
Abdelnur et al. Chemical and Biological Technologies in Agriculture 2014, 1:22
http://www.chembioagro.com/content/1/1/22
REVIEW Open Access
Metabolomics applied in bioenergy
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Abstract

Metabolomics, which represents all the low molecular weight compounds present in a cell or organism in a particular
physiological condition, has multiple applications, from phenotyping and diagnostic analysis to metabolic engineering
and systems biology. In this review, we discuss the use of metabolomics for selecting microbial strains and engineering
novel biochemical routes involved in plant biomass production and conversion. These aspects are essential for increasing
the production of biofuels to meet the energy needs of the future. Additionally, we provide a broad overview of the
analytic techniques and data analysis commonly used in metabolomics studies.
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Introduction
The rising demand for energy, coupled with uncertain
sources of fossil fuels and concerns over the effects of in-
creasing carbon dioxide, has contributed to the search for
alternative energy sources. In this sense, the translation of
biomass derived from crop plants into biofuels has emerged
as an attractive solution. Currently, sucrose from sugarcane
and starch from corn are used as feedstock for ethanol fer-
mentation. However, there is increasing interest in using
the bulk of plant biomass in the form of cell walls [1,2] or
triacylglycerols [3] to meet the energy needs of the future.
Some attempts to make the production of lignocellulosic
biofuels possible include the development of strategies to
harness structural sugars from plant cell walls by prospect-
ing novel microbial enzymes and biomass-oriented plant
breeding. However, to achieve this, it is necessary to under-
stand the molecular mechanisms underlying plant biomass
production [4] and microbial conversion pathways [5,6].
These processes rely on complex signaling networks closely
linked to the metabolism. Therefore, understanding how
plants and microorganisms grow in response to environ-
mental stimuli and how they can adjust their metabolic ra-
tios could also provide means to simplify the conversion of
biomass into biofuels [7].
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Recent advances in high-throughput technologies and
analytic methods, such as transcriptomics and metabolo-
mics, have enabled measurements of phenotypic variations
at the molecular level. The metabolome, which represents
the chemical composition of all small molecules in a cell
or organism under certain conditions, allows for a global
view of cellular and physiological functions. In comparison
to other technologies, metabolomics is cheaper per sample
than transcriptomics and is not reliant on the availability
of genome sequences [8,9]. Therefore, it is considered a
powerful tool for the unbiased characterization of geno-
types and phenotypes with application in multiple areas,
such as evaluation of genetically modified organisms
[10-12], functional genomics [13-17], responses to envir-
onmental factors [18-23], metabolic engineering [24,25],
and quantitative genetics [26-30]. Furthermore, metabolo-
mics, together with multivariate and correlation analyses,
is an excellent tool for the study of systems biology, being
widely recognized as the cornerstone of this emerging area
[22,31-34]. In this review, we focus on how metabolomics
approaches have been used to identify novel metabolic
routes for microbial biomass conversion and also highlight
biochemical pathways important for plant biomass pro-
duction. Furthermore, we provide a brief overview of
advancements in analytic techniques and data analysis
commonly used in metabolomics studies.
Review
Overview of metabolomics approaches
Despite significant advancement in analytic tools, complete
coverage of the metabolome will always be constrained by
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polarity, stability, dynamic range, and biological properties
of metabolites [35]. Currently, there is no single technology
available for the detection of all metabolites present
in an organism [36-38]. Therefore, the optimal choice
for an analytic technology will largely depend on the goal
of each study and is usually a compromise of selectivity
and speed [36]. Because of this, numerous protocols
for metabolite analysis have been developed to cover a
broad range of compound classes, which are frequently
characterized by the following workflow, as summarized
in Figure 1: (i) material of choice, (ii) sample preparation
Figure 1 Material of choice (A), sample preparation and extraction (B
and interpretation (E).
and extraction, (iii) analytical methods, (iv) data processing
and (v) data analysis and interpretation.

Sample preparation and extraction
The choice and optimization of sample preparation pro-
cedures are crucial steps for metabolomics analysis, as
the efficiency and balance of compounds moving from
the biological sample into the extract will determine the
quality of the extract and thus must represent the ori-
ginal material [39,40]. At this stage, one must carefully
select the sample material (e.g., cells, tissues, organism),
), analytical methods (C), data processing (D), and data analysis
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conditions for cultivation, and the strategy for harvesting,
ensuring a minimal number of replicates (Figure 1A).
Immediately after harvesting, inactivation of the meta-

bolic processes is critical to avoid the loss of metabolites
with high turnover (Figure 1B). The most common method
employed for this end is rapid freezing by liquid nitrogen,
although quenching or acidic treatment are also appropri-
ate alternatives [41-47].
Different extraction protocols tailor to different com-

