
Lwanga et al. Chem. Biol. Technol. Agric.            (2022) 9:20  
https://doi.org/10.1186/s40538-021-00278-9

REVIEW

Review of microplastic sources, transport 
pathways and correlations with other soil 
stressors: a journey from agricultural sites 
into the environment
Esperanza Huerta Lwanga1,2*, Nicolas Beriot1,3, Fabio Corradini4, Vera Silva1, Xiaomei Yang1, Jantiene Baartman1, 
Mahrooz Rezaei5, Loes van Schaik1, Michel Riksen1 and Violette Geissen1 

Abstract 

This paper explores different interactions and processes involved in the transport of microplastics from agricultural 
systems to surrounding environments. We conducted an exhaustive review of the most recent scientific papers 
on microplastic transport in terrestrial systems, with an emphasis on agricultural systems. In the following sections, 
several aspects of this problem are discussed, namely (i) direct and indirect sources of microplastics, (ii) biotic and 
abiotic transportation of microplastics in and from the terrestrial environment, (iii) modelling of microplastics in the 
terrestrial environment and (iv) facilitated chemicals and pathogens in combination with plastic particles. There is very 
little information available concerning microplastic transport in the terrestrial environment; therefore, more research is 
needed to gain a better understanding of how these processes take place. The novelty of this review lies in assessing 
how microplastic transport occurs from the plastisphere (cellular) to the landscape level and from agricultural systems 
to the surrounding areas.
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Introduction
Plastic is increasingly recognised as an massive environ-
mental pollutant [34]. In 2019, 370 million tonnes of plas-
tic were produced globally [118]. A production trend that 
has continually risen since the 1960s [153]. As a result of 
this increase, each year, more and more plastics end up 
in the environment. Due to the durability and persistence 
of these plastics, they remain in the environment indefi-
nitely [113]. Rochman and Hoellein [134] explain how 
plastics interact from the lithosphere to the atmosphere, 
or from the hydrosphere to the atmosphere. Just like dif-
ferent chemical elements, plastic debris follows biogeo-
chemical cycles. Plastics, according to their degradation 
levels are involved in a cycle involving the atmosphere, 
the terrestrial system (lithosphere) and the aquatic sys-
tem (hydrosphere) and all of these systems are connected 
to each other.

Since the early 1970s, plastic pollution has been well 
studied in aquatic environments, mainly marine, and has 
only extended to terrestrial ecosystems over the last dec-
ade [155]. Researchers have revealed that plastic debris 

polluting the environment is not static but instead it 
cycles from one ecosystem to the next [134]. The plastics 
that cycle through the system the most are the smallest 
particles, such as microplastics (< 5 mm in diameter, [45]; 
[43] and nanoplastics (1 μm–1 nm, [50]. An estimate of 
mismanaged waste (including sewage sludge applica-
tion) indicates that microplastics found in the terrestrial 
ecosystem actually add up to 4 to 23 times the amount of 
plastics released to the oceans [63]. In this review, we will 
focus on the interactions of microplastics (MP) with dif-
ferent soil compartments. Nanoplastics, as a product of 
the fragmentation and erosion of plastic particles, are still 
not well studied in the terrestrial environment, the main 
reasons involve the nanoplastics extraction methodology 
from the soil matrix and the detection sensibility.

Xu et  al. [175] clearly explains that once these micro-
plastics find their way into the soil and are "permanently" 
in the environment, they can accumulate, sorb contami-
nants or be transported through the soil matrix. There 
are several levels in the transportation process, some 
of which involve enzymes at the cellular level, breaking 
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plastics into smaller pieces, or invertebrates at the organ-
ism level, exposing microplastics to ingestion processes.

The purpose of this review is to shed light on scientific 
gaps in our understanding of microplastic transport in 
the terrestrial environment. This includes the transport 
of off-site intentional and unintentional sources at local, 
regional, and global scales. We look at field and labora-
tory studies as well as modelling studies. In each of the 
following sections, we examine and discuss available lit-
erature, attempting to give new insight into theories and 
possible interactions that take place between microplas-
tics, other soil pollutants and different aspects of the soil 
system.

Using several key words, a list of scientific papers writ-
ten in English within the last 8 years was compiled.

The key words used were microplastics*transport, micr
oplastics*transport*terrestrial environment.

Using the Scopus searching tool, 81 papers related to 
microplastics and transportation in water, soil and health 
were found. From these papers, 60% described the prob-
lems of microplastic distribution/transportation in Asia, 
20% in Europe, 10% in America and 10% in Australia 
(Fig. 1). If the word ‘terrestrial’ was added to the keyword 
search, then the number of papers decreased to 5, 3 from 
2019, 1 from 2017 and 1 from 2020 (3 from Europe and 2 
from Asia).

Sources of microplastic pollution in agricultural 
soils
In 2018, Nature published one of the first articles con-
cerning microplastic pollution in agricultural soils. Piehl 
et  al. [117] surveyed soil from a farmland in Middle 
Franconia, South–East Germany, to evaluate the inci-
dence of microplastics in agricultural sites. The farm-
ers used conventional agricultural practices and did not 
report any use of plastic or organic amendments that 
could potentially transport microplastics to soils. Even 

without the obvious use of plastic on the farm, research-
ers found 0.34 ± 0.36 MP particles per kg in topsoil sam-
ples. Researchers proposed establishing a background or 
baseline microplastic pollution level at agricultural sites, 
an idea that was repeated in several subsequent studies 
(see Table 1). The high incidence of microplastics in agri-
cultural soils, even though there was no obvious use of 
plastic products or applications of organic amendment, 
gave rise to new scientific concerns: What happens when 
agricultural management practices increase pollutant 
pressure? How do different agricultural practices trans-
port microplastics to soils?

In this section, we present the different pathways that 
microplastics can follow before they reach agricultural 
soils. We split the section into three subsections. In the 
first subsection, we list the direct sources of microplas-
tics and how the use of plastic supplies usually results 
in higher microplastic pollution. The second subsection 
lists indirect sources related to agricultural practices that 
might conceal microplastics. The third exposes indirect 
sources related to environmental variables which is a pas-
sive way for plastics to enter soils.

Direct sources: agricultural supplies made of plastic
Agriculture relies on plastics to produce raw materials. 
Plastic products are found both in crop and animal pro-
duction systems [105]. Plastic greenhouses, small tun-
nels, mulching films, protective nets, and irrigation pipes 
are just some of the shapes that plastics take in crop pro-
duction systems. Similarly, fodder also introduces plastics 
into animal production systems. Twine, bale nets, and 
stretch films intended to preserve straw are usually made 
from plastic. What do the use of these plastics mean in 
the global context?

Of the nearly 50.7 million tonnes of plastic used in 
Europe in 2019, agriculture was responsible for 3.4% of 
it [118]. It is not a considerable share, but these plastics 

Fig. 1 Microplastics and transport, number of scientific articles, and percentage of articles per continent
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are used in close contact with soils and water. Within this 
share, the most used polymers were polypropylene (PP) 
and low-density polyethylene (LDPE), both of which are 
mainly used in plastic films intended for greenhouses, 
small tunnels, mulching films, and stretch films. Next 
came polyvinylchloride (PVC), the principal component 
of irrigation pipes and drippers. Polystyrene (PS), used in 
twine and nets, rounds out the list [22]. In this subsec-
tion, we will explore how each of these agricultural sup-
plies contributes to the accumulation of MP in soils. We 

list these contributions according to the amount of infor-
mation available.

