in statistical analysis of raw data. SA and AE provided valuable understandings to improve experimental strategy. All authors read and approved the final manuscript.

Funding
The authors acknowledge the National Academies of Sciences, Engineering, and Medicine (USA) and the United States Agency for International Development (USAID) for the financial support. Partnerships for Enhanced Engagement in Research (PEER) and the PEER program cooperative agreement number: AID-OAA-A-11–00012.

Availability of data and materials
The data sets supporting the conclusions of this article are included within the article.

Declarations
Ethics approval and consent to participate
This manuscript is an original research, and has not been published or submitted in other journals.

Consent for publication
All the authors agreed to publish in the journal.

Competing interests
The authors declare that they have no competing interest.


References
	1.
IPCC, Global warming of 1.5 °C—an IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC Switzerland, (2018).

	2.
Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–20. https://​doi.​org/​10.​1126/​science.​1204531.CrossrefPubMed

	3.
Porudad SS, and Beg A. Safflower: Asuitable oil seed for dryland areas of Iran. In: Proceeding of 7th international conference on development of drylands. 2003; p. 14–17. Tehran, Iran.

	4.
Maleki A, Naderi R, Naseri A, Fathi A, Bahamin S, Maleki R. Physiological performance of soybean cultivars under drought stress. Bull EnvPharmacol Life Sci. 2013;2(6):38–44.

	5.
Dennis BE, Bruening WP. Potential of early maturing soybean cultivars in late. Plantings Agron J. 2000;92:532–7.

	6.
Buss R, Crockett J, Greig J, Kelly B, Roberts R, Tonna A. Improving the mental health of drought-affected communities: an Australian model. Rural Soc. 2009;19(4):296–306.

	7.
Ahmad S, Ahmad R, Ashraf MY, Ashraf M, Waraich EA. Sunflower (Helianthus Annuus L.) response to drought stress at germination and seedling growth stages. Pak J Bot. 2009;41:647–54.

	8.
Chen K, Arora R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci. 2011;180:212–20.PubMed

	9.
Franco JA, Banon S, Vicente MJ, Miralles J, Martınez-Sanchez JJ. Root development in horticultural plants grown under abiotic stress conditions—a review. J HorticSciBiotechnol. 2011;86:543–56.

	10.
Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil. 2003;255:157–67.

	11.
Chachalis D, Reddy KN. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 2000;48:212–6.

	12.
Santini BA, Martorell C. Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammillariahernandezii. Am J Bot. 2013;100:365–73.PubMed

	13.
López-Urrutia E, Martínez-García M, Monsalvo-Reyes A, Salazar-Rojas V, Montoya R, Campos JE. Differential RNA-and protein-expression profiles of cactus seeds capable of hydration memory. Seed Sci Res. 2014;24:91–9.

	14.
Sánchez-Díaz M, García JL, Antolín MC, Araus JL. Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable carbon isotope composition of barley. Photosynthetica. 2002;40:415–21.

	15.
Ney B, Duthion C, Ture O. Phonological responses of pea to water stress during reproductive development. Crop Sci. 1994;34:141–6.

	16.
Ali Q, Ashraf M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci. 2011;197:258–71.

	17.
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.PubMed

	18.
Krizek DT. Methods of inducing water stress in plants. HorticultSci. 1985;20(b):1028–38.

	19.
Emmerich WE, Hardegree SP. Polyethylene glycol solution contact effects on seed germination. Agron J. 1990;82(6):1103–7.

	20.
Kumar RR, Karajol K, Naik GR. Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Res SciTechnol. 2011;3(1):148–52.

	21.
Katembe WJ, Ungar IA, Mitchell JP. Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot. 1998;82:167–75.

	22.
Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. TheorAppl Genet. 2002;105:815–21.

	23.
Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep. 2018;8:27–37.

	24.
Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D. Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol. 1995;107:631–8.PubMedPubMedCentral

	25.
Wieslawan B, Maciej S, Rafal F. Sulphated flavonoid glycosides from leaves of Atriplex hortensis. ActaPhysiol Plant. 2001;23(3):285–90.

	26.
Sarwa A. Wielki leksykon roślin leczniczych. Ksiązka i Wiedza, lodz. 2001.

	27.
Nicol J. Atriplex nummularia, Atriplex vessicaria and other Atriplex species. Aust J Med Herbalism. 1994;6:85–7.

	28.
Hegnauer R. Chemotaxonomie der Pflanzen, Boston – Berlin: Birkhäuser Verlag. 1989 ;234–242.

	29.
Siddiqui BS, Ahmed S, Ghiasuddin M, Khan AU. Triterpenoids of Atriplex stocksii. Phytochemistry. 1994;37:1123–5.

	30.
Heywood VH. The conservation of genetic and chemical diversity in medicinal and aromatic plants. In: Sener B, editor. Biodiversity: biomolecular aspects of biodiversity and innovative utilization. Heidelberg: Springer, Berlin; 2002. p. 13–22.