pound classes based on several solvents (e.g., methanol/
water/chloroform mixture used for simultaneous extrac-
tion of both hydrophilic and hydrophobic compounds or
solid phase extraction used for volatile metabolites [40]),
limiting coverage of the metabolome (Figure 1B). Due to
the fact that metabolites differ greatly in their concen-
trations, structures, and chemical behaviors, extraction
buffer composition, temperature, and period of extraction
must all be optimized. Additionally, as the extraction
process introduces an element of bias (not all compounds
will be extracted with the same efficiency), this will be
reflected in the analytes detected and measured [35,37,40].
In order to assess metabolite recovery from the sample, in-
ternal standards are often spiked in the extraction buffer,
functioning also as a correction factor for quantification
[37] (Figure 1B). Finally, depending on the choice of the
analytic technology, a derivatization step or re-suspension
in a solvent compatible with the chromatographic separ-
ation might be necessary.

Separation and detection: analytic techniques
In recent years, many efforts have contributed to the
achievement of a more comprehensive coverage of the
metabolome, mainly using mass spectrometry (MS) and
nuclear magnetic resonance (NMR) (Figure 1C). Although
NMR has many advantages, such as high selectivity, non-
destructive, relative stability of chemical shifts, and ease of
quantification [48,49], its low sensitivity places MS as the
most frequently used technology in metabolomics studies.
MS's main features are high sensitivity, high resolution,
wide dynamic range, robustness, and feasibility in eluci-
dating the molecular weight and structure of unknown
compounds. A mass spectrometer consists of three pri-
mary components, namely ion source, mass analyzer, and
Table 1 Most common ionization techniques used for metabo

Ionization techniques Options Advanta

Electron impact Most po
best-cha

Spray ionization Atmospheric pressure chemical
ionization (APCI)

Applicab
mass ran

Electrospray ionization (ESI) Characte
ultrahigh

Laser desorption
ionization

Matrix-assisted laser desorption/ionization
(MALDI)

Applicab
orders o
detector, that provide mass-to-charge ratio information
[36,49-51]. Nowadays, there is a wide range of MS-
based technologies, which differ in operational princi-
ples and performance [36,51-58]. Great advancements
have been achieved with the combination of different
ionization sources (e.g., electrospray ionization (ESI),
electron impact ionization (EI)) and mass analyzers
with various resolving power (e.g., Fourier transform
ion cyclotron resonance (FT-ICRMS), orbitrap, time of
flight (TOF), and linear traps) [36,51,58]. Tables 1 and
2 provide an overview of the most common ionization
techniques and mass spectrometer analyzers, respectively.
Many reviews have focused on available analytic tech-
nologies, and more detailed information can be found
in Lei et al. [36], Dass [51], Villas-Bôas et al. [59], and
Saito et al. [60].
There are two MS strategies currently incorporated into

metabolomics: direct-infusion MS and chromatography
coupled to MS (Figure 1C, Table 3). The first approach
uses soft ionization for mass peak assignment, promoting
reduced or no fragmentation of fragile thermolabile mole-
cules and results in a fast high-throughput screening tool
[59] suitable for various studies such as microbial diversity
[62], lipidomics analysis in plants and microorganisms
[63,64], plant-microbe interactions [65], among others. On
the other hand, in MS coupled to chromatographic sep-
aration, the complexity of the biological sample and mass
spectra is reduced, improving the separation of isomers,
compound quantification and, consequently, accuracy and
sensitivity [36,37]. In this context, the most widely used
separation techniques are gas chromatography (GC), liquid
chromatography (LC), and capillary electrophoresis (CE).
As for other analytic tools, the choice of methodology relies
on the compound class of interest. For instance, GC-MS is
extensively used for the analysis of semi-polar primary me-
tabolites due to its heat stability, which is applicable for
modifications through derivatization reactions that make
them volatile [41], whereas LC-MS has been particularly
employed for lipid or plant secondary metabolites [66-68].
In recent years, advances in high performance (e.g., fast
GC and ultra-high performance liquid chromatography
UHPLC) or multidimensional columns (e.g., GC × GC
and LC × LC) have allowed for an increase in resolution,
lomics applications

ges

pular for organic compounds with molecular mass <600 Da,
racterized ionization method

le to relatively less polar and thermally stable compounds with an upper
ge of 1,500 Da, improved ionization efficiency and detection sensitivity

rization of small and large biomolecules (charged, polar, or basic),
detection sensitivity, can control presence of fragmentation

le to large biomolecules with masses >200 kDa, sensitivity of several
f magnitude