Mulching films
Farmers use plastic mulches to increase soil temperature 
and water use efficiency and to decrease weed growth 
[39]. The downside is that farmers cannot remove the 
mulch completely after the growing season, leaving 
behind small pieces of plastic that threaten the environ-
ment. As farmers repeatedly use plastic mulches, the 

Table 1 Reported concentrations of MP in soils by source

The table considers research articles found in Scopus database that match “MP AND soils AND agriculture” and deal with microplastic pollution of arable lands. We 
removed reviews, letters, conferences, and articles related to modelling and toxicology from the final list
* Quantities are expressed in MP particles per kg of dry soil. Ranges show the min and max values reported in the studies. When ranges were not reported, we took 
the mean value and its standard deviation. Single values without standard deviation (plus/minus sign) show that those studies only reported a single value for a 
treatment
** Katsumi et al. [76] reported microplastics abundance in mg  kg−1

Class Author Quantity* Size range 
of analysed 
particles

Baseline assessment Choi et al. [26] 664

Baseline assessment Corradini et al. [28] 0–306

Baseline assessment Ding et al. [33] 143–3410

Baseline assessment Feng et al. [41] 43–2

Baseline assessment Harms et al. [56] 0–218

Baseline assessment Huang et al. [64] 0.1–324

Baseline assessment Lv et al. [99] 10

Baseline assessment Piehl et al. [117] 0.34

Compost van Schothorst [141] 888 ± 500 30 µm—2 mm

Compost Gui et al. [52] 2400 ± 358 50 µm—5 mm

Compost Braun et al. [21] 7 ± 3 ? –5 mm

Compost Weithmann et al. [169] 96 1–5 mm

Fertilizers Katsumi et al. [76] 6–369**

Greenhouse Li et al. [93] 1000–3786

Pig Manure Yang et al. [176] 43.8 ± 16.2

Sheep faeces Beriot et al. [14] 997 ± 971 30 µm—2 mm

Plastic mulching van Schothorst [141] 2242 ± 984 30 µm—2 mm

Plastic mulching Beriot et al. [14] 2116 ± 1024 30 µm—2 mm

Plastic mulching Huang et al. [65] 80–308

Plastic mulching Kim et al. [81] 215–3315

Plastic mulching Li et al. [92] 420–1290

Plastic mulching Meng et al. [104] 900–2200

Plastic mulching Yu et al. [180] 310–5698

Plastic mulching Zhou et al. [185] 263–571

Sludge Corradini et al. [29] 1100–3500

Sludge Crossman et al. [31] 541

Sludge van den Berg et al. [12] 5190 ± 2630

Sludge Zhang et al. [181, 183] 87.6–545.9

Sludge Mahon et al. [101] 4200 – 15,000 250–5000 μm

Sludge Carr et al. [25] 5000 ? –5 mm
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amount of plastic debris in soil increases, as does the 
threat of dispersion to other ecosystems [123].

Over the last few years, scientists have raised warnings 
about the use of plastic mulches in agriculture, arguing 
that they increase the incidence of microplastics in soils 
[166]. Most of the evidence comes from China, one of the 
countries, where plastic mulches are used the most. Dur-
ing 2015, more than 1.5 million tonnes of plastic mulch 
covered more than 20 million hectares of China’s arable 
land. Liu et al. [96], one of the first studies exposing the 
accumulation of microplastics from plastic mulching, 
observed a correlation between the use of plastic mulch 
and the number of plastics found in soil  (R2: 0.6 p < 0.05, 
[65]. In the years that followed the publication of Liu 
et al. [96], other researchers supported their observations 
with evidence gathered in China [65, 181, 185] and other 
countries, where the use of plastic mulching is a common 
practice, namely, Spain [14] and the USA [49].

The reported quantity of MP found in agricultural 
soils due to the use of plastic mulches varies greatly 
between studies (Table  1). Meng et  al. [104] and Beriot 
et al. [14] reported the highest concentrations, with val-
ues up to 2200 MP particles per kg of soil. Other studies 
reported smaller amounts up to 80 MP particles per kg, 
an amount that is by far higher than most plastic baseline 
assessments.

Farmers have a choice of different plastic polymers to 
use as plastic mulch on their fields. Among these poly-
mers, LDPE is the most common [74]. The use of LDPE 
plastic mulches has steadily risen since the 1990s, due 
to their low cost and their positive results on crop yields 
[27]. LDPE is a fully saturated polymer of hydrocarbons, 
which makes it highly resistant to weathering [30]. LDPE 
mulches need to be removed after harvest to avoid accu-
mulation in the fields. During this process, the films tear 
and leave behind small LDPE debris [185]. In this regard, 
Liu et  al. [94] baptized the process of polluting the soil 
with plastics through plastic mulch use as a “white revo-
lution to white pollution”.

To avoid the environmental liabilities that arise when-
ever farmers use LDPE plastic films on their fields, pro-
ducers aim to develop new types of polymers that degrade 
within the soil environment. The commercial goal is to 
create a mulch that farmers do not need to remove every 
season. To date, no such mulch has been developed [125]. 
One industry alternative has been to speed up plastic 
weathering by adding oxidative compounds to the film 
plastic. PACs are polymers, mainly LDPE, that contain 
a pro-oxidant additive to enhance oxidation and photo-
degradation [143]. The resulting films are considered to 
be “oxo-degradable” or “oxo-biodegradable” (the plastic 
starts to depolymerize due to oxidation, [62]. In the pres-
ence of light and under aerobic conditions, PACs degrade 

quickly into small pieces. This small, fragmented debris 
is more likely to be further degraded by microorganisms 
[3]. However, once incorporated into the soil, the degra-
dation process is minimized due to the absence of UV-
light [62], thus causing PAC debris to accumulate [146].

The industry has also explored the use of other degra-
dable polymers instead of LDPE. There are new mulching 
films on the market that can be degraded by microorgan-
isms [57, 148]. They are usually sold as “biodegradable” 
mulches (Van den [112]. Diverse polymers, which can 
be bio-based, petroleum-based or blends of both, can 
be used in biodegradable mulches [79]. The common 
denominator in all biodegradable mulches is their poten-
tial to degrade in  situ. The European Standard (CEN 
norm) EN 17,033 set a requirement that to label a plas-
tic film as biodegradable, it has to degrade by 90% within 
2 years of being in the soil. To test a film’s biodegradabil-
ity, researchers conduct lab experiments to measure the 
amount of carbon dioxide produced and the decrease on 
mass over a certain period under controlled conditions 
[54]. Unfortunately, biodegradability is not only an intrin-
sic property of the material. In the field, biodegradabil-
ity will vary depending on abiotic conditions, such as soil 
moisture, temperature, micro-fauna, and air permeability 
[107]. Consequently, some biodegradable plastic mulches 
do not reach their expected degradation rates in situ. For 
example, Ghimire et  al. [49] placed commercial biode-
gradable plastic mulches over test fields in Washington 
State over a period of 4 years. The observed recovery 
rate was 71% after 2 years and 35% after 4 years. Ghimire 
et al. [49] showed that it might take more than 4 years for 
biodegradable plastics to reach 90% degradation in field 
conditions and that the decay rate of biodegradable plas-
tic is likely to change from 1 year to another. Hydrologists 
have also observed the lack of robust degradability tests 
and the pollution that bio-based plastics produce in the 
environment (see [186]).

