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Abstract 

Pesticides are classified into several groups based on their structure, including fungicides, insecticides, herbicides, 
bactericides, and rodenticides. Pesticides are toxic to both humans and pests. For pest control, a very small amount of 
pesticides reach their target pests. Therefore, nearly all pesticides move through the environment and exert adverse 
effects on beneficial biota and public health. These chemicals pollute the water, soil, and atmosphere of the ecosys-
tem. Agricultural workers in greenhouses and open fields, exterminators of house pests, and workers in the pesticide 
industry are occupationally exposed to pesticides. Pesticide exposure in the general population primarily happens 
through the consumption of food and water contaminated with pesticide residues; however, substantial exposure 
can also occur outside or inside the house. Currently, intelligent, responsive, biodegradable, and biocompatible 
materials have attracted considerable interest for the formulation of green, safe, and efficient pesticides. It was indi-
cated that utilizing nanotechnology to design and prepare targeted pesticides with an environmentally responsive 
controlled release via chemical modifications and compounds offers great potential for creating new formulations. 
Furthermore, biopesticides include microbial pesticides, which are naturally happening biochemical pesticides. In 
addition, pesticidal substances generated by plants with added genetic materials, i.e., plant-incorporated protectants 
(PIPs), have emerged. Based on the foregoing evidence, various types of pesticides are summarized in this review for 
the first time. Here, new pesticides including nano-pesticides and biopesticides are discussed while focusing on the 
most recent findings on targeted and safe nano-formulated biopesticides and nano-pesticides.
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Introduction
Pesticides are chemicals that can be used to control pests 
and prevent plant diseases. Organophosphates, chlorin-
ated hydrocarbons, carbamates, and carbamide deriva-
tives are the most common active ingredients (AIs) in 
these substances [1]. These compounds are commonly 
used in veterinary medicine, agriculture, and health. 
They can harm humans and animals via skin absorption, 
inhalation, and dietary intake, as well as contaminating 
the environment [2]. Improper use of pesticides in agri-
culture leads to changes in the level of antioxidant and 
oxidant enzymes in the human body, and thus results in 
the development of diseases caused by oxidative stress 
[2–5].

Traditional pesticide formulations have a variety of 
limitations, including high organic solvent content, 
dust drift, low dispersibility, the ability to last in the soil 
for an extended period, and other similar drawbacks. 
Due to these limitations, the majority of pesticides are 
released into the air, with only 1% remaining on sur-
faces. This inefficiency leads to severe pollution of the 

environment. Therefore, pesticide waste, manufactur-
ing costs, and environmental emissions should all be 
minimized in addition to extending the period in which 
pesticides are active on crops [6].

Some pest-control researchers are concentrating 
their efforts on creating non-toxic alternatives to syn-
thetic chemicals for pest and disease control. One of 
these alternative methods is the use of biopesticides 
[7]. Biopesticides, also known as "biological pesti-
cides", are used to control plant pests as an alternative 
for chemical pesticides [8–10]. The following are the 
key advantages of biopesticides as natural compounds 
over traditional pesticides: (i) lower toxicity; (ii) exclu-
sively affecting the pest in question and closely related 
species; (iii) high potency in small doses; (iv) rapid 
decomposition; and (v) low exposition with almost no 
emission issues [11].

Another topic of debate regarding biopesticides is the 
use of nanotechnology, which has given new properties 
to old materials [8, 10, 12–14]. Nano-materials have 
significant applications in fields such as pharmacology 
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and biology, because their physical and chemical prop-
erties differ from those of macro-materials. Nano-
materials are distinguished by their surface properties, 
small scale, and quantum size effects. The use of nano-
materials and the developments in pesticide formula-
tions have increased significantly in recent years [13]. 
Nano-carrier materials also prevent AIs from degrad-
ing and allow for a controlled release [15].

Pesticides
Types of pesticides
The purpose of pesticide production is to remove pests 
and weeds. Farmers use pesticides to protect and enhance 
the quality of their crops [16]. As shown in Fig.  1, pes-
ticides are divided into five groups based on their struc-
ture: fungicides, herbicides, insecticides, rodenticides, 
and bactericides [17].

Fungicides
Fungicides are pesticides that protect plants against 
fungal diseases by killing or incapacitating fungi. From 

1940 to 1970, fungicides with new chemical structures 
were introduced (Fig.  2), including dithiocarbamates 
and phthalimides (organic chemicals), which were more 
active, less phytotoxic, and easier to prepare than the 
previously known inorganic fungicides. The fungicides 
mancozeb and chlorothalonil, known as protective fungi-
cides, were also made during this period. Systemic meth-
ods as well as foliar and seed treatment were developed 
in this decade. Experiments were switched from in vitro 
to in vivo, and new products were tested in vivo [18].

Fungicides have evolved since the 1970s. During this 
period, more attention has been paid to the environment 
and human health, and in 1993, the European Union 
passed a law, according to which the produced fungicides 
had to be certified safe by the Union. A list of these fungi-
cides is given in Fig. 3 [19].

