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Abstract

This review describes how to apply green chemistry principles to transform biomass into several types of molecules.
On the basis of selected papers published over the last three to four years, it includes the main reactions used to
convert renewable feedstocks into chemical products that are potentially applicable as raw materials or synthetic
intermediates in fine chemical industries with emphasis on preparative organic synthesis.
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Introduction
The humankind relies on a wide variety of feedstocks that
can be used to produce an array of chemicals. Biomass con-
stitutes an inexpensive renewable resource that is available on
a global scale and which can sequester carbon. Several indus-
trial areas have switched to biomass as feedstock, to increase
their sustainability and reduce the overall environmental
impact. The conversion of biomass into a great variety of
valuable chemicals is the key concept of a biorefinery [1-3].
More specifically, biomass includes any organic matter

that is available on a renewable or recurring basis, such as
energy crops and trees, agricultural food and food crop resi-
dues, aquatic plants, wood and residues, animal waste, and
other waste materials [3]. Figure 1 shows the main compo-
nents of biomass, which comprise five categories: starch,
cellulose, hemicellulose lignin, and oils [4]. Cellulose, hemi-
celluloses, and lignin compose the biomass present in
wood, grasses, stalks, and straw, for instance. Starch and
cellulose are polysaccharides consisting of hexose units;
hemicellulose is a heteropolysaccharide made of a mixture
of pentose and hexose monomers; lignin is a complex
three-dimensional polymer formed by phenolic com-
pounds; and oils consist of triglycerides. Other biomass
components, which generally exist in minor amounts and
are usually designated secondary metabolites, include alka-
loids, carotenoids, flavonoids, phenols, resins, sterols, tan-
nins, terpenes, and waxes, among others [1].
The main components of wood biomass are cellulose

(35% to 50%), hemicelluloses (20% to 35%), lignin (5% to
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30%), and other extracted compounds (1% to 10%) [5,6].
Although cellulose, hemicelluloses, and lignin transfor-
mation has been extensively studied [7-9], less attention
has been given to other extracted compounds, which also
constitute important feedstocks for commodities and fine
chemicals [10]. For example, parts of trees that are nor-
mally considered waste contain extracted compounds
consisting mainly of resin acids, terpenes, sterols, phenolic
substances, lignans, and sugars, among others, which are
ultimately valuable for chemical synthesis [11,12]. Second-
ary plant metabolites include essential oils, which have
found wide application in the flavor and fragrance indus-
tries. Many plant-derived chemicals also constitute sec-
ondary metabolites with application in the pharmaceutical
field or as non-prescription health supplements [1].
Review
Biomass conversion
Ideally, biomass conversion should reduce the use of
toxic chemicals and improve the profitability of biorefi-
neries while respecting the environment. Several methods
to transform biomass into useful products have been
reviewed in recent years [6,13-16].
Lignin conversion
Lignin represents over 20% of the total mass of the
Earth's biosphere. Using it to obtain chemical feedstocks
represents a real challenge in terms of sustainability and
environmental protection. The different chemical com-
position of lignin requires that it be processed separately
to obtain phenol derivatives. Alternatively, it could be
used as an energy source. According to a survey in the
2007 US Department of Energy, lignin could function as
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Figure 1 Main biomass components.
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a precursor of valuable chemicals in several ways, mainly
to replace oil [17].
Recent articles on the use of lignin have reviewed

the different methods that chemists have used to con-
vert this material into chemical compounds with added
value. Authors have pointed out the major difficulties
encountered while handling lignin; they have also dis-
cussed the recent use of ionic liquids [18] as solvents,
aiming to provide some new opportunities to efficiently
convert lignin into aromatic chemicals with added value
[19-23].

Cellulose and hemicelluloses conversion
Cellulose and hemicelluloses represent the largest part
of wood biomass (55% to 80%) [6]. A recently published
paper has reviewed the application of ionic liquids to de-
construct and fractionate lignocellulosic biomass [24].
The article focuses on the major advantage of using
ionic liquids in the dissolution process as compared with
other pretreatment options. Ionic liquids can decrystal-
lize the cellulose portion of lignocellulosic biomass and
simultaneously disrupt the lignin and hemicellulose net-
work. This paper [24] also discusses the possibility of re-
moving lignin with the ionic liquid and recovering a
separate and possibly more valuable lignin fraction.
Cellulose and hemicelluloses hydrolysis generates mo-

nomeric sugar units. These unit and their derivatives can
be transformed into a wide range of value-added chemi-
cals. An overview of the chemical transformation of
low-molecular weight carbohydrates into products with
versatile industrial application profiles has been published
[25]. Another article has discussed the chemical catalytic
transformations of biomass-derived oxygenated feedstocks
(primarily sugars and sugar alcohols) into value-added
chemicals and fuels. The key reactions involved in bio-
mass processing are hydrolysis, dehydration, isomeriza-
tion, aldol condensation, reforming, hydrogenation, and
oxidation [26].
The simplified scheme of a chemocatalytic biorefinery