To summarize, the use of plastic mulches has become 
an indispensable agricultural practice in highly produc-
tive areas with sub-optimal climates. This agricultural 
practice increases microplastic pollution of soils, a prob-
lem that the industry cannot solve by promoting the use 
of existing biodegradable plastics.

Plastics used to protect plants
Plastic films and plastic-based non-woven fabrics used 
in greenhouses, polytunnels, shade nets, and wind bar-
riers increase the incidence of microplastics in soil 
samples. However, scientists have not studied these 
sources of agricultural microplastics as much as they 
have studied plastic mulching (Table  1). Several stud-
ies have examined the contributions that plant protect-
ing plastics have made to the levels of microplastics 



Page 6 of 20Lwanga et al. Chem. Biol. Technol. Agric.            (2022) 9:20 

found in the environment. Other type of studies aimed 
at quantifying the amounts of microplastics expected 
to be found in soils near productive systems that use 
these types of plastics.

There are only a few studies that specifically target 
the release of microplastics from plant protecting plas-
tics. Li et al. [93] showed that, for the same productive 
area, soil samples taken at farms without greenhouses 
had less microplastics than soil samples taken at 
farms with greenhouses. The authors reported a range 
of 1000 to 3786 MP particles per kg at farms, where 
greenhouses were first used in the 1980s. Similarly, 
Kim et al. [81] reported a median of 2110 MPs kg-1 in 
soil samples taken inside greenhouses, and 310 MPs 
kg-1 in soil samples taken outside. The large difference 
Kim et  al. [81] reported might come from different 
sources, inside greenhouses, apart from the plant pro-
tecting plastics, farmers might use plastic mulches and 
twine to secure growing shoots.

In a broader context, studies that report the inci-
dence of microplastics in agricultural soils usually 
include or mention greenhouses. Such is the case pre-
sented by Wang et al. [168], Ding et al. [33], and Zhou 
et  al. [185]. They all stress that the greater the use of 
plastic supplies, the higher the counts of microplas-
tics in soil samples. Similarly, Dahl et  al. [32] made a 
chrono-sequence of plastics within sediments from a 
bay in Spain and correlated the increase of microplas-
tics found in the sediments with the increase of inland 
surface covered by greenhouses.

Other plant protecting plastics are rarely connected 
with microplastic pollution studies. Silva and Nanny 
[147] correlated high levels of microplastics in water 
from the Magdalena River in Colombia with the use of 
nonwoven plastic fabrics. They did not, however, take 
any soil samples. This is the only example of a scien-
tific study that looks at plant protecting plastics, poly-
tunnels, plastic wind barriers, or shade nets, as having 
a high probability of polluting soils.

Silage and bale nets
The publication of Piehl et  al. [117], the first study 
addressing the problem of microplastics in soils at 
a farm scale, mentions that the use of plastics to 
cover grass bales and silage might pollute the fodder 
with MP, which, after ingestion, could reach the soil 
through excretion. Even though to date, there are no 
studies that quantify this entry path for MP to arable 
lands, [14] found that sheep could excrete microplas-
tics after ingesting plastic mulch fragments, which is 
discussed further in this review.

Twine
Plastic twine accounted for 11% of the agricultural plas-
tic demand in the EU in 2019 [1]. Plastic twine is mostly 
made of Polypropylene (PP) and used for many purposes 
in agriculture [51]. Twine is used to attach plants to 
stakes for major crops, such as tomatoes, sweet pepper 
and hops. It is used in banana production to bind plants 
to each other to prevent them from falling over [60]. 
Twine is also used to wrap hay bales. During harvest, the 
twine is cut and often haphazardly discarded in the fields, 
where it can end up as microplastics in the soil or in com-
post. Initiatives exist to encourage the use of compostable 
twine that can be collected along with plant residues and 
composted [17, 51]. To date, no studies assess the contri-
bution of plastic twine to soil microplastic accumulation.

Coated fertilizers and pesticides
The fertilizer industry uses plastic polymers as coating 
agents for slow-release fertilizers and pesticides. Once 
these compounds are successfully delivered, the plastic 
coating of the fertilizer pellet remains in soils. This is a 
potential source of microplastics in farmlands. To date, 
only one research group has gathered evidence con-
cerning this pathway for MP to enter soils. The group 
reported 6–369 mg of plastics kg-1 of soil in fields, where 
coated fertilizers were used [76]. They also observed that 
the quantity of MP in estuarine waters rose during the 
irrigation season with 90% of the observed microplastics 
corresponding to the microplastics found in the coating 
of fertilizers [75].

Plastic pipes
Drip and sprinkler irrigation rely on plastic pipes to dis-
tribute water across a field [10]. Farmers need to replace 
these pipes systematically. What happens then? Do farm-
ers leave old pipes buried and place a new line parallel to 
the old one or remove the old pipes with care to avoid 
fragmentation and plastic debris? There is no infor-
mation about this pathway of microplastics into soils. 
Perhaps this is not a primary route for plastics to enter 
arable lands. Further investigation is required to identify 
the possible degradation or fragmentation of plastic pipes 
used in agriculture.

Improper storage
As explained in the previous sections, plastic can be 
found in huge quantities on a farm. The proper collection 
and storage of used plastics is additional work for farmers 
who do not always have the time and technical capacity 
to safely clean and store the used plastics. Plastic waste 
should be stored in a dry place, where it is protected from 
the wind to keep the plastic waste clean and prevent it 
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from being blown away [156]. Plastic waste mismanage-
ment in agricultural areas is a big issue which is, in part, 
attributed to improper storage of plastic on farms. This 
mismanagement causes vertebrates, such as sheep, cows, 
dogs, and vultures to graze and ingest plastic particles.

Indirect sources: microplastics hidden in agricultural 
supplies
Sewage sludge and biosolids
Wastewater treatment plants efficiently prevent the pol-
lution of superficial water with MP from urban wastewa-
ter [187]. The plants trap MP from inlet water in a rich 
organic matrix called sludge. The sludge accumulates 
microplastics from urban origin, e.g., industry processes 
[37], domestic grey water [88], and traffic [97]. In many 
countries, sludge is used as a crop fertilizer and trans-
ports microplastics to agricultural fields. Corradini et al. 
[29] reported a range of 1100–3500 MP particles per 
kg in agricultural fields in Chile. Van der Berg (2020) 
repeated the experience in Spain, observing 5190 ± 2630 
MP particles per kg. A third study carried out in similar 
settings in China, reported a smaller mean range of 87.6–
545.9 MP particles per kg [183]. Along the same lines, 
Crossman et  al. [31] observed that the more biosolids 
being used as crop fertilizers, the higher the accumula-
tion of microplastics in the soil profile.

