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Abstract 

Recently, biochar has been widely used for versatile applications in agriculture and environment sectors as an effec‑
tive tool to minimise waste and to increase the efficiency of circular economy. In the present work, we review the 
current knowledge about biochar role in N, P and K cycles. Ammonia volatilisation and N2O emission can be reduced 
by biochar addition. The content of available P can be improved by biochar through enhancement of solubilisation 
and reduction in P fixation on soil mineral, whilst high extractable K in biochar contributes to K cycle in soil. Liming 
effect and high CEC are important properties of biochars improving beneficial interactions with N, P and K soil cycle 
processes. The effectiveness of biochar on N, P and K cycles is associated with biochar properties which are mainly 
affected by feedstock type and pyrolysis condition.
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Introduction
Biochar, a pyrogenic material derived from the thermo-
chemical conversion of biomass in an oxygen-depleted 
environment, has come into the limelight in the last 
decade for its potential to foster soil C sequestration. 
In addition, biochar can be a multifunctional player for 
local circularity across agriculture, energy and environ-
mental domains in several processes such as substitution 
of activated carbon [1], nutrient retention [2], enhance-
ment of anaerobic conditions in biorefinery processes [3], 
immobilisation of heavy metals in mining soils [4] decon-
tamination of water [5], and sorption of pesticides [6]. 
Generally, physical (e.g., large porosity and surface area) 
and chemical (e.g., recalcitrant aromatic C structure, 

hydrophobicity, cation exchange capacity) properties of 
biochar are the key factors bringing these multi-benefi-
cial utilities [2, 7, 8].

A large number of review reports has been published 
regarding biochar from different and specific aspects 
such as key component for recovering of contaminated 
soil [9], soil conditioner [1, 10], application in upland 
fields and political support for biochar use [11]. How-
ever, there are only a few reports regarding biochar inter-
action with different soil nutrient cycles [12, 13] and its 
multiple-use in the agricultural domain. Nitrogen, phos-
phorus and potassium are the primary nutrients required 
by plants for growth, whereas several biochar interac-
tions with soil components can contribute to increase the 
availability of these nutrients. Here, our review presents 
the role of biochar for different reactions in cycles of 
these three nutrients.
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Biochar chemical characterisation
Biochar properties rely on the content and chemi-
cal nature of organic and inorganic components in its 
matrix. Carbon, oxygen, hydrogen, sulphur and nitrogen 
prevail in the biochar organic matter. Mineral elements, 
such as silica, aluminium, calcium, magnesium, phospho-
rus, sodium and potassium, are mainly present in biochar 
ash. The content of C in biochar increases in the range 
17 to 85% with increasing pyrolysis temperature [14–16], 
whilst, on average, organic C accounts for less than 50% 
of total C [15]. In general, total C increases over pyroly-
sis temperature whilst biochar yield is decreased [17]. 
The functional groups found in biochar include hydroxyl, 
epoxy, carbonyl, carboxyl, ether, ester, sulphonic, ali-
phatic, phenolic and aromatic C groups [9, 18]. Espe-
cially, biochar enriched with carboxyl and phenolic C 
groups has a higher cation exchange capacity (CEC), thus 
presenting a higher capacity to adsorb nutrients [19].

The properties of biochar are significantly depend-
ent on the feedstock types and the pyrolysis condi-
tions, as well as on pre- and post-pyrolysis treatments 
[9, 18]. During the pyrolysis, lignocellulosic compounds 
in the feedstock are converted to aliphatic C groups at 
pyrolysis temperature around 400  °C. Furthermore, at 
temperatures above 500  °C, aromatisation and graphiti-
sation processes occur [18], which increase the content 
of aromatic C groups and the degree of hydrophobicity, 
therefore enhancing nutrient absorption [8]. At the same 
time, other properties are reduced, such as the O/C and 
H/C ratios and the content of carboxyl groups, which are 
prone to interact with soil C pools [9, 20]. The CEC of 
biochar is also strongly associated with the type of feed-
stock and pyrolysis conditions [14, 21]. Woody-derived 
biochars have lower CEC than manure waste biochars, 
whilst high-temperature biochars have lower CEC than 
low-temperature biochars. Therefore, the selection of the 
proper pyrolysis conditions is a key step to formulate bio-
char for specific use and purposes in soil [9, 18].