	31.
Fairbanks DJ. Personal communication. Utah: Brigham Young University. Provo; 1999.

	32.
Stevens JM. Orach-Atriplex hortensis L. Fact sheet HS-637. 1994; Gainesville, Fla.: Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

	33.
Welsh SL, Crompton C. Names and types in perennial Atriplex Linnaeus (Chenopodiaceae) in North America selectively exclusive of Mexico. Gt Basin Nat. 1995;55:322–34.

	34.
Sai Kachout S, Ben Mansoura A, Jaffel Hamza K, Leclerc JC, Rejeb MN, Ouerghi Z. Leaf-water relations and ion concentrations of the halophyte Atriplex hortensis in response to salinity and water stress. ActaPhysiol Plant. 2011;33(2):335–42.

	35.
Sai Kachout S, Ben Mansoura A, Jaffel Hamza K, Leclerc JC, Rejeb MN, Ouerghi Z. Effect of water stress on plant growth in Atriplex hortensis L. J HorticultSciBiotechnol. 2011;86(2):101–6.

	36.
Franks SJ. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol. 2011;190:249–57.PubMed

	37.
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608.PubMedPubMedCentral

	38.
Villela FA, DoniFilho L, Sequeira EL. Tabela de potencialosmóticoemfunção da concentração de polietilenoglicol 6000 e da temperatura. PesqAgropBrasileira. 1991;26:1957–68.

	39.
Maguire JD. Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sei. 1962;2:176–7.

	40.
Abdul- Baki A, Anderson JD. Vigor determination in Soybean seed by multiple criteria. Crop Sci. 1973;13(6):630–3.

	41.
Turner NC, Long MJ. Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique. Aust J Plant Physiol. 1980;7:527–37.

	42.
Nkafamiya II, Oseameahon SA, Modibbo UU, Haggai D. Vitamins and effect of blanching on nutritional and antinutritional values of non-conventional leafy vegetables. Afr J Food Sci. 2010;4(6):335–41.

	43.
Alia AM. Namich Response of cotton cultivar Giza 80 to application of glycine betaine under drought conditions Minufiya. J Agric Res. 2007;32(6):1637–51.

	44.
Velazquez-Marquez S, Conde-Martínez V, Trejo C, Delgado-alvarado A, Carballo A, Suarez R, Mascorro JO, Trujillo AR. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant PhysiolBiochem. 2015;96:29–37.

	45.
Arcoverde SNS, Martins EAS, Melo RM, Hartmann Filho CP, Gordin CRB. Germinação e crescimento de plântulas de Niger sob diferentesdisponibilidadeshídricas do substrato e regimes de luz. RevistaEngenharianaAgricultura. 2017;25:344–53.

	46.
Beebe S E, Rao I.M, Blair M.W, & Acosta-Gallegos J.A. Phenotyping common beans for adaptation to drought. Frontiers in Physiology. 2013; 4, 35.

	47.
Manschadi AM, Hammer GL, Christopher JT, de Voil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil. 2008;303:115–29.

	48.
Nosalewicz A, Siecinska J, Smiech M. Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environ Exp Bot. 2016;131:120–7.

	49.
Segura F, Vicente MJ, Franco JA, Martinez-Sanchez JJ. Effects of maternal environmental factors on physical dormancy of Astragalusnitidiflorus seeds (Fabaceae) a critically endangered species of SE Spain. Flora. 2015;216:71–6.

	50.
Hewit EJ. Sand and water culture methods used in the study of plant nutrition Tech. Comm. No. 22. Commonwealth Bureau of Horticulture and Plantation Crops, Commonwealth Agriculture Bureau Farnham Royal, Bucks, England: 1952

	51.
Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch PJ, et al. Field phenotyping of soybean roots for drought stress tolerance. Agronomy. 2014;4:418–35.

	52.
Kunert KJ, Vorster B, Fenta BA, Kibido T, Dionisio G, Foyer CH. Drought stress responses in soybean roots and nodules. Front Plant Sci. 2016;7:1015.PubMedPubMedCentral

	53.
Wang YS, Liu FL, Andersen MN, Jensen CR. Improved plant nitrogennutrition contributes to higher water use efficiency in tomatoes underalternate partial root-zone irrigation. Funct Plant Biol. 2010;37:175–82.

	54.
Wang YS, Liu FL, Jensen LS, de Neergaard A, Jensen CR. Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. IrrigSci. 2013;31:589–98.