Compost
Scientists have long assumed that organic fertilizers were 
a source of microplastics in soil [130] but until now, very 
few studies have analysed the plastic content in com-
post. Weithmann et  al. [170] identified 24 MP particles 
per kg measuring 1  mm to 5  mm in German compost 
from municipal organic waste and green clippings. More 
recently, Gui et  al. [52] measured a mean of 2400 ± 358 
MP particles per kg measuring between 50 µm and 5 mm 
in compost produced in Zhejiang Province (China). Van 
Schothorst et al. [141] measured 1750 ± 930 MP particles 
per kg in the range of 30 µm to 2 mm in Dutch compost. 
Regarding the most abundant polymers, Gui et  al. [52] 
showed that PES, PP, and PE accounted for 70 to 80% 
of the total amount of microplastics found in compost. 
These records are consistent with the plastic demand of 
Europe [118]. Although scarce, evidence indicates that 
the application of compost transports microplastics to 
arable lands.

Manure
Manure is an unexplored way for microplastics to enter 
soils. After all, how do microplastics get into manure 
in the first place? The only study published so far was 
from March 2021 [176]. The authors do not provide any 
clue about the pathway that microplastics may follow 

before reaching the manure. However, they report that 
almost double the amount of microplastics were found 
in soil samples from fields fertilized with pig manure 
for 22 years. The authors indicate that the annual mean 
of microplastics in manure was 1250 ± 640 MP particles 
per kg of dry manure. Is this a common scenario? Further 
studies are urgently needed to trace potential sources of 
microplastics in manure.

Irrigation
Zhou et al. [185] did a comprehensive assessment of agri-
cultural soils in Hangzhou Bay (China) and observed that 
irrigation water introduces microplastics to farm soils. 
It stands to reason that whenever superficial waterbod-
ies are polluted with microplastics, the plastics will reach 
agricultural soil if farmers irrigate with water from the 
polluted waterbodies. This idea aligns with the global 
plastic cycle [133], a new concept that allows a better 
understanding of the problems caused by plastic pollu-
tion. Unfortunately, little is known about the quantity of 
microplastics that might enter a field through irrigation.

Indirect sources: agriculture as a step in the plastic cycle
Unauthorized dumping and oversight
Historically, researchers have mainly focused on examin-
ing the effects of plastic contamination arising from gen-
eral littering, plastic waste dumping, and inappropriate 
management of landfill sites [38]. The disposal of plas-
tic at unauthorized sites has been considered one of the 
biggest pathways for microplastics to enter the environ-
ment [71]. It is not a pathway that is expected to directly 
impact agricultural soils, since unauthorized dumping 
most often happens in the wilderness. However, trans-
port agents might transfer the plastics to agricultural 
land by one of the processes detailed in the following 
sections.

Baensch-Baltruschat et al. [6], wrote about microplas-
tics originating from tire and road wear moving into 
adjacent places, reporting 1400–2800 tonnes per acre.

Biotic microplastic transport
Plastic transportation via soil invertebrates
Microplastic transport by soil organisms (Fig. 2) strongly 
depends on the size of the microplastics and the size of 
the organisms that are in contact with the microplas-
tics. Small particles are moved or transported more eas-
ily than bigger particles, and small organisms will also 
enhance MP transport easier than bigger or more evolved 
organisms (i.e., we hypothesize > transport in unicellu-
lar organisms than in pluricellular organisms). Different 
transport processes that occur in multicellular organ-
isms, invertebrates and vertebrates are explored below.
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Microplastic transport via electrostatic attraction, cutaneous 
adhesion, and soil organisms biogenic structures
Dong et  al. [35] pointed out the strong electrostatic 
attraction forces of small plastic particles, which pro-
motes aggregation among particles. No information 
was given as to how electrostatic attraction forces exist 
between invertebrate tissues and plastic particles. 
According to Liu et al. [95], the electrostatic forces pre-
sent on plastic particles increase as plastics age. More 
studies are needed to understand how these electrostatic 
forces affect transport processes involving invertebrates 
in the soil. It is worth noting that because of the long 
history of plastic use, most plastic particles in the soil 
have aged over time, and, therefore, might have higher 
electrostatic forces than pristine microplastics. When 
microplastics are aggregated, they are easily moved by 
invertebrates, such as springtails [100]. Aged micro-
plastics are colonized by microorganisms. It has been 
hypothesized that these microplastics could be more pal-
atable to soil invertebrates [58] making them more likely 
to be transported (Fig. 2). Scarce information is available 
to help us better understand how microplastic transport 
is affected by electrostatic attraction and soil organisms. 
A combination of electro-charges are involved and these 
interactions are dependent on soil texture, water avail-
ability and pH.

Cutaneous transport is related to the transport of 
plastic particles on the surface of external invertebrate 
tissues. It is important to clarify that this review will 
not address human cutaneous-skin transport (due to 
the presence of plastic particles in cosmetics and per-
sonal care products). Rillig et  al. [131] explained how 
earthworms can transport microplastics on their skin 
(cutaneous transportation), when exposed to high micro-
plastic contamination. Earthworms transport plastics 

from hotspots into their galleries, effectively transport-
ing plastic particles from the soil surface into deeper soil 
layers.

We know how earthworms such as Lumbricus terrestris 
drag soil and mechanically introduce plastic particles 
into the soil by pushing them [182] and how springtails 
move microplastic particles one by one [100]. It is impor-
tant to emphasise that more research is required to better 
understand how different soil organisms introduce and 
transport microplastics in soil.

The most well documented form of microplastic trans-
portation in the terrestrial environment by invertebrates 
is through ingestion, which has been observed in earth-
worms (L. terrestris and E. fetida, Huerta Lwanga et  al. 
[66], Rodriguez-Seijo et al. [135], snails (Song et al. [149], 
lepidoptera and coleoptera larvae [139], nematodes [84], 
[91]), enchytraeids, isopodes, and mites [144]. The trans-
portation and impact of plastic particles are dependent 
on a particle’s size, shape and polymer type [89].

Also, in earthworms, researchers have observed how 
microplastics accumulate in biogenic structures, such as 
casts and midden ([131, 66, 67], Fig. 2). These aggregated 
structures need to be taken into account when consider-
ing further transport of plastic debris. More research is 
needed to clearly understand how this process occurs 
with respect to different soil types, sorts of plastics and 
soil management practices (i.e., tillage vs no tillage).

MP transport by terrestrial vertebrates
The transport of MP by terrestrial vertebrates has not 
been well documented. For aquatic environments, 
we have clear examples of how MP are transferred 
from one trophic group to another, with a greater 
accumulation of MP at higher trophic levels. For the 
terrestrial system, there is one study that looks at 
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microplastic contamination and chickens found in home 
gardens. Chickens were allowed to roam in an area con-
taminated with MP. The animals ingested MP either 
directly from the soil or indirectly by consuming con-
taminated earthworms [68]. Another study focused on 
sheep in an agricultural setting, where plastic mulch frag-
ments were found. The sheep ingested the plastic frag-
ments and transported them to natural habitats, where 
they then defecated [14], and thus, deposited the ingested 
microplastics.