Regarding optimal application rate in pot, Jaiswal et al. 
[22] concluded that an inverted U-shaped relationship 
between biochar dose and plant growth is a common pat-
tern. However, under field conditions, most of the signifi-
cant improvements in crop yield were obtained at high 
biochar application rates (> 2.5 tonnes ha−1) [23].

Nitrogen
Nitrogen (N) is an important element for ecosystems 
and biochar can be a useful tool contributing to N input 
in soil–plant system. As previously mentioned, there 
is a wide variety of feedstocks for biochar production. 
Usually, manure-based biochar presents high-nutrient 
contents than plant-based biochar. However, the aver-
age N available as nitrate in different types of biochar is 

generally less than 0.01% [24]. Despite the low content 
of available N, biochar plays an important role in deter-
mining N availability in soil as it may directly or indi-
rectly influence various N forms and processes (Fig.  1) 
involved in the N cycle, such as dissolved organic N, N 
immobilisation and mineralisation, nitrification, N2O 
emission, ammonia volatilisation, and biological N2 fixa-
tion [25–27]. Generally, biochar has a large potential for 
decreasing soil N losses in different soil types, whilst 
the influence on crop production is lower in temperate 
regions than in tropical ones [28].

Dissolved organic N
In general, biochar application to soil decreases NO3

− 
and NH4

+ leaching, but does not reduce dissolved 
organic N (DON) leaching since most of the DON car-
ries a net negative charge [26]. Also, DON turnover of 
organic matter pool in contrasting agricultural environ-
ments is not influenced by the application of fresh or 
aged biochar [29]. Jones et al. [30] found a small and tran-
sient impact of biochar addition to soil on DON turnover. 
Conversely, other authors report that biochar addition 
at high application rate reduces protein and free amino 
acid production and consumption which slows down soil 
organic N cycling [31].

Biochar impact on N immobilisation and mineralisation
Soil application of biochar produced at low pyrolysis 
temperature (< 350  °C) increases the rate of organic N 
mineralisation to NH4

+, in comparison to biochar pro-
duced at 550 °C, due to a larger labile C fraction [27]. In 
addition, acid functional groups and labile C are present 
on the surface of biochar produced at low temperature 
and this type of biochar normally adsorbs more NH4

+ in 
comparison with biochar produced at high temperature 
[32]. Probably, the labile C content of low-temperature 
biochar may contribute to immobilising N in the min-
eral soil [33]. The application of biochar accelerates soil 
N transformations in the short term with increased N 
bioavailability through N mineralisation of recalcitrant 
pools, followed by immobilisation of NH4

+ in the labile 
soil organic N pool [22]. Furthermore, Nelissen et al. [27] 
reported that NH4

+ is immobilised quickly by adsorp-
tion, which thereby consequently reduces available N 
and concomitantly minimises potential soil N losses. The 
application of slow pyrolysis biochar in the soil presents 
N immobilisation for a much shorter period than the 
fast pyrolysis biochar [34]. The same authors report that 
N immobilisation after biochar application in the soil is 
a transient phenomenon because the labile part is min-
eralised after a few months. Biochar application had a 
significant impact on both N mineralisation and immo-
bilisation, but since there is a balance between gross N 
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mineralisation and gross N immobilisation the soil net 
N mineralisation is not significantly altered by biochar 
application [35]. An increase in gross N immobilisation 
may be induced by microbial activity when large avail-
ability of C in the labile fraction of biochar increases [36].

