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Bioinformatics for agriculture in the 
Next-Generation sequencing era
Alfonso Esposito, Chiara Colantuono, Valentino Ruggieri and Maria Luisa Chiusano*

Abstract: The key role of bioinformatics is acquiring striking importance in the era of outstanding advances in omics 
technologies for its fundamental support in describing the multifaceted aspects of biological functionalities. The 
manifold omics efforts flourishing worldwide are also contributing fundamental novelties in many aspects of agri-
cultural sciences and, as a consequence, bioinformatics is acquiring a crucial role also in these research fields. Indeed, 
the transformation of natural environment for improvement of goods from animal, plants, and microbial worlds for 
human nutrition and health requires the comprehension of the molecular mechanisms influencing the structure 
and the function of the individuals, the populations, and the communities. The expanding knowledge about the 
molecules and the mechanisms associated with specific phenotypic traits and specific responses to biotic or abiotic 
stresses, complemented with the predictive power of bioinformatics, has an impact on agriculture practices and 
favors innovative methods in diagnostics, monitoring, and traceability, improving human benefits at lower costs, thus 
supporting sustainability. We here describe main bioinformatics approaches in the era of Next-Generation Sequenc-
ing for its impact in genomics, transcriptomics, and metagenomics efforts, describing their role in agriculture sciences. 
We aim to introduce common aspects, open questions and perspectives in this cutting-edge field of research.
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Introduction
Bioinformatics emerged from the initial requirement 
of suitable informatics for biological data organization, 
management, and distribution [1], but soon it revealed 
also fundamental in providing tools for data analysis, 
interpretation, and modeling. Moreover, thanks to bio-
informatics, it was possible to analyze and understand 
structure and function not only of single bio-molecules 
but also of larger molecular collections, derived from the 
so-called omics experimental approaches. These efforts 
permit to depict different aspects (genomics, transcrip-
tomics, proteomics, metabolomics, etc.) of the bio-
molecular organization of complex biological systems, 
from cells to ecosystems. The fast spreading of omics 
techniques, with its growing power and more accessi-
ble costs, drastically increased the amount of molecular 
data collections from different levels of organization of 
an organism or an environmental sample. This favored 

a holistic view on systems organization and functional-
ity, further challenging bioinformatics with data size and 
the need of integrative efforts [2, 3]. The recent intro-
duction of Next-Generation Sequencing (NGS) tech-
nologies (Table 1) further revolutionized the sequencing 
of nucleic acids contributing to a new era in omics 
approaches. Indeed, on one hand these technologies 
introduced an incredible efficiency in terms of experi-
mental execution time and a deeper resolution. On the 
other hand, they stimulated an unexpected interest from 
scientists due to the higher affordability in terms of 
experimental procedures and economical requirements. 
We here introduce the novelties that the advent of NGS 
technologies contributed in agriculture, overviewing the 
main bioinformatics strategies and challenges, as well as 
perspectives in the field.

Review
1‑Single and multi species genomics for agriculture
Genomics, transcriptomics, proteomics, and metabo-
lomics may contribute to the comprehension of the 
organization and the functionality of biological systems, 
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with the possibility to also trace molecular variabil-
ity during development, in different conditions, such as 
physiological, pathological, or influenced by environmen-
tal changes [4].

Samples for omics studies can derive from one or sev-
eral individuals of a species (a population), or from mul-
tiple species (a community) [5–7]. The differences among 
these approaches consist mainly in the objectives of the 
specific studies.

In single individual approaches, the organization and 
the functionality of specific cells, tissues, or organs (e.g., 
roots, fruit, rumen) are investigated, mainly to identify 
factors influencing emergent properties, like the quality 
and the shape. This also paves the way to the characteri-
zation of even more complex traits (e.g., yield, resistance 
to stresses, diseases) or processes (e.g., fruit ripening, 
growth efficiency, senescence) [4, 8].