Studies of other ungulates, such as deer in nature 
reserves, have reported how these animals are contami-
nated with MP [126] and transport them in their faeces. 
Another vulnerable group are birds. Terrestrial birds 
living in or near cities ingest plastic particles as they 
forage for food and also use plastic particles as decora-
tions in the construction of their nests [145]. Interest-
ingly, the presence of nest decorations are indicators of 
environmental quality [145]. Carrion-eating birds such 
as vultures have transported microplastics from rubbish 
dumps to their nesting sites [8]. However, there are no 
studies looking at the transport of MP from agricultural 
areas to terrestrial bird nests, and therefore, more studies 
are required.

Flux of MP transport by soil organisms
In this section, biotic transportation flux is defined as 
the time required for an organism to ingest, assimilate, 
and excrete microplastic particles. The biotic transporta-
tion flux is dependent on the type, size and shape of the 
plastic particles: smaller particles will be more rapidly 
transported by smaller organisms. Invertebrates will be 
faster or will have higher transport flux rates than verte-
brates (Fig. 3). In fact, there are several factors that play 

an important role in the biotic transportation flux of 
microplastics, such as the bioaccumulation or non-bio-
accumulation of plastic particles in organisms, the time 
of exposure, the inherent defence mechanisms that each 
organism may have, the time that these plastic particles 
remain in the body of the organism, etc. So far, there has 
been no study that incorporates all of these influencing 
factors in examining the relationship between the trans-
port and accumulation of plastic particles in inverte-
brates or vertebrates. Take oil-based microplastics as an 
example for one of these studies. If we expect that oil-
based MP will not accumulate in organisms as easily as 
biobased MP, we can expect that oil-based plastics would 
be transported more. There are, as of yet, no studies that 
analyse this hypothesis.

Abiotic transport of microplastics
Plastics have a long residence time in soils [150, 152]; 
therefore, it is highly likely that soils act as long-term 
sink for MP debris [63]. The transport of plastic on land 
is poorly understood and site-specific work is required to 
quantify the magnitude and timing of plastic redistribu-
tion on land [63, 90]. The processes, i.e., redistribution 
in the soil profile and transport to groundwater as well 
as wind and/or water erosion, runoff [109] and the main 
drivers (e.g., topography, land use, climate, vegetation, 
particle shape and size [63, 90] are poorly understood. In 
this review, we examine the transport of MP by wind and 
water, focussing on the agricultural site scale.

MP Transport by water in the soil profile
Apart from the active or passive transport of MP in soils 
by soil organisms, MP can be transported down to deeper 
layers in a soil profile with percolating water. Leaching of 
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MP through the soil matrix is limited and depending on 
the size and shape of MP as well by the matrix pore size 
distribution. MP particles can be transported faster and 
deeper into the soil profile through preferential flow in 
macropores, such as cracks or biopores [178, 188]. The 
depth to which the MP particles can then be transported 
is likely to depend on the depth distribution and connec-
tivity of the macropore network. Where the macropores 
end the MP particles will likely again be limited in their 
further downward leaching by the pore size distribution 
of the matrix.

MP can affect soils through physico-chemical changes 
on soil texture and structure [122], which is consequen-
tial for water cycling and ecosystem functioning in ter-
restrial systems and diverse plant–soil feedbacks [13, 
152].

While the water can be a means of transport for MP, 
at the same time the MP particles may affect the soils 
through physico-chemical changes, on soil structure and 
texture and thereby influence the processes of water flow 
[122] and ensuing MP transport. On the one hand when 
MP become embedded inside soil aggregates [131], their 
transport will be restricted. On the other hand the soil 
structure might lead to increased preferential flow. For 
clayey and silty loam soils Zhang et  al. [184] and Wang 
et al. [165] found that MP fibers increased the formation 
of larger aggregates, with large pores and little amount of 
small pores, without altering soil bulk density or the satu-
rated conductivity. In line with this, Jiang et al. [72] found 
that the presence of residual plastics film fragments 
resulted in a lower bulk density and higher porosity, 
increasing consequently the heterogeneity in the infiltra-
tion pattern in field soils. Wan et al. [164] found that MP 
in soil increased the evaporation rate and thereby also 
increased the shrinkage of clay soils. This may lead to 
strong water shortage and more preferential flow through 
cracks, potentially resulting in a large vertical transport 
of MP to deeper layers. Seemingly contrasting to this 
De Souza Machado et al. [152, 151] found an increasing 
water holding capacity with increasing concentrations 
of polyester fibres, and decreasing water stable aggre-
gates; however, they found no significant changes in soil 
hydraulic conductivity.

In line with Wan et  al. [164], O’Connor et  al. [111] 
found that it is not the volume of water which passes 
through a sandy soil column in laboratory which deter-
mines the MP transport in depth, but rather the number 
of drying and wetting cycles. Although a sandy soil will 
not experience shrinking like a clay soil, the importance 
of drying and wetting cycles points out that hydropho-
bicity of the MP and matrix with the resulting preferen-
tial flow might be a trigger for the increased transport. 
Dong et  al. [36] studied the effect of different chemical 

factors on the soil solution, such as electrolytes, pH and 
humic acids, on MP transport. They concluded that the 
transport was determined more by the size and shape of 
the MP than by the chemical factors.

In agreement with the above, according to Blasing and 
Amelung [18] most MP (especially > 1  μm) are filtered 
out in soils and can remain in soils for decades. How-
ever, as colloidal transport can take place along macropo-
res [11], with first-flush and wet and dry cycles as found 
by O’Connor et  al. [111] being important triggers for 
deeper transport. MP transport to (shallow) groundwater 
might occur in case macropores reach the groundwater 
level. MP fibers have been found in karst systems [115], 
which are known to be vulnerable for pollution, due to 
their well-connected large pore/fissure systems. As karst 
systems constitute about 25% of global drinking water 
sources, this is a matter of concern [115]. However, to 
our knowledge, no MP have been found in other groud-
water sources, although there are several calls to monitor 
groundwater for MP contamination [69, 82, 127]. Mint-
enig et al. [106], and Su et al. [154] found very low con-
tamination of drinking water coming from groundwater 
and concluded that this contamination occurred during 
transport.

Although transport of MP to deeper layers is probably 
limited in most soils and degradation of buried MP in 
soils is known to be slow [87], it is important to keep in 
mind that after degradation to nanoplastics the transport 
of the particles to deeper layers and groundwater will 
likely increase, as nanoparticles might leach through the 
soil matrix more easily.

The conclusion by Rillig et  al. [131], that dedicated 
experiments in the lab, and eventually in the field, are 
urgently needed to estimate rates of MP particles move-
ment and to disentangle the relative roles of the various 
factors potentially influencing that movement, still holds.

Transport by overland flow and erosion
Transport of plastics is likely to take place over the soil 
surface due to runoff and water erosion (for wind ero-
sion see Sect. 4.3 below), following the hydrological and 
sediment transport pathways determined by topography, 
surface morphology, land use, etc. [173]. Runoff is gen-
erated via two main processes: (i) Hortonian, or infiltra-
tion excess overland flow, where the rainfall intensity 
exceeds the infiltration capacity of the soil and (2) satura-
tion excess overland flow, where the soil is saturated with 
water and cannot store anymore rainfall. Plastics may 
have an indirect effect on runoff production and erosion 
by changing the soil properties that affect runoff genera-
tion and erodibility, such as infiltration capacity, water 
storage capacity, hydrophobicity, and aggregate stability, 
as explained in 4.1.
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The increasing water holding capacity found by De 
Souza Machado et al. [24–151] with increasing concen-
trations of polyester fibres, and decreasing water stable 
aggregates, might affect erodibility. De Souza Machado 
et  al. [150, 152] found no significant changes in soil 
hydraulic conductivity, an important factor for run-
off generation and erosion. Qi et  al. [122, 123] found 
an increase in pH and a decrease in EC in pot experi-
ments. However, most studies were conducted using con-
trolled pot experiments, effects in field situations remain 
under-studied.