Biochar impact on nitrification
Changes in water status and distribution in the soil, asso-
ciated with changes in soil oxygenation, may increase 
nitrification rates in biochar amended soils since nitrifi-
cation is dependent on soil O2 availability [31]. Abujab-
hah et al. [37] have shown that rising biochar application 
rates (0, 2.5 and 5% wt/wt) reduced NH4

+ and increased 
NO3

−. Underlying factors of this result were biochar 
sorption capacity and increased soil aeration which 

favoured higher nitrification rate. The enhanced nitri-
fication rate with rising biochar application rates could 
have also been due to the increase in pH in these soils 
amended with biochar [27, 31] which may have stimu-
lated autotrophic nitrification [36]. Despite the positive 
effect of nitrification on increasing plant-available N, a 
better understanding of the long-term effects of biochar 
amendment on soil N cycling in various agricultural set-
tings is required for full exploitation of biochar potential 
[31]. In this context, it is known that the use of biochar 
reduces NO3

− leaching and N2O emission in horticulture 
and arable farming, but it does not affect losses in peren-
nial crops and grasslands [38].

Fig. 1  Application of biochar in the soil may directly or indirectly influence many processes involved in the N cycle
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Biochar as an electron shuttle and its influence on N2O 
emission
The function of biochar as an electron shuttle transfer-
ring electrons to denitrifying soil microorganisms, in 
combination with the liming effect and high surface area 
of biochar, has been reported as an explanation of the 
N2O emission rate reduction in biochar-amended soils 
[39].

The use of biochar may reduce N2O emissions by 
approximately 40% in Anthrosols and Arenosols. Beyond 
N2O emissions reduction, biochar application also 
reduces NO3

− leaching, which increases the efficient use 
of N and ultimately mitigates climate change [38].

In biochar pyrolysed at low temperature, reduced phe-
nolic moieties, acting as electron donors, enhanced N2O 
reduction, whilst in biochar pyrolysed at high tempera-
ture the oxidised quinone moieties, functioning as elec-
tron acceptors, decreased denitrification rate and N2O 
emissions [40]. Furthermore, the electrical conductivity 
structure of biochar produced at high-temperature pro-
moted N2O reduction. The biochar function as an elec-
tron shuttle tends to decrease or even suppress soil N2O 
emission inversely to the biochar ageing [41]. However, 
the mechanisms involved in the modification of nitrifica-
tion and denitrification genes caused by biochar applica-
tion to soil are not fully elucidated [42]. The biotic and 
abiotic mechanisms responsible for inducing soil N2O 
mitigation by biochar are probably a result of soil and 
biochar properties and their interactions [43]. An exam-
ple of these interactions is the inhibition of the nitrifica-
tion process and the reduction of denitrifiers activity due 
to an increase in soil moisture and aeration of soil caused 
by biochar application [44, 45]. Concerning the sup-
pression of N2O emission from denitrification, the ideal 
biochar properties are high carbonisation degree, high 
pH and large surface area [33]. Besides to reduce N2O 
emission, biochar must be applied in adequate propor-
tion with N fertiliser to ensure a C/N ratio greater than 
60 [46].

In addition to understanding the mechanisms involved 
in biochar influence on N2O emission, another critical 
factor for improving biochar management practices is the 
duration of their effect on N2O emission mitigation [47]. 
According to Borchard et al. [38], in general, the reduc-
tion of N2O emission due to biochar application tends to 
have a minor effect after 1 year. The benefits of biochar 
on soil greenhouse gas emissions are also highly influ-
enced by soil conditions, especially the water content, 
which controls N-cycling pathways [48]. Considering the 
many types of biochars that affect the soil N2O emissions 
differently, further research into the use of these materi-
als in crops under different field conditions is required 
[49]. In addition, there is a lack of experimental data 

regarding the effect of long term and repetitive additions 
of biochar to the soil [28].

Ammonia volatilisation
Ammonia (NH3) volatilisation, especially in tropical soils 
due to high temperature and low soil CEC, is the primary 
source of soil N loss and results in low N use efficiency by 
crops [28, 50]. According to Mandal et al. [50], the most 
common form of N fertiliser used in agriculture is urea, 
and the ammonification of urea raises the soil pH which 
consequently increases NH3 volatilisation rates.