During 2005–2021, attempts were made to pro-
duce fungicides that reduce the negative effects of 
artificial factors such as waste, resistance, and envi-
ronmental pollution. In this regard, fungicides that was 
made may be selective effective, biodegradable, and less 

Fig. 1  General classification of pesticides based on target organism
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environmentally toxic [20]. Several classes of fungicides 
introduced in this period. For instance, multi-site inor-
ganic salts, organic compounds with protectant action, 

and single-site systemic fungicides with curative activ-
ity [21]. However, the latest discovery is succinate dehy-
drogenase inhibitor (SDHI) fungicides. SDHI are active 

Fig. 2  Key classes of fungicides introduced between 1940 and 1970

Fig. 3  Main fungicides introduced since 1970
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components that used in fungicides to control certain 
fungi. SDHIs inhibit their growth by blocking the enzyme 
involved in cellular respiration [22]. In the next few years, 
biopesticides will probably completely replace current 
pesticides, because they are completely harmless to the 
environment and humans [23]. A list of these fungicides 
is given in Fig. 4.

Herbicides
Herbicides are used to eliminate weeds. A weed is a plant 
that interferes with the growth of crop plants and causes 
significant problems for farmers. In the early days when 
humans discovered agriculture (10,000 BC), weeds were 
removed by hand. Over time, in about 6000 BC, primary 
hand tools were used to remove weeds. In 1000 BC, oxen 
and horses that pulled harrows were employed for this 
purpose. Since 1920, with the development of the agri-
cultural industry, cultivators have been used, and in 1930 
and 1947, biological and chemical herbicides were devel-
oped, respectively [24]. A mode of action is a functional 
or anatomical change that occurs when a living organism 
is exposed to a substance. According to some articles, the 
mode of action is limited to the cellular level. A mecha-
nism of action, on the other hand, explains such changes 
at the molecular level [25]. Herbicides are divided into 
the following groups based on their mechanism of action:

Acetyl‑coenzyme A  carboxylase (ACCase) inhibi‑
tors  These herbicides inhibit the activity of the enzyme 
ACCase and are used to control weeds during the culti-

vation of broadleaf plants [26]. Aryloxyphenoxypropion-
ates (FOP) [27], cyclohexanedione (DIM) [28], and phenyl 
pyrazoline (DEN) are a few examples of these herbicides 
[29].

Acetolactate synthase (ALS) inhibitors  ALS is an enzyme 
that is involved in the synthesis of branched-chain amino 
acids (leucine, isoleucine, and valine) and the suppression 
of this enzyme causes the plant to wither and eventually 
die [26].

Root growth inhibitors  These herbicides inhibit cell divi-
sion, thus preventing root growth and development. The 
purpose of these herbicides is to block the polymerization 
of microtubules, which disrupts the process of chromo-
some segregation during mitotic division, resulting in cell 
death [26].

Plant growth regulators  This group includes hormonal 
herbicides (synthetic auxins), which are used to protect 
wheat and corn against broadleaf grasses. This group of 
herbicides targets the ATP protein pump. By activating 
this pump, the metabolism of nucleic acids and the integ-
rity of the cell wall are compromised. These herbicides are 
also called indole acetic acid (IAA) imitators [26].

Photosynthesis/photosystem II (PSII) inhibitors  The tar-
get of these herbicides is the photosynthetic pathways 
(especially the photosystem II pathway). As a result of the 
loss of chlorophyll and other pigments such as carotenoids 

Fig. 4  Main fungicides introduced between 2005 and 2021
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from the cell membrane, the production of NADPH2 and 
ATP, which are essential for plant growth, is disrupted, 
eventually leading to plant death [26].

Shoot‑growth inhibitors  These herbicides are applied to 
the soil prior to the emergence of the weeds. The func-
tional site of these herbicides is on very long-chain fatty 
acids (VLCFA) [26].

Aromatic amino acid inhibitors  This group of herbi-
cides inhibits the synthesis of amino acids. This action is 
specific to glyphosate. These herbicides destroy any plant 
they come in contact with, although they are only licensed 
for corn, cotton, canola, and soybeans. Glyphosate inhib-
its the enzyme essential for the production of 5-enolpyru-
vylshikimate 3-phosphate (EPSP), resulting in a decrease 
in aromatic amino acids, i.e., tryptophan, tyrosine, and 
phenylalanine, and eventually cell death [26].

Glutamine synthetase inhibitors  These herbicides 
suppress the activity of glutamine synthetase, which is 
involved in the conversion of glutamate and ammonia to 
glutamine, thus increasing the level of ammonia and low-
ering pH on both sides of the cell membrane. This activity 
disrupts various cellular functions, especially the uncou-
pling of photophosphorylation [26]. One example of these 
herbicides is glufosinate [30].

Pigment synthesis inhibitors  These herbicides destroy 
chlorophyll, which is essential for photosynthesis in 
plants. As a result, they cause the plant tissues to turn 
white, which eventually causes the weeds to die [26]. Some 
examples include isoxazolidinone and isoxazole [31].