The description of the molecular components in a pop-
ulation of the same species aims to the understanding 
of evolutionary processes influencing genetic variability. 
This can also widely contribute to dissect complex quan-
titative traits by identifying novel and superior alleles [9, 
10] or to assess the impact of genetic variation on pat-
terns of gene expression and on phenotypic plasticity in 
response to environmental changes [11].

The study of the collective genetic pool deriving from 
communities is termed “metagenomics” [12], a term dat-
ing back to 1998. The community can derive from envi-
ronmental samples, such as soil [13], seawater [14], or 
other [15], but also part of individuals, such as gut or 
roots [16, 17]. Metagenomics usually aims to describe the 
prokaryotic component of the community, but may be 
also useful to trace the different eukaryotes existing in a 
specific environment [18].

Nucleic acid sequencing always contributed the major-
ity of the data in all the approaches here summarized. 
This is why the recent introduction of NGS technologies 
impressively impacted the productivity and the advance-
ment in these research fields.

2‑Impact of NGS in agriculture
The multifaceted scientific topics in agriculture sciences 
may be consistently supported by NGS omics for single 
individuals, populations, or communities [19–21].

The sequencing of whole genomes from several spe-
cies permits to define their organization and provides 
the starting point for understanding their functionality 
[22–25], therefore favoring human agriculture practice. 
Efforts addressed to the achievement of an appropriate 
knowledge of associated molecular information, such 
as the one arising from transcriptome and proteome 
sequencing, are also essential to better depict the gene 
content of a genome and its main functionalities. These 
efforts indeed led to major advancements in all biologi-
cal sciences [4] and in agriculture as well [8, 26]. Moreo-
ver, the elucidation of the complexity of genes and their 
networking is also fundamental for being eventually 
translated into breeding practice for crops or livestock, 
contributing to their health, resistance, and productivity. 
Indeed, the contribution of genomics to agriculture spans 
the identification and the manipulation of genes linked to 
specific phenotypic traits [27] as well as genomics breed-
ing by marker-assisted selection of variants [28, 29]. The 
so-called “agricultural genomics” (or agri-genomics), 
indeed, aims to find innovative solutions through the 
study of crops or livestock genomes, achieving informa-
tion for protection [30, 31] and sustainable productiv-
ity for food industry, but also for alternative aspects like 
energy production or design of pharmaceuticals [32–35].

Plant, soil, and livestock microbiome also play a key 
role in agriculture since it determines plant fitness [36, 
37], soil biogeochemical properties [38], and affects both 
yield and quality traits [39, 40]. However, little knowledge 
is available for microbes and the communities in which 
they are included. As an example, it is acknowledged that 
soil is one of the biggest carbon reservoirs on earth, and 
prokaryotes constitute an important amount of the soil 
biomass [41]. However, culture-independent studies in 
the last three decades showed that, although sequencing 

Table 1 Main features of the most used NGS technologies in omic studies

Technology Read length Yield (Reads per Run) Reference

Roche 454 700 ~700 thousand http://454.com/products/gs-flx-system/

Illumina HiSeq 300 ~300 billion http://www.illumina.com/systems/hiseq-3000-4000/specifications.html

SOLiD 100 ~200 billion https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-
sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-
reagents-accessories.html

Ion Torrent 200 ~60 billion http://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-
sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-
sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-
system-specifications.html

PacBio RS II 14,000 ~47 thousand http://files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf

http://454.com/products/gs-flx-system/
http://www.illumina.com/systems/hiseq-3000-4000/specifications.html
https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
http://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf
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strategies are fast evolving, the great majority of bacterial 
species is still unknown [42, 43]. Therefore most of the 
methods used for profiling microbial communities and 
describe their main functional features are now adopting 
whole DNA extraction and the use of NGS on the entire 
sample, with the objective of sequencing and charac-
terizing DNA fragments of all the species included, i.e., 
the metagenome. The application of metagenomics in 
agriculture also proved to be appropriate for depicting 
the complex patterns of interactions occurring among 
microorganisms in soil [44] and in plant rhizosphere 
[45], as well as in specific tissues or organs [6, 46, 47]. 
Metagenomics recently revealed to be useful to trace the 
shift in taxonomic composition and functional redun-
dancy of microbial communities in rhizosphere and in 
soil in connection to environmental changes associated 
to fertilization [48] and agricultural management [49, 50]. 
Metagenomics studies can also help deciphering the role 
of soil bacteria in plant nutrition [51, 52] or in the cycle 
of the elements [53]. Further applications can lead to the 
discovery of new genes, bio-products, plant growth pro-
moting microorganisms consortia, useful for understand-
ing relevant aspects such as response to stresses [36] or 
dysbiosis [54–56].

3‑The revolution in the omics technologies and the impact 
on bioinformatics
The introduction of omics approaches strongly impacted 
bioinformatics in data collection, organization [57–
59], integration, and in the implementation of suitable 
data mining tools [2, 60]. The support of efficient bio-
informatics favored the introduction of the so-called 
high-throughput technologies, paving the way to the 
flourishing of genome sequencing efforts of key model 
species, such as Homo sapiens and Arabidopsis thaliana 
(Fig.  1). The same technologies were then exploited to 
further push forward the genome sequencing of other 
model and non-model species, many of which of agri-
culture interest. These efforts were also preceded or 
accompanied by transcriptome sequencing efforts using 
different technologies [61–64], in support of gene pre-
diction [65], but also for depicting transcriptional pro-
cesses and define cell functionality in physiological, 
pathological, or stress conditions. These approaches also 
required the design of appropriate resources to distribute 
the data [66] and/or dedicated collections of processed 
results [67–70] to all the interested scientific commu-
nity, enhancing the need for suitable pipelines for moving 
from raw to value added information and integrative data 
mining [71, 72] (Fig. 2, Table 2).

NGS strikingly contributed to expand the number of 
genomes currently completely sequenced (Fig.  1), as 
well as to the establishment of novel ambitious efforts, 

for instance, those focused on multi-genome sequenc-
ing [24, 25, 73] or those aiming to define global metage-
nomes from different environmental samples to define 
reference collections [74, 75]. These technologies are also 
exploited for the production of alternative, related col-
lections, namely from transcriptomics, epigenomics, and 
metagenomics projects. The unexpected amount of raw 
data the new technologies are providing requires also 
dedicated storage for centralized data maintenance, cur-
rently solved by the SRA system [76]. Worthy to note is 
the size reached by the SRA archive in a short time span 
when compared to the entire nucleotide collection cur-
rently available (Fig.  1). NGS data size represents a big 
challenge for bioinformatics. Indeed, main computa-
tional tasks are today focused on the optimization and 
adaptation of typical methodologies in bioinformatics to 
the magnitude of NGS collections.