Table 2 Overview of the most frequently used mass spectrometer analyzers for metabolomics applications

Mass analyzer Mass accuracy (ppm) Resolving power (FWHM) (×103) Mass range (m/z) (×103)

Triple quadrupole (QqQ) 5-500 Up to 7.5 3

Ion trap (IT)/linear ion trap (LIT) 50-500 Up to ~10 4

Time of flight (TOF) 1-2 10-60 5-40

Orbitrap 1-5 140-240 4-6

Fourier transform ion cyclotron resonance (FT-ICR) <1 750-1,000 4-10

Adapted from [61].
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providing faster analysis and better peak separation of
complex biological mixtures [50].
Data processing, analysis, and interpretation
The ultimate goal of metabolomics experiments is to have
a final matrix that can be subjected to a range of statistical
tools in order to link the differences in biochemical levels
to the phenotype [68]. However, as a high-throughput tech-
nology, metabolomics datasets are extremely large and re-
quire multiple tools for data information and management,
raw analytical data processing, compound standardization
and ontology, statistics, integration, visualization, mathem-
atical modeling of metabolic networks, and interpretation
(Figure 1D,E) [69]. Excellent reviews are available pro-
viding a detailed description of each step, and metabo-
lomics databases can be found in Fukushima and Kusano
[38], Kopka et al. [69], Redestig et al. [71], Boccard and
Rudaz [72], Xia and Wishart [73], Fiehn et al. [74], and
Redestig et al. [75].
The most challenging aspect of data analysis is raw

data processing, which involves data conversion, baseline
correction, spectrum deconvolution, peak detection and
integration, chromatogram alignment, normalization, and
compound identification and quantification (Figure 1D).
There are a number of commercial and open source pro-
grams that automatically perform those steps and can be
effectively used for each specific analytical platform (e.g.,
Target Search [76] or TagFinder [77] for GC-MS) or a
Table 3 Comparison of direct infusion and hyphenated techn

MS strategy Advantages

Direct-infusion MS - Simple sample preparation

- No pre-separation steps

- Fast analysis

- Low solvent consumption

- High-throughput screening to

- Most used for qualitative ana

Chromatography
coupled to MS

- Better accuracy and sensitivit
the analysis of complex mixtu

- Less ion suppression effect

- Most used for quantitative an
combination of them (e.g., MetAlign [78] or XCMS [79]
for GC-MS or LC-MS).
For comparison of biological groups (e.g., control and

treated samples, mutant and wild type), a wealth of statis-
tical and machine learning algorithms using unsupervised
(e.g., hierarchical clustering and principal component
analysis) or supervised (e.g., ANOVA, partial least squares)
methods enable comprehensive identification of vari-
ables (metabolic features) in order to capture the di-
mension of variation among the entire dataset (Figure 1E)
[69,70,74,80,81]. After this, data visualization tools allow
for the simplification and incorporation of metabolic
data into biochemical pathways, facilitating interpret-
ation (Figure 1E). Several tools have been developed as
highlighted in [38]; however, their utilization is still lim-
ited to annotated pathways.

Metabolomics applications for bioenergy
Microbial metabolomics
The metabolism of several microorganisms is innately able
to produce ethanol as well as other ‘advanced biofuels’ such
as long-chain alcohols and isoprenoid- and fatty acid-based
fuels [82]. Likewise, the myriad of ecological niches occu-
pied by microbes provides the opportunity for prospection
of novel biochemical pathways, allowing for better conver-
sion of residual biomass. Finally, microorganisms have
great biotechnological potential for the engineering and/or
incorporation of complete exogenous metabolic pathways
for the production of value-added chemicals. Despite the
iques in mass spectrometry

Disadvantages

- Not recommended for complex matrix

- Ion suppression effect

- Complex mass spectra

ol

lysis

y for
res

- Pre-separation steps depending on
chemical composition of samples

- Longer time required for analysis

alysis - Wastes large amount of solvents
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unlimited capability of microorganisms for biomass con-
version and biofuel production, there is still a lack of infor-
mation about the metabolic networks underlying these
processes.
Yeast cells are constantly exposed to multiple stress

conditions (e.g., high temperature and low pH) during the
industrial fermentative process, and consequently, there is
growing interest in identifying novel strains with better
performance. The metabolic differences of diploid (α/a)
and haploid (α, a) yeasts in response to ethanol stress were
recently assessed by GC-MS-TOF [83]. The results indi-
cated that the haploid genotype was more susceptible to
ethanol stress than the diploid due to its higher content of
protective metabolites including polyols [83]. These find-
ings indicate the power of metabolomics for the selection
of genotypes or identification of candidate genes/paths for
metabolic engineering.
Xylose is the second most abundant fermentable sugar