presented in Figure 2 is part of an article that has ana-
lyzed alternative routes to catalytically transform ligno-
cellulosic materials [27].
Catalytic lignocellulose hydrolysis converts cellulose

and hemicellulose into small oligomers and sugars; lig-
nin separates from the mixture. Selective catalytic hy-
drodeoxygenation (HDO) transforms part of the small
oligomers into biofuels or chemicals. Sugar fermenta-
tion via the known routes gives ethanol or other sev-
eral higher-chain alcohols. Part of the sugars can also
be converted to hydrocarbons following the aqueous
phase reforming, or adapted to produce the biohydrogen
that is necessary in many steps of furfural upgrading.
Because furfurals show higher chemical functionality
and reactivity, it is easier to catalytically upgrade them



Figure 2 Lignocellulosic paths: the possible scheme for a chemocatalytic biorefinery.
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to a variety of value-added products. For example, cata-
lytic hydrogenation/hydrogenolysis of furfural and 5-
hydroxymethyl-2-furfural (HMF) produces 2-methylfuran
and 2,5-dimethylfuran, respectively, both of which dis-
play high octane number and good miscibility with
gasoline [27].
Scheme 1 lists some typical fine chemicals and fuels

produced via cellulose chemocatalytic conversion by dif-
ferent chemical processes [28]. The catalytic conversion
of lignocellulosic biomass generates a variety of chemi-
cals, as well as some fuels.
A recent review article has reported on the synthesis

and use of sugar derivatives originating from cellulose
and hemicellulose using various methodologies [29]. An-
other critical review has recently discussed the various
strategies for the valorization of waste biomass to plat-
form chemicals, and the developments in chemical and
biological catalysis [30].
5-Hydroxymethyl-2-furfural production and transformation
Among the several building blocks derived from renew-
able resources, HMF has been identified as a very prom-
ising building block. [5,13,31,32]. HMF possesses two
functionalities attached to a furan ring. These function-
alities aid HMF conversion into several value-added
compounds that are useful in a wide variety of chem-
ical manufacturing applications and industrial prod-
ucts [32-38]. HMF can also be transformed into many
specific molecules [32], such as the natural herbicide
δ-aminolevulinic acid [39] and the active pharmaceutical
ingredient ranitidine (Zantac) [40].
The most desirable route to produce HMF involves

widely available biorenewable resources like cellulose
[41,42]. However, achieving efficient direct transform-
ation of cellulose into HMF seems less feasible [5,13].
Most frequently, the synthetic route used to obtain HMF
relies on a multistep approach comprising cellulose hy-
drolysis to glucose, glucose isomerization to fructose, and
fructose dehydration to HMF. A broader range of effi-
cient catalysts has been reported to promote fructose
dehydration to HMF [35,43]. The transformation can
also take place in the absence of a catalyst, using spe-
cific solvents, such as ionic liquids, to promote the
reaction [35].
The specific properties of HMF, such as its high solu-

bility in aqueous media and polar solvents as well as its
thermal and chemical instability, make its isolation from
the reaction mixture a very important issue. These fac-
tors complicate large-scale HMF isolation by solvent ex-
traction or distillation. In fact, the majority of literature
papers have reported HMF conversion and/or yields on
the basis of HPLC analysis of the reaction mixture rather
than isolated yields [35].
Crystallization is one of the best separation processes

to use in the industry. Hence, easy-to-crystallize, little
volatile solids have been used as reaction media (tetra-
ethylammonium bromide) to produce HMF under ho-
mogeneous conditions. In this situation, the reaction
medium melts, and the carbohydrates solubilize at the



Scheme 1 Potential chemicals and fuels obtained from catalytic cellulose conversion.
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temperature required for the reaction [41]. After cooling,
addition of an appropriate and renewable organic solvent
(ethanol and ethyl acetate) should prompt precipitation
at room temperature. Filtration and evaporation of the
reusable organic solvent favors HMF isolation in the
mother liquor (see Scheme 2).