In Table 2, main methodologies and resources exploited 
for NGS data analyses are summarized. Data are usu-
ally delivered by sequencing centers in the form of raw, 
fragmented sequences, to be pre-processed, i.e., cleaned, 
from additional fragments due to the specific technology 
employed (Table 1), such as vectors, adaptors, barcodes, 
or other contaminations (Table  2). Structure defini-
tion from fragmented data usually requires an assembly 
step to reconstruct the most reliable original molecules, 
such as longer genomic sequences or transcripts. The 
assembly is based on sequence alignments driven by 
identical regions shared by the fragments (Table 2). The 
assembly procedure may include already available ref-
erence sequences (guided approaches), as in the case 
of transcript assemblies based on a genome reference, 
or they are based on reference-free methodologies (de 
novo) [77]. This procedure is a key step for many differ-
ent applications, indeed high-quality longer backbones 
are useful to properly proceed towards successive steps 
in data processing, which are mainly structure and func-
tional assignments and predictions (Fig. 2). In genomics, 
transcriptomics, population genetics, and metagenomics, 
these are widespread fundamental tasks solved by dif-
ferent computational methodologies (Table  2), though 
based on similar strategies (Fig.  2), mainly ab  initio 
approaches or similarity-based ones. Ab  initio-based 
algorithms exploit complex probabilistic models to 
detect expected features (genes, motives, propensities) 
as defined on the basis of training datasets that support 
the proper identification of specific features. Similarity-
based methods, on the other hand, are the principal 
and more frequently used approaches in bioinformatics 
since they permit identifications, predictions, structure, 
and functional assignments. They rely on sequence or 
tridimensional similarities exploiting a typical concept 
in biology, which considers similarity in structure as a 
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(See figure on previous page.) 
Fig. 1 (a) Timeline from 2000 to 2014 indicating the release of the completely sequenced genomes for some of the major plants (green), animals 
(red), and fishes (black) of interest in agriculture. The dashed line indicates the start of Next-Generation Sequencing (NGS) era. The start of major 
massive sequencing projects are also indicated: the 1001 A. thaliana genomes project (http://1001genomes.org/), the SoyBase project (sequencing 
of 350 soybean lines) (http://www.soybase.org/), the 29 Mammals genomes project (https://www.broadinstitute.org/scientific-community/science/
projects/mammals-models/29-mammals-project), the 1000 Plant genomes project (https://sites.google.com/a/ualberta.ca/onekp/), and the 150 
Tomato genomes ReSequencing project (http://www.tomatogenome.net/). (b) Graphs indicate the growth as number of nucleotides (nt) of GenBank 
(all entries), GenBank genomes (only genome sequencing efforts), and SRA archive (all entries) and the number (#) of bacterial genomes (https://
gold.jgi.doe.gov/) released in the same timeline

Comparison
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Scaffolds

Sequence 
data

Assembly

Plant
Animal

Soil

Prediction

Taxonomic 
assignment

Putative 
function
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Genome
Metagenome
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Fig. 2 General description of a standard workflow in omics data analyses. Starting from the biological sample of interest and sequencing by 
different approaches data can be processed by assembly into contigs/scaffolds or directly undergo prediction analyses and/or comparison with 
reference databases. The analyses support different kinds of investigations such as those required for (i) structure definition, (ii) feature identification 
(e.g., genes, regulatory and repeat regions), (iii) putative functionality, and (iv) taxonomic assignment

http://1001genomes.org/
http://www.soybase.org/
https://www.broadinstitute.org/scientific-community/science/projects/mammals-models/29-mammals-project
https://www.broadinstitute.org/scientific-community/science/projects/mammals-models/29-mammals-project
https://sites.google.com/a/ualberta.ca/onekp/
http://www.tomatogenome.net/
https://gold.jgi.doe.gov/
https://gold.jgi.doe.gov/
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possible indication of similarity in role. Comparison with 
reference (nucleotide or amino acid general databases) or 
more specific collections, such as those from genomes, 
gene families, transcriptomes, or repeats, is fundamen-
tal to transfer information from already annotated mole-
cules to newly defined ones. Beyond supporting structure 
and functional assignments by detection of common fea-
tures, similarity searches also support identification of 
peculiarities and provide hints for evolutionary investiga-
tions [78].

The availability of an increasing number of reference 
genomes associated with a decreasing sequencing cost 
per base enabled also the analysis of genome variations 
based on single nucleotide polymorphisms (SNP) dis-
covery. These studies intend to identify the variability 
between genomic sequences from individual genomes. 
By comparing the sequenced genomes, a catalog of muta-
tions from individuals is obtained, usually defined as 
SNPs and/or insertion-deletion (INDELs), but also as 
larger rearrangements (e.g., copy number (CNV) and 
presence absence (PAV) variations, translocations). These 
features can be associated with specific phenotypes of 
interest. Currently, millions of polymorphisms have been 
discovered in plants, such as A. thaliana [79], rice [80, 
81], soybean [82], tomato [73, 83], maize [84, 85], and in 
animals [86]. These resources are essential in breeding 
challenges for species of agriculture interest. Indeed, the 
possibility to exploit data from larger collections of indi-
viduals strongly increases the potential to identify more 
alleles useful for improved a sustainable productions, 
providing solutions for growing demand for better food, 
in a climate changing world.