The results of the first investigations on the influence of 
microplastics on soil hydrological processes indicate that 
more extensive studies and more field studies, in particu-
lar, are needed to quantify the effect of MP on soil prop-
erties. Researchers also need to investigate how these 
changes in soil properties, in turn, lead to changes in 
runoff generation and transport of MP with runoff water 
and erosion. In case runoff is generated, the transport of 
microplastics with the runoff water is likely to depend on 
the degree to which the MP are captured in aggregates, 
the stability of the aggregates, and the density and hydro-
phobicity of the microplastic particles.

The transport of plastic on land, however, is still poorly 
understood and site-specific work is required to quantify 
the magnitude and timing of plastic redistribution on 
land and transport from the terrestrial system to surface 
waters [63, 90]. We found only one very recent publica-
tion on soil erosion as a transport pathway of MP from 
agricultural soils: Rehm et al. [128] carried out a rainfall 
simulation experiment in Southern Germany and con-
cluded that arable land, susceptible to soil erosion, could 
be a substantial source of MP for downstream aquatic 
ecosystems. Windsor et  al. [173] used a hydrological 
catchment as a well-defined unit of analysis for plastic 
pollution review, but concluded that sources, fluxes and 
sinks in catchments are poorly quantified. Thus, although 
the pathway for the transport of microplastics with run-
off and soil erosion has been often mentioned (e.g., [63, 
114, 173], actual empirical evidence supporting this phe-
nomenon is still lacking [18, 173]. While Nizzetto et  al. 
[109, 110] presented a hypothetical modelling study on 
the catchment-wide transport of plastics with sediment 
(see Sect.  5 below), studies directly investigating this 
transport, be they laboratory (e.g., rainfall simulation or 
flume studies) or field studies, are very scarce (but see 
[128]. Consequently, there is a very clear gap in research 
on the processes, magnitude, timing and drivers of plastic 
transport via runoff and erosion on land.

When considering a larger area than agricultural fields 
or landscapes, indirect evidence of microplastic trans-
port by erosion comes from microplastics found in 
sedimentary environments, such as channel beds and 

alluvial fans as well as lake shores and beach sediments 
[114]. However, researchers mainly focus on relatively 
large catchments and/or stretches of rivers in their stud-
ies, and pollution sources are often urban areas (e.g., [40, 
63, 83, 134]. Studies rarely look at the contribution of 
agricultural catchments. Lutz et al. [98] investigated the 
transport of MP in sediments from stormwater drainage 
systems in Australia, where fewer MP were found in an 
agricultural catchment as compared to an urban catch-
ment. Liu et al., [97] found a large variation in MP occur-
rence in stormwater retention ponds but focused on 
ponds draining residential areas and highways.

Wind erosion transport
Light polymers could be transported by wind erosion 
across soil systems [63] and eventually toward streams 
and rivers. Especially in areas prone to wind erosion, 
plastic particles can be easily picked up by the wind and 
find their way into the atmosphere, affecting the qual-
ity of the air we breathe. The increased aridity that will 
be enhanced by climate change in many regions of the 
planet will make soils more vulnerable to wind erosion. 
Since a significant part of the affected wind-prone areas 
are used for agricultural purposes and agricultural soils 
can act as long-term sinks for microplastics [130], wind 
transport of microplastics could result in environmental 
and human exposure occurring far beyond the original 
source. Importantly, aeolian transport of microplastics is 
likely to lead to the widest dispersal as it is the least lim-
ited by environmental boundaries, influenced mainly by 
the directions of air movement rather than the unidirec-
tional water flows that are generally present on land and 
within waterbodies.

Zylstra [189] revealed the role of wind action in spread-
ing light macroplastic particles to other terrestrial loca-
tions. He quantified wind-dispersed trash and plastic 
debris in a protected desert area in Southern Arizona 
which could pose a threat to those arid environments. He 
indicated that trash densities were largely independent of 
road proximity, suggesting that wind could carry plastic 
bags and balloons > 2 km into remote areas.

Knowledge of the transport of MP with soil wind ero-
sion is sparce because of inadequate research. Rezaei 
et  al. [129] first revealed the key role of wind erosion 
in the spread of MP in terrestrial environments using 
a portable wind tunnel in the field. They reported that 
wind-eroded sediments from both agricultural and natu-
ral lands were enriched with microplastics. Bullard et al. 
[23] went one step further and explored the extent to 
which MP were preferentially transported by wind ero-
sion. They conducted laboratory wind tunnel experi-
ments and concluded that MP shape was an important 
factor in such transportation. They also reported that 



Page 12 of 20Lwanga et al. Chem. Biol. Technol. Agric.            (2022) 9:20 

the inclusion of MP did not significantly affect the wind 
erosion threshold. This is a principal factor for investi-
gating the effect of MP on soil erodibility. Interestingly, 
their results showed that the enrichment ratios of plastic 
particles did not demonstrate any significant or system-
atic variability with distance downwind (over 2 m) which 
suggests once entrained into the air flow, particles may be 
transported away from their source.

Apart from research on the wind erosion transport 
of MP, there are several studies on the presence of MP 
in the air. However, most of the studies on airborne MP 
are mostly conducted within cities or indoors, where 
there are other sources of MP rather than agricultural 
soils, such as synthetic clothing, anthropogenic activi-
ties, and fragmentation of large plastics. Therefore, the 
contribution of agricultural soils to MP air pollution is 
largely unknown. Recently, Peñalver et al. [116], quanti-
fied polystyrene microplastics in the atmosphere near 
an agricultural area (36  ng  m − 3). Better quantification 
and understanding are still required, since there is a high 
chance of adsorption of other pollutants (e.g., pesticides) 
from agricultural soils to MP [9] [2, 61]. There is a major 
knowledge gap regarding the concentration and transport 
of MP in different fractions of particulate matter (espe-
cially PM10 and PM2.5). These particles are tiny and can 
be easily inhaled, posing a severe threat to human health 
depending on the chemical composition of the particles 
and the susceptibility of each individual [80, 119].

Modelling microplastic transport in terrestrial 
environments
Various types of models exist that are applied to the 
analysis of microplastics, including (i) process-based 
transport models that aim to simulate MP transport in/
through the terrestrial environment (e.g., [85], Nizetto 
et al., 2016a), (ii) models to map and analyse the spatial 
distribution of MP in the soil/landscape and understand 
microplastic transport (e.g., [78, 181, 183] and (iii) con-
ceptual models that provide a methodological basis for 
further investigation and risk assessments that summa-
rize and synthesize existing (and missing) research (e.g., 
86, [162].