Biochar application may contribute to decreasing 
NH3 emissions. The effectiveness of biochar in reducing 
NH3 volatilisation in soils where ammonia N fertiliser 
was applied depends on its surface area and the pres-
ence of acidic functional groups responsible for NH3 
adsorption [51, 52]. Another factor that may contribute 
to the reduction of NH3 volatilisation is the retention of 
NH4

+ due to increase of soil cation exchange capacity 
(CEC) after biochar application [51]. According to Sha 
et  al. [53], the application of wood biochar at rates of 5 
to 15 t ha−1, combined with N fertiliser rates lower than 
200 kg N ha−1, may contribute to the reduction of NH3 
volatilisation.

Conversely, it has also been shown that application of 
biochar with high pH (> 9) and application rates greater 
than 40 t ha−1 in clay acidic soils (pH ≤ 5) with low SOC 
(≤ 10 g kg−1) increases NH3 volatilisation [23]. Also, the 
combination of biochar and ammonium-based N fer-
tilisers causes high NH3 volatilisation [53]. The increase 
of NH3 volatilisation in low pH soils occurs due to soil 
pH increase caused by biochar [35]. With increasing soil 
pH, there is an enhanced supply of OH− to NH4

+ which 
is converted to NH3.

Relationship between biochar and N fixation
The N2 fixation is a crucial pathway to enhance soil N 
availability in various ecosystems, especially when the N 
supply is limited [54]. Biological N fixation (BNF) is an 
essential ecosystem service for agriculture and thereby 
understanding the relationship and impacts of biochar 
application on BNF is vital [55]. The application of bio-
char may increase the BNF in legumes, on average, by 
63%, and this effect is mainly occurring in acidic soils 
(pH ≤ 5) [35]. Azeem et  al. [56] showed that the appli-
cation of 10 t ha−1 of biochar produced by pyrolysis of 
sugarcane bagasse biomass at 350 °C in mash bean plots 
increased nodule figures by 89% and N2 fixation by 83% 
in comparison to treatments without biochar, respec-
tively. The biochar should be selected according to soil 
and plant type to promote BNF in root nodules or by 
association with free-living bacteria [57]. Eucalyptus bio-
char application at 60 g of biochar kg−1 of soil increased 
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by 78% BNF of Phaseolus vulgaris L. compared to con-
trol due to higher availability of B and Mo [58]. However, 
the authors found that increasing the biochar rate to 
90 g kg−1 decreased BFN and biomass production prob-
ably due to lower N availability and consequently lower 
photosynthate production. A small application rate (10 
t ha−1) of biochar obtained from the aboveground plant 
biomass of pasture plants resulted in higher nodula-
tion and BNF of Trifolium pratense L. due to the higher 
availability of K, whilst a very high application rate (120 
t ha−1) led to a reduction in the amount of BNF and bio-
mass production [55]. The application of 10 t ha−1 of 
paper mill biochar under acidic soil conditions caused a 
liming effect, which resulted in higher BNF, yield of Vicia 
faba L. and Mo absorption [59]. In a temperate pasture 
with intercropping of legumes and grasses, the ageing of 
the applied biochar tended to decrease the BNF and the 
competitiveness of the legumes with the grasses [60].

Anthropogenic activity in the soil negatively affects 
the soil microbial community and the greater the human 
interference with soil, the greater the potential for BNF 
after biochar application [54]. Furthermore, biochar 
application in soils with low organic C content not only 
increases BNF, but also enhances crop productivity by 
improving N content and decreasing bulk density [56]. 
Concomitantly biochar can increase soil N content not 
only directly, but also indirectly through the transporta-
tion of manure-derived biochar by insects [61].

Phosphorus
Phosphorus (P) is an essential macronutrient for plant 
growth; however, only 10 to 25% of P applied with min-
eral fertilisers is considered to be taken up by plants [62], 
whilst the rest is fixed in soils or is lost to water bodies. 
Soil properties; such as pH, compositions of mineral and 
organic matter, cation exchange capacity and texture, 
control plant availability of P in soils [63].