As introduced, metagenomics approaches aim at 
the identification of the species in a sample and to the 
definition of their relationships. While bioinformatics 
approaches for what concerns pre-processing and assem-
bly steps are similar (Fig. 2), downstream analyses depend 
on the peculiarities of the implemented strategy. The tax-
onomic composition of the microbiome can be profiled 
using the marker-based approach, i.e., a PCR-amplifica-
tion with universal primers of a taxon-specific gene, fol-
lowed by the extensive sequencing of the amplicon by 
the preferred platform (Table 1). Sequences derived from 
such studies are usually compared with dedicated data-
bases representing high-quality full-length reference tags. 
For example, in the case of bacteria the choice falls mainly 
on the 16S gene from the ribosomal operon and the most 
used reference databases for comparisons and identifica-
tion are listed in Table 2. Pipelines have been also imple-
mented to aid non-experts users in a correct parsing of 
the metagenome-derived NGS data (Table  2). Phyloge-
netic relationships, obtained by sequence similarity, can 
be used for ecological inference using dedicated pipelines 

[87]. However, although widespread, the marker-based 
approach falls short in predicting the functionality and 
the activity of the microbial community. Indeed, the 
methodology suffers the typical PCR biases, such as (i) 
the misincorporation of nucleotides (which would lead 
to the overestimation of sequence diversity); (ii) the dif-
ferential amplification of the same gene from different 
organisms (true for example in the case of 16S genes 
whose number of copies in the genome varies among taxa 
[88]); and (iii) the formation of chimeric artifacts. Moreo-
ver, markers can have limits in taxonomical assignments, 
mainly because of lack of consistent genome information 
from all possible species, affecting the specificity of the 
identification of the components [43]. This leads to the 
wide use of the operative taxonomic units (OTUs) for 
distinguishing all the different components in a sample, 
since they represent groups of highly similar sequences 
[89]. The “shotgun” approach is alternative to the marker-
based one. It consists in the high-throughput sequencing 
of a pool of DNA fragments that may encompass vari-
ous genomic loci from all taxa represented in the sam-
ple (prokaryotic, eukaryotic, and viral genomes). Unlike 
target-based approaches, the shotgun technique provides 
more details on the genomic structure of the community, 
offering a wider description of its potential functional-
ity [13, 14, 50, 55]. Data from whole metagenome shot-
gun consist of short DNA reads that can be assembled 
to obtain coding sequences or genomic contigs. Cod-
ing sequences can be identified through the comparison 
with specific databases (Table 2). The assembly should be 
carefully evaluated because most of the assemblers were 
developed for genome assembly and are not designed to 
deal with the heterogeneity of metagenomic datasets. In 
alternative, raw reads can be also used for direct assign-
ment and annotation, though their short length may 
limit the exhaustivity of the results. Ultimately, other 
limits of the shotgun method are (i) the initial amount of 
extracted DNA for library production should be rather 
high (>10 ng); and (ii) in case of large and complex com-
munities, or communities where one or few species 
dominate over the others, the coverage of the entire com-
ponents may be limited. Indeed, the likelihood that the 
species poorly represented will be covered by sufficient 
reads that will also permit the assembly of representative 
contigs is rather low. Examples of main software dedi-
cated to metagenome analyses are reported in Table  2. 
Ultimately, other limits of the shotgun method are (i) the 
initial amount of extracted DNA for library production is 
rather high (>10 ng); and (ii) in case of large and complex 
communities, or communities where one or few species 
dominate over the others, the likelihood that more than 
one read will cover a single gene is rather low; therefore, 
little information will be obtained about the species with 
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low abundance, and assembly would probably result in 
short contigs (if any). As introduced, reference data col-
lections are fundamental since the beginning of bioinfor-
matics. Data sharing, by general reference or specialized 
databases, is precious to the majority of the bioinformat-
ics strategies here presented. They not only support fun-
damental analyses for straightforward characterization of 
the investigated molecules, but are also essential to offer 
results to the whole scientific community. To this aim, the 
effort of setting up comprehensive collections, suitably 
representing the metadata derived by their mining and 
by the integration of different resources, demands major 
efforts in the NGS bioinformatics era. Indeed, NGS tech-
nologies attracted an unexpected interest from the sci-
entific world for their accessibility and their resolution 
power, further challenging the stabilization of resources 
and data integration. As an example, the fast sequenc-
ing of complete genomes from different species, such as 
those from different genotypes or cultivars, faces the bot-
tleneck caused by the need of suitable data analyses and 
curation. On the other hand, the fast production of col-
lections from parallel efforts makes the update of novel 
release hard, though the presence of reference databases, 
favoring the flourishing of community specific collec-
tions, often misaligned with reference ones, affecting also 
the quality of the results.