Furan conversion into ketones and n-alkanes
The furan aldehydes derived from hexoses and pentoses
offer pathways for the desired chain extensions via aldol
condensation [44,45]. Coupling these aldehydes with
other biomass-derived carbon units using aldol
condensation chemistry constitutes an attractive route
toward fuel precursors of sufficient energy density.
The use of water-soluble organocatalysts (piperidine or

pyrrolidinium acetate) to provide the selective chain ex-
tension of HMF has been reported recently [46]. Scheme 3
shows that compounds 1 and 2 originate from aldol con-
densation between HMF and acetone.
Removing the exocyclic double bond within these clas-

ses of molecules is the key step to achieve successful hy-
drodeoxygenation later because this process prevents the
substrate from fragmenting via retro-aldol reaction in
the aqueous reaction medium. Exocyclic double-bond



Scheme 2 Integrated approach for HMF production and isolation from carbohydrates (From ref. [41]).
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removal occurs by using a palladium catalyst, under 1 to
4 atm of hydrogen in a 50% aqueous acetic acid solution,
to give the saturated products in quantitative yield [45].
Addition of La(OTf)3 to a mixture of the Pd/C catalyst,
acetic acid, and the ketone, followed by heating at 200°C
under hydrogen pressures up to 20 to 30 atm for 12 h,
promotes hydrodeoxygenation and subsequent conver-
sion into the corresponding n-alkane (see Scheme 4).

Applying the green chemistry principles to synthesis from
biomass
Producing green chemicals from renewable resources is
a very broad topic [1,47-50]. Several reviews have focused
on developments achieved over the last years with respect
to (1) renewable biomass as a source of chemicals,
(2) possible conversion pathways, and (3) obtained prod-
ucts [51-53].
The literature survey indicates that the benefits for

green chemistry depend upon feedstocks, processes, and
Scheme 3 Organocatalyzed routes to chain-extended furfurals.
products. Processes requiring too many conversion and
separation steps affect the overall atom economy, energy
demand, and waste emissions [54]. Due to the hetero-
geneous composition of renewables, clean and energy-
efficient separation and purification technologies are very
important [55]. Biomass conversion processes that involve
one or few steps and do not call for separation of the in-
termediates are certainly more efficient in terms of bio-
mass utilization and waste minimization as compared
with the traditional approach [56].
The literature contains countless examples of green

chemistry-compatible biomass conversion to end-products
via one-pot catalytic processes [55,56]. Scheme 5 il-
lustrates the one-pot conversion of the wheat bran
syrup to a mixture of alkyl-pentoside surfactants by
reaction of the syrup with n-decanol in the presence
of diluted sulfuric acid aqueous solution at 90°C
[57]. The unpurified mixture of alkyl-pentosides
(5 and 6) displays good surface tension properties



Scheme 5 One-pot wheat bran conversion to alkyl-pentosides
(5 and 6).
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and is potentially applicable as a low-cost, non-toxic,
biodegradable surfactant suitable for dishwashing
and laundry purposes [58].
The literature also brings reports on a variety of more

complex molecular architectures [56]. A critical review
focusing on the preparation of bio-based surfactants in
which the carbon atoms are derived from renewable
feedstocks has been recently published [59].
A recent and interesting paper [60] has described the

use of orange peel waste as raw material to perform a
simple and facile one-pot synthesis of fluorescent carbon
dots using the hydrothermal carbonization method in
aqueous medium, at mild temperature (see Figure 3).
Scheme 4 n-Nonane (3) and n-pentadecane (4) one-pot synthesis.
This procedure constitutes an easy and eco-friendly me-
thod that may be feasible for large-scale production.

Alternative processes
The use of microwave heating to conduct chemical
transformations has increased over the last years [1].
Microwave energy is attractive in the area of chemistry be-
cause it elicits highly efficient energy transfer and selectiv-
ity, which reduces reaction time significantly [61,62].
A very recent paper [63] has described an unprece-

dented catalyst and a solvent-free protocol for the
microwave-assisted acetalization of glycerol and carbonyl
compounds. High yields of cyclic acetals or ketals have
been achieved, including commercially valuable hyacinth
fragrance and fuel additive precursors. This methodology
does not require excessive amount of solvents or pre-
cious catalysts, and it provides a clean and green ap-
proach towards glycerol valorization.
Ultrasound is another important alternative energy

with application in chemical processes. Sonochemistry,
the chemical effects and applications of ultrasonic waves,
aims to reduce energy consumption. This process in-
creases product selectivity. Ultrasound has been applied
in a number of fields [64], which is conveniently discussed
in the book recently edited by Xie and Gathergood [56].

Conclusions
Many research groups have contributed to increasing
the application of green chemistry principles to biomass
handling over the last few years. Chemists and chemical
companies have been actively searching for greener al-
ternatives that can replace their current manufacturing
practices. Significant progress has been made in several
key research areas, such as the use of new multifunc-
tional catalysts, environmentally benign solvents, ionic
liquids prepared from renewable biomaterials, and alter-
native energy, especially microwave radiation. All these



Figure 3 Formation of carbon dots from the hydrothermal treatment of orange peel waste (From ref. [60]).
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initiatives should help to develop a new chemical indus-
try based on renewable feedstocks.
However, some technical challenges remain. Designing

technologies that enable analysis of the chemical pro-
cesses developed in the laboratory is mandatory. It is
also necessary to improve separation methods and to
optimize process and energy efficiency.
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