Process-based modelling of plastic transport has 
been done for riverine systems (e.g., [85] [16] and for 
transport from rivers to oceans (e.g., [172]. The first 
and only process-based MP model, as far as we know, 
that assessed catchment-scale plastic transport with 
sediment is INCA-Contaminants [109, 110]. This 
model aims to simulate the mechanisms of plastic stor-
age, entrainment and deposition in soils and streams 
as a function of hydrological and pedological factors. 
However, due to the lack of empirical data on plas-
tic emissions and concentrations in soils and streams 

[109, 110] could only present the model as a theoreti-
cal assessment. They found that size, in contrast to den-
sity, appears to be a more sensitive parameter and that, 
depending on soil characteristics and precipitation 
patterns in sub-catchments, 16–38% of plastics added 
to the soil with sludge were predicted to remain in the 
soil. Unice et al. [159, 160] assessed the fate of tire and 
road wear particles (TRWP) in the Seine basin using 
an integrated geospatial microplastic transport model. 
Based on these (preliminary) modelling results and 
attempts, conclusions and recommendations by vari-
ous authors (e.g., [20, 109, 110, 174]) can be summa-
rized as (i) it is challenging to cope with the lack of data 
on the quality and quantity of microplastic input into 
the environment—with the related recommendations 
for dedicated experiments and monitoring studies, (ii) 
there is a lack of understanding about the transport 
processes of microplastics in terrestrial ecosystems and 
the related need for mathematical equations for MP 
transport—different than existing transport equations 
for sediment transport, as underlined by Rehm et  al. 
[128] and (iii) there is a lack of knowledge concerning 
the behaviour of MP microplastics in different envi-
ronmental compartments, such as accumulation rate, 
fragmentation rate and (bio)degradation rate and their 
influence on the further fate of the MP. Brandes et  al. 
[19] also concluded in their synthesis report with seven 
different models of microplastic transport from agri-
cultural fields to rivers in Germany.

A second application of modelling involves studies 
that aim to predict and explain the MP transport in(to) 
the environment based on spatial mapping with statis-
tical models and proxy data. For example, Kawecki and 
Nowack [77, 78] mapped the emissions of macro- and 
microplastics for seven polymers in Switzerland, based 
on a complete analysis of the flows from production and 
use to the end-of-life using probabilistic material flow 
analysis (PMFA), including a systematic uncertainty 
analysis and propagation using Monte Carlo simula-
tions. For this type of modelling, a transfer coefficient 
(C) matrix describes all the flows from one process to 
another. Input vectors quantify all the external inputs 
to the defined system [77]. Using this analysis, Kawecki 
and Nowack [77] concluded that littering is the leading 
emission pathway and, given that mass flows of MPs into 
soils are predicted to be 40 times larger than those into 
water, more attention should be placed on this compart-
ment. In a follow-up study, Kawecki and Nowack [78] 
produced a high-resolution spatial map of macro- and 
microplastic emissions for soil, freshwater and air using 
geographical data sets on land use, traffic, population 
density, WWTPs and sewer overflows as proxies. Zhang 
et al. [181, 183] used spatial distribution mapping of low 
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density microplastics and macroplastics to infer the main 
transport mechanisms of microplastics on the farmland 
scale.

A third way of using models in MP-related analyses 
is to use conceptual models to summarize and synthe-
size existing information and identify knowledge gaps. 
Waldslaeger et  al. [162, 163] applied the Source–Path-
way–Receptor (SPR) model to compile current knowl-
edge on plastic pollution. It provides a system model for 
the evaluation of MPs in different environments with 
regards to the individual components and their inter-
relationships, combining the transport pathways with the 
receptors to assess consequences of MP in the environ-
ments [163]. They first identified and defined the sources 
(generation and production sites) and entry paths, then 
described the transport pathways between and within 
several compartments (e.g., aquatic, terrestrial, aerial), as 
well as concentrations observed in these compartments, 
and finally, receptors were defined as all media that were 
impacted by the pollutant [165]. The authors concluded 
that a model such as SPR can be further elaborated and 
used to implement controls to reduce MP pollution most 
effectively. Koutnik et al. [86] studied the spatial distribu-
tion of microplastics and showed that the microplastic 
concentrations were high in urban soil/ water as well as 
on remote lying glaciers, which shows that wind-driven 
transport is also significant. They subsequently derived 
theoretical models to predict microplastic transport.

The impact of other stressors in MP transport
MP behave differently when combined with other stress-
ors (i.e., chemicals and pathogens) that are also com-
monly present in the soil from the plastisphere [4, 131]. 
To understand the interactions that take place among MP 
and other stressors, it is important to first understand 
certain phenomena, such as sorption and desorption.

Sorption is, by definition, the process of transfer of 
a substance from a fluid phase such as air or water, to a 
solid phase such as plastic, soil organic matter or organ-
isms’ tissues [42]. Desorption is the reverse process. The 
term “sorption”, covering both adsorption and absorption 
processes, can be seen as a balance between the affinity 
of a chemical with the mobile phase and the available 
solid phases. Different chemicals have been reported to 
adsorb to MP, some at very high levels [102]. Consider-
ing the transport of MP previously presented, MP-facil-
itated transport of toxic chemicals to other areas and 
compartments as well as changes in the accumulation 
and toxicity of the transported chemical substances must 
be considered. This scenario becomes even more com-
plex when MP co-exist with multiple chemicals and with 
microbial adipate–co-terephthalate (PBAT films that 
were incubated in an agricultural soil in the laboratory 

(6  weeks,temperature of 25  °C, from Sander [140]. The 
images illustrate colonization of PBAT films by both 
fungi and unicellular organisms. Images in panels a) and 
c) were taken at different spots on the PBAT film surface. 
Panels b) and d) show magnifications of areas highlighted 
inpanels a) and c). Pathogens (fungi and bacteria), or 
when MP additives desorb and act as contaminants [24, 
59]. Therefore, it is crucial to address the factors affecting 
chemical and microbial associations with plastics and the 
implications of these associations.

Sorption of contaminants onto plastic depends on the 
properties of the plastic and the contaminant as well as 
the surrounding environment (Fig.  4). One of the most 
important factors in MP-contaminant/pathogen sorp-
tion processes relate to the contact surface of plastics 
(debris size). The contact surface depends on the size of 
the plastic debris and on its molecular chain arrangement 
(polymer crystallinity). The molecular chain arrange-
ment varies for different polymer types but can also 
vary for the same polymer, depending on the produc-
tion process [136]. The molecular chain arrangement 
can create porosity in the polymer structure. For exam-
ple, Seidensticker et  al. [142] measured a pore size of 
about 195 Angstrom for Polystyrene, while Polyethylene 
was observed to be non-porous. Higher porosity means 
a greater contact area with the contaminant and, there-
fore, more sorption. In addition, the type of polymer 
influences the type of interaction with the contaminants, 
i.e., potential hydrogen bonds, covalent bounds, Van der 
Waals forces and electrostatic interactions. The aging of 
plastics also affects the chemical structure of the poly-
mer and, therefore, the sorption processes. For example, 
Weng et al. [171] showed that aged polybutylene adipate 
terephthalate was able to form hydrogen bonds with 
organic chemicals [171]. A second example is the higher 
concentrations of heavy metals (As, Ti, Ni and Cd) in 
environmentally weathered plastic debris as compared to 
new plastics, probably because of increased levels of oxi-
dation in the environmental plastic [121].