Application of biochar is known to influence, both 
directly and indirectly, soil P dynamics by adding extra 
P present in the biochar, changing soil pH and shifting 
microbial community compositions. The meta-analysis 
of 108 pairwise comparisons by Glaser and Lehr [64] and 
the data from 124 peer-reviewed papers resumed by Gao 
et al. [65] both showed that plant-available P in agricul-
tural soils was significantly increased by the application 
of biochar produced from different materials and pyroly-
sis conditions, as well as for a variety of climate and soil 
types. The plant-available P in soils tends to increase with 
the biochar application rate [59], and an application rate 
above 10 Mg ha−1 is recommended for achieving positive 
effects on the plant-available P in soils [58].

The beneficial effects of biochar on nutrient cycles, 
however, are specific to biochar properties [63, 66–68]. 

The quantification of P present in biochar is source 
dependent; biochars produced from nutrient-rich feed-
stocks, such as manure and crop residues, generally have 
higher P values than those from lignocellulosic feed-
stocks, and therefore are best suited to be used as soil 
P fertiliser [52, 69]. For example, the study performed 
by Novak et  al. [70] showed that the concentration of 
total P in manure-based biochars was 53 to 105 times 
higher than that in lignocellulosic-based biochars and 
the release of dissolved P in soils amended with manure-
based biochars was approximately 850 times higher than 
in the soils amended with lignocellulosic-based biochars.

Transformation of P forms during the pyrolysis process
A large amount of inorganic P remains in the biochar, 
since organic P present in original materials is trans-
formed into inorganic P during the pyrolysis process at 
temperatures above 350  °C [71]. Speciation of inorganic 
P in biochar is strongly dependent on the pyrolysis tem-
peratures, where P complexation in ash compounds 
occurs during carbonisation [72, 73]. When produced at 
a temperature above 600  °C, orthophosphate becomes 
the dominant P species in biochar, whilst pyrophos-
phate is often the dominant species in biochar produced 
between 350 and 600  °C [71]. In the study carried out 
by Bruun et  al. [74], labile calcium phosphates, such as 
brushite and magnesium phosphates, were the dominant 
P species in the biochar produced from digestate solids at 
low temperature, whilst these P compounds were trans-
formed into more stable P minerals, such as apatite, in 
biochars produced above 600 °C. Therefore, the propor-
tion of available P in biochar primarily depends on the 
pyrolysis temperature.

Change in the P fixation mechanism in soils by biochar 
amendment
Pyrolysis temperature also affects biochar’s alkalin-
ity. Biochar, especially that derived from mineral-rich 
materials, is commonly alkaline, and alkalinity increases 
with increasing pyrolysis temperature [63, 75, 76]. For 
instance, the initial pH of ~ 3.2, 6.3, and 7.5 for oak wood, 
corn stover and poultry litter, respectively, became the 
final pH of ~ 7.9, 9.4 and 10.3 after pyrolysis at 600  °C, 
respectively [60].

Application of alkaline biochar increases soil pH and 
induces change to P dynamics in acidic soils, especially 
in soils with low P sorption capacity [63, 67]. Phospho-
rus tends to complex with Al or Fe to form Al- or Fe-P 
minerals in acidic soils and/or is strongly bound to Al- 
or Fe-(hydr)oxides, and thus become unavailable for 
plants. These Al- or Fe-P minerals will be solubilised 
when pH increases above 7 [77]. In the study by Schnei-
der and Haderlein [72], significant P release by addition 
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of biochar was observed in acidic soils rich in goethite 
(i.e. Fe-oxides). Introducing dissolved organic matter into 
soils is known to reduce soil P fixation through compet-
ing for sorption sites, forming chelates between cations, 
such as Fe3+ and Al3+, and organic molecules [78], and 
enhancing electrostatic repulsive forces [72]. Therefore, 
the P release observed in the study performed by Sch-
neider and Hederlein [72] was most likely caused by the 
negatively charged organic matter derived from biochar, 
which reduced P sorption on goethite in addition to 
increase the soil pH.

Furthermore, Hiemstra et  al. [79] studied the interac-
tion of pyrogenic organic matter and oxide surfaces with 
P and estimated that the long-term addition of biochar 
could release P in acidic soils (i.e. pH < 5.5) by more than 
tenfold compared to P in soil without biochar amend-
ment. The biochar-derived dissolved organic matter had 
a higher number of carboxylic groups than soil humic 
acid, thus actively interacted with metal (hydr)oxides 
resulting in reduced P sorption [79].