in lignocellulosic feedstocks [84]; however, commercial
yeast strains are unable to convert it into ethanol [85]
(reviewed in [86]). For this reason, prospection of naturally
xylose-fermenting yeasts species (e.g., Scheffersomyces
stipitis or Pachisolen tannophilus), comparative genomics,
and evolutionary analysis have been used as strategies
to determine the limiting steps in pentose metabolism
[89,90]. Although the identified functional enzymes were
expressed in recombinant Saccharomyces cerevisiae indus-
trial strains, their efficiency in fermenting xylose was shown
to still be quite low [87,88], suggesting the requirement
of additional modifications. Overexpression of genes
encoding enzymes of non-oxidative pentose phosphate
pathway (PPP) [89], replacement of a small amount of
enzymes of xylose metabolism [90], as well as isolation
of xylose transporters [91,92] were pointed out as crucial
factors for the adequate function of this pathway. However,
a more holistic approach could also provide the metabolic
reconstruction of most biologically relevant and predictive
models to improve the fermentative ability of S. cerevisiae
[93]. Recently, dynamic metabolomics studies of two re-
combinant strains of S. cerevisiae during anaerobic batch
fermentation of a glucose/xylose mixture were conducted
using LC-MS [22]. The results suggest that xylose can be
primarily used as an energy source, as both strains main-
tained a high energy charge during the transition to xylose
fermentation. However, it seems that xylose fermentation
uncouples energy and carbon metabolism [22]. These find-
ings were uncovered solely through metabolomics analysis.
Biomass pre-treatment using consolidated bioprocessing

combines enzyme production, saccharification, and fermen-
tation and leads to the production of toxic compounds
(e.g., weak acids), which can inhibit yeast growth and, con-
sequently, ethanol yield. Recently, the effect of acetic acid
was analyzed by metabolomics during xylose fermentation
in a recombinant strain of S. cerevisiae using GC-MS and
CE-MS [25,34]. The results revealed a significant accumu-
lation of intermediates of PPP, indicating a slowdown of the
metabolic flux [25]. Based on these findings, the authors
generated a recombinant xylose-fermenting strain overex-
pressing the gene encoding a PPP-related enzyme, transal-
dolase, which conferred increased ethanol productivity in
the presence of acetic and formic acids [25]. This study
demonstrated the strength of metabolomics in developing
rational strategies to improve tolerance to stresses through
genetic engineering.
One promising area in bioenergy is the development

of microbial cell factories as a platform for producing
advanced biofuels, such as 1-butanol or biodiesel [6]. In
most of these cases, however, genetic engineering of entire
exogenous pathways to yield those compounds does not
consider the metabolic flux and balance of the organism,
leading to ineffective experiments. Therefore, an integrated
systems approach based on fast screening, ‘omics’ tools,
and metabolic-mathematical modeling could be useful for
the design and optimization of metabolic pathways, which
will result in a more efficient conversion of low-cost mate-
rials to highly desired products [6,24,94]. In light of these
observations, the combination of metabolomics, fluxomics,
and synthetic biology is a powerful tool for prospecting
novel metabolic routes, as well as producing chemicals de-
rived from biomass.

Plant metabolomics
Nowadays, the production of bioethanol relies almost en-
tirely on sucrose and starch from crops. Major efforts have
been taken to understand and manipulate the pathways
involved in carbohydrate storage and partitioning (for re-
view, see [2]). In this sense, few descriptive metabolomics
studies attempted to unravel the correlation between me-
tabolites, developmental stages, and sucrose accumulation
pattern in sugarcane [95] or the impact of environmental
stress in different species used for bioenergy [96,97].
One obvious sustainable way to enhance biofuel produc-

tion would be by increasing yield per planted area. Interest-
ingly, a number of important traits, such as stress resistance
and postharvest processing, are largely dependent on meta-
bolic content [8], implying a vast potential for manipu-
lation of metabolic phenotypes via classical breeding
[26,27,29,30,98,99]. This approach has several advantages in
relation to genetic markers, as it does not rely on the gen-
ome sequence nor does it depend on understanding the
complex mixture of segregating patterns among the pro-
genies. Metabolomics has been successfully used to investi-
gate the relationship between biomass yield and metabolic
composition of plants [26,27,29,99,100]. In summary, the
data showed that a combination of metabolites correlates
with biomass rather than a single compound, suggesting
the identification of metabolic signatures for complex traits
[29]. These findings were extended by a more detailed
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analysis of recombinant inbred line (RIL) and near iso-
genic line (NILs) populations in Arabidopsis that re-
vealed a couple of hot spots in which yield quantitative
trait loci (QTL) overlapped with a large number of metab-
olite accumulation QTL [27]. Similarly, a comparative ana-
lysis of the root metabolome of parental maize inbred lines
and their corresponding hybrids showed that the meta-
bolic profile of each hybrid is distinct from its parents
[28]. Altogether, these results indicated that metabolomics-
assisted breeding should accelerate the selection process
and, in combination with other high-throughput tech-
nologies, will probably shorten the time required for the
production of elite lines [8].
Of the biomass produced by land plants, 70% is estimated