Conclusions
Bioinformatics is the exclusive approach capable of 
exploiting and sharing the large amount of omics data 
the different technologies may provide. Suitable compu-
tational methods and appropriate resources are funda-
mental for detecting value added biological information 
providing novel insights into the organization of biologi-
cal systems. The identification of structure and functional 
properties of the molecular data in a specific process 
allows the in-depth understanding of systems organiza-
tion and behavior, supporting the design of reliable and 
representative models and paving the way to the com-
prehension of emergent properties that only holistic 
approaches can offer.

However, despite the introduction of highly proces-
sive experimental technologies and of innovative com-
putational approaches in support of the molecular 
characterizations, only 10 % of the genome organization 
and associated functionalities have been today under-
stood and an even lower percentage of metagenomics 
datasets have been confidently annotated [90]. This con-
firms that though at quite 70 years from the discovery of 
the DNA structure and the beginning of bioinformatics, 
we are still at the very early stage of the genomics era, 

and surely quite far from achieving the ambitious goal 
of the in silico simulation of complex living organisms as 
well as ecosystem relationships. Indeed, these efforts still 
demand for extensive and suitable studies of genomes, 
transcriptomes, and metagenome data for proper links 
with sample organization and functionality, considering 
single species analyses and community approaches.

Despite these limits, the NGS bioinformatics era is 
revolutionizing the experimental design in molecu-
lar biology, strikingly contributing in increasing scien-
tific knowledge while impacting relevant applications in 
many different aspects of agriculture. Data from  dispa-
rate research fields, such as breeding, microbiology, and 
environmental sciences, are favoring a common exploi-
tation and advances in molecular knowledge from mas-
sive efforts, with bioinformatics as driving methodology 
for its power and multifaceted capabilities. Organizing, 
detecting, integrating data information content, and data 
sharing are contributing to multidisciplinary interactions, 
expanding resources and spreading common methodolo-
gies. This revolutionize agriculture practice and produc-
tion, offering knowledge and tools for improved product 
quality and ameliorated strategies of protection against 
environmental stress, diseases, and parasites [40, 91]. The 
different applications here overviewed, beyond providing 
relevant scientific knowledge based on their specificities, 
are also fundamental for translational approaches provid-
ing contributions with technological innovation, novel 
products, predictive and monitoring approaches [92], 
also supporting innovative applications for crop and live-
stock management [93, 94].

The increase of omics-based studies needs education 
in the associated technologies and in bioinformatics for 
appropriate experimental design and analyses, and for 
properly conveying experimental and computational 
efforts towards an in-depth knowledge and appropriate 
modeling of the biological systems [126].
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