In the case of alkaline soils, biochar does not play a 
major role in P transformation. Phosphorus is strongly 
bound to Ca compounds in alkaline conditions above pH 
7. Thus, soil P fixation increases in alkaline soils amended 
with biochar through precipitation of Ca-P minerals and 
P sorption onto calcite in alkaline soils due to additional 
input of alkaline elements such as Ca, which is often con-
tained in biochar [63]. In general, biochar had no effect 
on P sorption isotherms in alkaline soils, especially in 
soils with high P sorption capacity [63, 80].

In contrast to the positive impact on soil-available 
P described previously, especially in acidic soils, it has 
been shown that biochar with low P content can reduce 
P availability in soils [72], through increasing P sorption 
capacity promoted by surface area increase [81] and in 
metal oxides and carbonates [82] derived from biochar, 
through immobilisation of P by stimulating microbial 
activity [80, 83] and by means of precipitation of stable 
phosphate minerals in alkaline soils [65].

Enhancement of P solubilisation and mineralisation 
by altering microbial community activity and structure
Change in soil pH caused by biochar also influences the 
phosphatase activity and the microbial abundance. The 
meta-analysis of the effects of biochar amendment on 
soil enzyme activities performed by Zhang et  al. [84], 
where 401 paired comparisons were analysed amongst 
43 peer-reviewed published papers, showed that overall 
soil enzyme activity linked to P cycling increased by 11%. 
The significant increase of the enzyme activity linked 
to P cycle was observed especially in acidic and neutral 
farmland soils, as well as with the addition of biochar 
produced at high temperatures [84]. Similarly, several 

other studies showed shifts in enzyme activities induced 
by biochar addition [65, 85]; for instance, alkaline phos-
phomonoesterase activities were increased, whilst acidic 
phosphomonoesterase activities were inhibited by addi-
tion of biochar regardless of soil types [86, 87]. However, 
this effect could have been partly due to the absorption 
of the substrate or enzymes, which occurs more strongly 
at lower pH rather than at a higher one [88, 89]. In fact, 
the study performed by Masto et  al. [90] showed that 
both alkaline and acid phosphomonoesterase activi-
ties increased in red soils with addition of the biochar 
produced from Eichornia. They also observed a three-
fold increase in soil microbial biomass after application 
of biochar [90].  The enhancement of microbial biomass 
was also observed in other studies performed in a wide 
range of soil types [75, 91], where it is known that min-
eralisation of P also enhances with increasing microbial 
biomass [91].

Other studies showed a shift of microbial community 
composition towards a higher proportion of fungi over 
bacteria after the addition of biochar to the soil [83, 92], 
due to the increase in porosity caused by biochar that 
makes the habitat more favourable for fungi [93]. Fungi 
are known to be important decomposers in soils [75].
Therefore, the increase in fungi abundance caused by 
biochar application also enhances the plant available P in 
soils through accelerated mineralisation of organic P [83].

Potassium
Speciation and transformation of K in biochar
Biochar typically contains a large amount of potassium 
(K), whose concentration usually ranges from 0.70 to 
116 g kg−1 [24]. During pyrolysis, C and N become vola-
tile at milder temperatures, whilst K begins to volatise at 
a relatively higher temperature over 700  °C [25]. There-
fore, an increase in K concentration tends to occur in 
most of the manufactured biochar. Depending on the 
feedstock biomass and pyrolysis condition, the contents 
of extractable K in the biochar can be variable. Typically, 
water-soluble K increased as the pyrolysis temperature 
increased [94]. In other reports, extractable K initially 
increased with increasing pyrolysis temperature, but then 
declined when pyrolysis temperature became elevated 
[95]. Potassium-enriched biochar has been manufac-
tured from K-rich biomass, such as animal manures [96], 
banana peduncle [97], rice straw [98] and seaweeds [7].