to represent plant cell walls, considered a highly promising
source for lignocellulosic ethanol [7,101]. Lignocellulosic
biomass includes materials such as agricultural residues
(e.g., sugarcane bagasse and straw, corn stover), forestry
residues, and various industrial wastes. The major problems
in converting structural polysaccharides into ethanol lies in
cellulose's recalcitrant nature and the complex matrix em-
bedded by it, which interferes with the access of hydrolytic
enzymes mainly due to the presence of the phenolic macro-
molecular structure lignin [101]. To ensure the successful
production of lignocellulosic ethanol, it has been suggested
that the elucidation of cell wall-related pathways could pro-
vide the means for engineering its structure as well as other
bioproducts. In this sense, lignin has garnered special atten-
tion due to its potential value-added products, such as
plastic and vanillin, and for this reason, many efforts have
been made to improve gene annotation of the pathway
[102-104], molecular phenotyping [105], and metabolic
and integrative analysis of plants with altered lignin con-
tent [102,106-108]. In an excellent study, comprehensive
analysis of 20 Arabidopsis mutants of genes encoding for
enzymes of the lignin pathway was accomplished using a
systems approach [107]. The authors were able to identify
over 560 compounds using GC-MS and UHPLC-MS,
and by correlating this data with transcriptome in a net-
work, they found genes with a putative role in phenolic
metabolism, gaining insight into lignin regulatory net-
work, and finally, had a systems view of plant response
to perturbations in the pathway [107]. It is interesting to
note that those mutants did not present a clear growth
phenotype, and molecular characterization was crucial for
understanding the compensation mechanisms in the lignin
pathway. Such information may help in engineering plants
with altered lignin content suitable for the bio-based
economy.
Another renewable fuel that can be produced from plants

is biodiesel. Plant oils are composed of triacylglycerols
(TGAs), like fatty acyl chains, which are chemically similar
to the bulk of molecules found in petrol [3]. Despite great
potential for the use of plant biodiesel, there are a
number of factors restricting its production, such as
cold-temperature properties, competition with other
industrial sectors, and limited feedstock (for review, see
[3]). In this sense, different strategies have been applied
to alter the fatty acid profile and identify plant species
able to produce these compounds in greater scale.
One example is Physaria fendleri, which synthesizes the
highly valued fatty acid lesquerolic acid for application in
cosmetic, plastic, and biofuel industries. Metabolomics
characterization of this species using GC-MS and UHPLC-
MS has provided important insights into fatty acid synthe-
sis and also points to the importance of metabolic annota-
tion into pathways [109]. The emerging field of lipidomics
has garnered much attention in the last few years due to
the possibility for profiling large-scale lipid classes such as
TGA, glycerolipids, among others [110,111]. This technol-
ogy could also assist in the discovery of new feedstocks
for biofuel production, which has been already suc-
cessfully applied to microalgae in the selection of strains
and/or optimization of biomass growth [112,113]. How-
ever, the use of lipidomics in higher plants has been limited
to annotation of pathways [114-116] and response to envir-
onmental stresses [117], with no direct application for bio-
fuels so far.

Conclusions
We have highlighted the current status of metabolomics
and its power in bioenergy-oriented studies. Although
great advances in several analytic platforms allow for the
assessment of hundreds of metabolites in complex bio-
logical samples, compound identification and data analysis
and integration are still bottlenecks that make this ap-
proach a challenge. Efforts to further understand metabolic
changes in microorganism during the harsh ethanolic fer-
mentation steps, as well as the prospection of novel routes
and strains for biomass conversion, indicate that meta-
bolomics plays an indispensable role in diagnostics and
metabolic engineering. In addition, metabolomics links
phenotype to genotype and has great potential for applica-
tion in various plant science areas such as metabolomics-
assisted breeding and systems biology. For this reason,
metabolomics could boost plant yield and microorganism
performance for biotechnological purposes in bioenergy
research.
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