	55.
Gastal F, Lemaire G, Durand JL, Louarn G. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras VO, Calderini D, editors. Crop physiology, applications for genetic improvement and agronomy. 2nd ed. Oxford, UK: Academic Press/Elsevier; 2015. p. 159–206.

	56.
Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl AcadSci USA. 1999;96:6529–34.

	57.
Dehbalaei S, Farshadfar E, Farshadfar M. Assessment of drought tolerance in bread wheat genotypes based on resistance/tolerance indices. Int J Agric Crop Sci. 2013;5(20):2352–8.

	58.
Sun J, Luo H, Fu J, Huang B. Classification of genetic variation for drought tolerance in Tall Fescue using physiological traits and molecular markers. Crop Sci. 2013;53(2):647–54.

	59.
Yiming L, Xunzhong Z, Hong T, Liang S, Jeongwoon K, Kevin C, Erik HE, Taylor F, Bingyu Z. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol Biofuels. 2015;8:152.



Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


OEBPS/navigation.xhtml

    
      Contents


      
        		Physiological and morphological traits associated with germinative and reproductive stage of garden orache (A. hortensis L. var. rubra) under water stress


      


    
    
      Landmarks


      
        		Body Matter


      


    
  

OEBPS/images/40538_2021_218_Fig1_HTML.png
100

95

90

85

80

75

70

Germination (%)

65

60

55

50

45

500

450

400

Vigor index
w
o
o

300

250

200

0 0,1 0,5
Water deficit (MPa)

0 0,1 0,5 1,0 1,5
Water deficit (MPa)






OEBPS/images/40538_2021_218_Fig4_HTML.png
0,44

0,42 ¢

0,40

0,38 t

0,36

0,32

0,22

0,18

0,34 +

0,30 +

0,28 t

0,26 +

0,24 +

0,20 +

Dry weight of shoot (g)/plant
B Dry weight of leaf (g)/plant

Q

Q

Stressed

Control





OEBPS/images/40538_2021_218_Fig8_HTML.png
®

@

18,0

17,5

17,0

w
(o]
-

uaBoJ}IN %

16,0

15,5

15,0

Control

Stressed





OEBPS/images/40538_2021_218_Fig10_HTML.png
PC 2 (25.51%)

Nitroger]

LWPmid

DWiIeaf/shoot

LWPpre

Rootkength

— :
-0,4 -0,2 0,0

PC 1 (44.61%)





OEBPS/images/40538_2021_218_Fig11_HTML.png
NLeaf

Nbran

Root

2
o

DWIfIsf

I_
s 2
o X
k]

,_
=
3
3

Morphological and physiological parameters

DWIf

DWsh

Color key and histogram

84,00
21 26 23 23 20 22
24 25 26 23 22 21 24
67,24
26 25 23
Bo - Boboon | | -
33,72
20,8 19,8
16,96
| 1 1 1 1 1 | | 1 1 1 1 1 0,2000
— o~ ) < [t} © o

Well-watered

Drought stress





OEBPS/images/40538_2021_218_Fig2_HTML.png
99999999
(un) jysy juerg





OEBPS/images/40538_2021_218_Fig5_HTML.png
Number of branches

M%Mﬁ//

/

Number of leafs

30

] © e 3 o

sjea|/sayoaueiq Jo JaquinN

28
26
24 +
22





OEBPS/images/40538_2021_218_Fig7_HTML.png
RWC (%)

83.0

81,8

81,0

78,8

78,0

77,0

76,0

|
)
I

Stressed

Control






OEBPS/images/40538_2021_218_Figa_HTML.png
|:> Study results and conclusion






OEBPS/images/40538_2021_218_Article_TeX_Equa.png
GP = (Total number of germinated seeds/total seed) x 100.





OEBPS/images/40538_2021_218_Fig6_HTML.png
Stressed

Midday leaf water potential (-MPa)
B Pre-dawn leaf water potential (-MPa)

Control






OEBPS/images/40538_2021_218_Article_TeX_Equb.png
RWC = [(FW -DW) / (SW - DW)] x 100.





OEBPS/images/40538_2021_218_Fig9_HTML.png
Percentage ol nitrogen (%)

17,6
174
17,2
17,0
16,8
16,6
16.4
16,2
16,0
15,8
15,6
154
15,2
15,0
14,8

048 05

N (%) = 10,378 + 9,9383 * DW

R? = 0,69309

0 052 054 05 058 060 062 064 066 068 070 0,72
Dry weight (DW)





OEBPS/images/40538_2021_218_Fig3_HTML.png
©]

Stressed

ol

Control

20

19t

[ce) N~ © 0
- ~

~ ~

(wd) YISudy j00y

<
—

™
~—

12

11





OEBPS/css/envelope.png





OEBPS/css/sidebar.gif