A number of observations was documented on the 
transformation and speciation of K in feedstocks dur-
ing pyrolysis [99]. Zheng et al. [94] observed an increase 
of water-soluble K (from 37 to 47%) in giant reed bio-
char with increasing pyrolysis temperature from 300 to 
600 °C, whilst most of the K in the feedstock was trans-
formed into crystallised minerals during pyrolysis. Tan 
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et  al. [100] showed that stable and complexed K forms 
in rice straw were converted into soluble K forms such 
as potassium sulphate, potassium nitrate and potassium 
chloride during pyrolysis, which are more easily absorbed 
by plants. Biochar amendment, therefore, potentially 
serves as a direct source of K nutrient, which would be 
an especially suitable amendment for K-deficient soils 
[94]. However, presence of K nutrient in the biochar 
or biochar-applied soils does not guarantee that this 
will be available to plants. Liu et  al. [99] suggested that 
water-insoluble portions of K are embedded in the car-
bon skeleton structure in highly ordered pyrolytic graph-
ite (HOPG) intercalation compounds or in complex-K, 
which are stable in the soil and dissolves only slowly dur-
ing ageing of biochar in the long term.

Impact of biochar on K availability in soils
Availability of biochar-derived K nutrient to plants will 
depend on several physicochemical factors such as sol-
ubility of K compounds into water and/or high ionic 
strength solution, the extent and rate of dissolution of 
these compounds from biochar to soils, and properties 
of the soils such as texture, exchange capacity, pH, and 
water content. Prakongkep et al. [101] reported that bio-
chars produced from 14 tropical plant wastes contained 
3.5–51 g kg−1 total K, in which water-soluble K content 
was in the range of 0.4–30 g kg−1. In an 8-week experi-
ment, Limwikran et  al. [102] examined the kinetics of 
mineral dissolution from nine biochars manufactured 
from tropical plant wastes into the tropical soils of Oxi-
sols and Ultisol. They reported that some of the water-
soluble K was rapidly diffused into the soil, whilst the 
remaining K fraction was slowly dissociating. Absorption 
of a considerable amount of Ca by biochar in exchange 
for the K release was shown in this experiment, suggest-
ing a complex interaction amongst plant nutrients in the 
biochar–soil environment [102]. Novak et al. [70] exam-
ined the release kinetics of K and P from various biochar 
in fine-loamy soil in a 150-d column leaching experiment, 
which showed an initial rapid release of dissolved K, fol-
lowed by a significant decline in the dissolved K con-
tent in the leachate from soils supplemented with either 
poultry litter biochar or ‘designer biochar’ at a blending 
ratio of 80:20 pine chip/poultry litter biochar. They also 
reported that such a blended biochar was aligned with 
soil P and K levels recommended for corn production in 
southeastern USA Coastal Plain sandy soils [70].

Effects of biochar as K fertilisers
Biochar can assist in improving K availability and K use 
efficiency in plants. A meta-analysis of 371 independ-
ent studies strongly suggested that biochar application 
resulted in increased soil K content and plant K tissue 

concentration [12]. In cotton, application to soil of 1% 
biochar together with chemical fertiliser significantly 
increased K content of different plant parts and improved 
growth and yield [103]. Amendment with biochar from 
K-rich crop residues, particularly those made from wheat 
straw, increased available K in sandy loam soil [104]. 
Application of poultry litter and hardwood biochar 
improved diary pasture yield in Australian Ferralsols, 
which was attributed to the alleviation of K and P nutri-
ent constraints in the Ferralsol regardless of the N ferti-
liser dose applied [48].

In general, increased soil CEC gained by the applica-
tion of biochar, due to its structural properties such as 
porous structure, large surface area and negative surface 
charge, tends to strengthen the retention of K and ena-
ble the slow release of nutrients [105]. Kizito et al. [106] 
examined the effect of soil application of corn cob and 
wood biochar saturated with an anaerobic digestate (AD) 
derived from biomethanol production. They observed 
that the application of AD-enriched wood biochar to 
clay loam soil at a rate of 20 t ha−1 increased soil CEC 
by > 300%, which were accompanied with a significant 
increase in the soil macronutrient contents including K, 
and aboveground biomass of cultivated maize plants.