The chemical structure of the contaminants also plays 
a determinant role in the sorption process. Hydro-
phobicity, for instance, can be seen as the main factor 
in explaining the sorption of organic contaminants to 
plastic [5]. Hydrophobicity is often measured with the 
octanol–water partition coefficient (log P), and contami-
nants with higher log P are, in general, more susceptible 
to sorption [5, 53]. However, for organic contaminants, 
log P is not enough to predict the sorption on plastic [15]. 
For example, the solubility in the liquid phase also plays 
a major role (Guo et  al. 2000), which will be influenced 
by the affinity of the contaminant with other dissolved 
substances [46]. For metals, the potential to form a com-
plex with the plastic reactive groups, such as hydroxyls, 
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amines, thiols, and carboxylic acids, appears to be a 
determinant factor (Abdolahpur [108, 132].

Finally, all the sorption processes are inevitably influ-
enced by the properties of the medium, especially pH and 
salinity for water [102]. Electrical conductivity and ionic 
strength can play a role as well [42, 142]. Medium charac-
teristics also influence the sorption to other phases, such 
as the soil organic matter, the soil particles or the organ-
isms’ tissues [167, 178]. Sorption to the medium will 
compete with sorption to the liquid phase or the plastic. 
For example, in soil, an increased soil organic carbon 
content will likely increase the sorption of organic con-
taminants to the soil [47], while dissolved organic matter 
and dissolved humic acids will likely increase the solubil-
ity of the same contaminants in the soil water solution 
[138]. The complexity of the interactions is highlighted by 
Gaonkar et al. [46] who studied the impact of soil organic 
amendments on sorption of organophosphate pesticides. 
No clear correlation between increases in soil organic 
carbon and pesticide sorption could be established but 
the study confirmed that dissolved organic matter and 
dissolved humic acids caused greater solubilization of 
chlorpyrifos.

In addition to the chemical contaminants previously 
considered, microorganisms can also be found on the 
surface of plastic [4, 102, 137]. Microorganisms can 
use the plastic debris as a surface to colonise and/or as 
a source of nutrients (e.g., plastic degrading bacteria; 
[161]. The colonisation of plastic can result in biofilms, as 
aggregates of cells within a matrix of extracellular poly-
meric substances. The plastic properties, such as the type 

of polymers and the porosity are crucial for the devel-
opment of biofilms [161]. Some adsorbed microorgan-
isms produce enzymes (e.g., hydrolases) as EPS that can 
degrade the polymer [140]. This is the case for designed 
biodegradable plastics which are more easily degraded by 
the microorganisms. Microorganisms attached to plastic 
can also be pathogens for other organisms [4]. When MP 
degradation takes place, more MP transport occurs by 
water through preferential flow [179].

Transport of pollutants attached to MP from the source 
to other environments/ organisms
When attached to MP, chemical contaminants and 
pathogens can be transported with MP and contami-
nate other environments (i.e., effect of polystyrene and 
chlorpyriphos on Oncorhynchus mykiss, or the effect of 
polyethylene and abamectin on zebrafish, [55, 73]). For 
soil, there are several studies on the transport of con-
taminants associated with MP, most of them on simula-
tions under porous media conditions [70]. The transport 
of the herbicide glyphosate was higher in soil with addi-
tions of MP, for instance [177]. However, transport seems 
to be compound specific. Hüffer et al. [70] observed that 
the presence of PE MP in soil increased the mobility of 
atrazine and 4-(2,4-dichlorophenoxy) butyric acid, while 
Liu et  al. [96] reported that nano-plastic significantly 
enhanced the transport of pyrene and 2,2’,4,4’-tetra-
bromodiphenyl ether compounds but saw no effect on 
the transport of bisphenol A, bisphenol F, and 4-nonyl-
phenol. However, due to soil properties, such as poros-
ity, organic matter, humic acid and aggregate structure, 

Fig. 4 Summary of the main plastic, chemical pollutants and medium properties involved in sorption processes. EC electric conductivity, OM 
Organic Matter content, CEC cation exchange capacity
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contaminant transport and dispersion also depends on 
the adsorption capacity of the contaminant in soil or on 
the surface of micro/nano-plastics [7]. Furthermore, the 
aging effects of plastic particles and contaminant prop-
erties, such as degradation, would also affect combined 
MP—contaminant transport capacity in or through a 
soil profile, considering different soil textures and plastic 
types. Unfortunately, the detailed transport mechanisms 
of contaminants combined with micro/nano-plastics are 
still insufficiently understood, especially the possibility of 
combined substance transport to plants [92], as well as 
MP–microbe interactions [168]. There is evidence that 
plastic debris carries pathogens [103, 157]. Therefore, MP 
particles might facilitate contaminant transport in envi-
ronmental systems, but further studies are needed.

Perspectives
Even though this review does not discuss the risk assess-
ment of MP transport on human or environmental 
health, we know that soil diversity decreases with micro-
plastic exposure [150, 152], that plants are affected [124] 
by the type and size of microplastics [48], and overall, 
that MP move horizontally and vertically from one site to 
another. Prata et al. [120], clearly reported how humans 
are infested by microplastics and nanoplastics through 
ingestion (by water or food contaminated with MP), 
direct skin contact (via personal hygiene products that 
carry plastic particles), and through inhalation (when 
micro- or nanoplastics are carried by wind and then 
inhaled). Studies by [158] and [44] indicate how deriva-
tives of plastic particles, such as phthalates, produce 
endocrine disruptions in men and women. Therefore, 
more investigations are needed in relation to the trans-
port of MP in the terrestrial system, for environmental 
and human sake.

Conclusions
MP transport in agricultural systems drives the need to 
understand the interconnections that occur at different 
scale levels, involving time of exposure, land management 
[compost or mulch use (direct sources)], interactions 
with agrochemicals, such as pesticides (other stressors), 
and soil characteristics as well as the size, shape and type 
of plastic (bio or oil based).

Biotic and abiotic transport occur after plastic is frag-
mented in the soil. For instance, a farmer might trig-
ger the fragmentation of plastic by ploughing the soil, 
leaving the plastic pieces exposed to UV rays, wind 
and water which causes them to fragment into smaller 
pieces. MP transport occurs as vertebrates, together 
with macro-, meso- and micro-invertebrates, ingest 
and transport the MP. Anecic invertebrates move 
MP into deeper soil layers as they move inside their 

biogenic structures, or middens. MP are carried by 
water and preferential flow into the groundwater and 
beyond. Imagine, MP could be ingested by earthworms 
or snails, which could then be consumed by chickens, 
sheep or deer, which could ultimately be consumed by 
humans. Some microplastics take a different route and 
spread abiotically through wind erosion. If there is a 
strong soil affectation, these plastic particles can move 
long distances, from the lithosphere into the atmos-
phere and to the hydrosphere. There are models that 
can predict MP movement from agricultural sites to 
fresh water. However, we still need to understand how 
all these interactions take place under different agri-
cultural conditions and how different soil characteris-
tics and kinds of plastics affect the movement of plastic 
particles through the environment.
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