The long-term effects of biochar-based K supple-
mentation have been addressed in several studies. Two 
years of maize cultivation on Midwestern Mollisols, 
amended with hardwood biochar, significantly increased 
soil available K content and enhanced plant K uptake 
in the drought year; the latter effect was attributable 
to the increase in highly mobile K and was favoured by 
elevated moisture content in biochar-amended soils 
[107]. A 3-year field study in cotton–garlic intercrop-
ping system demonstrated that application of corn straw 
biochar at 5–20 t ha−1 at each cotton season increased 
the available K content of the 0–20 cm soil layer, and sig-
nificantly improved cotton yield in the 3 successive years 
[108]. It is noteworthy that the biochar application also 
improved fiber qualities of harvested cotton such as fiber 
length and fiber strength, which is known to be adversely 
affected by K- and N-deficiency, but not by P-deficiency, 
suggesting that the observed amelioration of cotton fiber 
quality can be attributable to the supply of these nutri-
ents [108]. These observations suggested that biochar 
application may offer an effective measure for sustainable 
agriculture in the long term.

Biochar as a liming input
In addition, increased concentration of K in biochar, 
together with Mg and Ca, functions as a liming agent to 
neutralise acid soils [109]. Meta-analysis of the literature 
showed that biochar application led to a reduction in the 
acidity of the soil in multiple studies [110]. The 90-day 
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incubation experiments in acidic Ultisol supplemented 
with four crop residue biochar increased soil pH and 
exchangeable base cations and decreased exchangeable 
Al3+, especially for legume crop residue biochar [111]. 
As a matter of fact, the biochar amendment shows pro-
nounced improvement of crop growth and yield in acidic 
soils [112].

Biochar and K leaching
Being a monovalent basic cation, K is highly suscepti-
ble to leaching [113]. Although biochar amendment can 
increase K leaching by supplying a significant amount 
of mobile K, at the same time biochar amendment can 
increase CEC, which strengthens the retention of K, 
thereby potentially functioning as a suppressor of leach-
ing. A soil column experiment in which rice plants were 
grown showed a marked increase in K concentration in 
the leachate of a biochar-amended sandy soil, whilst no 
significant enhancement of K leaching was observed in 
biochar-amended clay soil [114], suggesting multiple 
interactions amongst soluble K, other nutrients, biochar, 
and soil types.

Conclusions
Biochar is involved with many soil N transformation pro-
cesses (e.g. ammonia volatilization, N2O emission and bio-
logical nitrogen fixation), resulting in decreasing N losses 
and improving N retention. Biochar prevents P fixation in 
acidic soils and increases P solubilisation as a consequence 
of the enhanced microbial activity  as well as  changing 
pH in soils, thus increasing soil P availability. Content of 
extractable K in soil increases after biochar amendment, 
although original content of K in biochar is largely vari-
able. The properties of biochar are significantly dependent 
on the feedstock types and the pyrolysis conditions, as well 
as on pre- and post-pyrolysis treatments, which also con-
sistently affect the impact of biochar on soil cycles of N, P 
and K. Therefore, screening of biochars is highly recom-
mended to avoid losses and increase the retention of N, P 
and K labile forms in soils. To use biochar effectively as a 
replacement of chemical fertiliser, knowledge of the com-
position and speciation of element in biochar and the char-
acteristic of soils amended is essential. Given that most 
of the reports on increased yield in field applications are 
the result of a high biochar application rate, it is impor-
tant to develop biochar fertilisers highly efficient even at 
low application dose based on nanostructures and soluble 
components [23]. Change in biochar properties due to the 
ageing effect is another topic deserving future research [21, 
60, 115]. Also, some possibly negative impact of biochar 
amendment to soil should be taken into consideration such 
as potential increases in P leaching [63] and high EC [116]. 
Considering the above-mentioned matters, future studies 

should include the development of standard characteris-
tics in biochar properties [75] and a better understanding 
of potential and long-term biochar-induced changes in the 
nutrient cycles under various environments, soil types, and 
land management.
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