Protoporphyrinogen oxidase (PPO) inhibitors  These her-
bicides damage cell membranes by inhibiting the enzyme 
PPO. This enzyme is implicated in chlorophyll and heme 
biosynthesis. Lipid peroxidation occurs following the 
inhibition of this enzyme, which destroys cell membranes 
and leads to plant death [26].

Insecticides
Insecticides are substances used to kill insects and are 
widely used in medicine, agriculture, and industry. Before 
1900, only a few chemicals were used as pesticides; how-
ever, in the early 1940s, as the Second World War raged 
on, the insecticide DDT was produced. These insecticides 
were game-changers. Since then, farmers have been using 
an ever-expanding list of insecticides to protect their 
crops. Their use has undoubtedly resulted in substantial 
increases in agricultural output and a decrease in disease 
transmission, but it has also resulted in major challenges, 
including health concerns for pesticide consumers and 

the general public, the rise of pesticide resistance, and 
environmental issues [32].

Insecticides mainly attack three targets in the nervous 
system: acetylcholinesterase, which is a vital enzyme in 
nerve impulse transmission (organophosphates and car-
bamates), voltage-gated sodium channels through the 
nerve membrane (pyrethroids and DDT), and the acetyl-
choline receptor (neonicotinoids) [33]. Selective insecti-
cides, such as juvenile hormone mimics (fenoxycarb and 
pyriproxyfen) [34], ecdysone agonists, and chitin syn-
thesis inhibitors (diflubenzuron), impede insect repro-
duction and growth by acting on insect-specific targets 
[35]. Azadirachtin, a feeding deterrent and insect growth 
regulator, derived from the Indian neem tree, suppresses 
fecundity, pupation, molting, and adult emergence [36]. 
Modern insecticides used in pest control include imida-
cloprid, acetamiprid, and thiamethoxam, which selec-
tively act on the insect’s nicotinic acetylcholine receptor 
(neonicotinoids) [37]. Avermectins are microbial insec-
ticides that target GABA-gated chloride channels, while 
the ryanodine receptor is targeted by diamide insecti-
cides [38]. Spinosyns are a new generation of insecticides 
derived from actinomycetes, which exhibit high specific-
ity and low mammalian toxicity while also being environ-
mentally friendly [39].

The destructive effects of pesticides on humans 
and the environment
Pesticides have negative effects on both human health 
and the environment [40]. Pesticide poisoning causes 
around 1 million deaths and chronic diseases worldwide 
per year [41]. Production workers, formulators, spray-
ers, mixers, loaders, and agricultural field workers are 
among the high-risk groups exposed to pesticides. Pesti-
cide compounds can pollute tissues of nearly any living 
organism on the planet, as well as air, oceans, the fish 
that live in the oceans, and even the birds that consume 
the fish [42]. Some pesticides have negative health effects 
through mimicking or antagonizing natural hormones in 
the body, and it has been suggested that long-term, low-
dose exposure is progressively linked to hormone disrup-
tion, immune suppression, reduced intelligence, cancer, 
and reproductive defects [43]. Some pesticides (carba-
mates, organophosphates, organochlorines, and pyre-
throids) also have neurological effects and are linked to 
diseases such as Alzheimer’s and Parkinson’s [44].

Safe target delivery of pesticides
In recent years, the limitations of conventional pesticide 
formulations have prompted new research focusing on 
carefully controlled release. On farmlands, controlled 
pesticide release systems are used to specifically control 
a target pest by choosing a suitable and applicable output 
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path. Using a smart design that delays and monitors pes-
ticide release, this strategy aims to reduce the demand for 
pesticides in crops, allowing for more efficient pesticide 
application over time [45].

New pesticides
According to the World Health Organization (WHO), 
pesticides are a major threat to the environment and 
humans [46]. For this reason, new pesticides with novel 
natural and synthetic components are developed, which 
are less toxic, specific to a target pest, effective in small 
quantities, and decompose more quickly than conven-
tional pesticides [47]. New pesticides are divided into two 
categories: biopesticides and nano-pesticides.

Biopesticides
Biopesticides are pest-control agents made from micro-
organisms, plants, and animals. Synthetic pesticides 
continue to strongly protect agricultural products, but 
their long-term use has negative effects such as carci-
nogenicity, long-term stability in the environment, and 
other similar consequences. To address these issues, the 
production of new pesticides became necessary [48]. 
Biopesticides were considered, since they are safe and 
eco-friendly.

Fungal spores were first used as a biopesticide in the 
late 1800s to control insect pests. In 1835, Agostine Bassi 
demonstrated that spores of the white muscardine fun-
gus (Beauveria bassiana) could protect silkworms from 

diseases. This was one of the first documented cases of 
biopesticide use. Since then, the application of biopesti-
cides has been continuous throughout modern agricul-
tural history, although it has remained minimal compared 
to conventional crop protection. The primary distinc-
tion between biopesticides and synthetic pesticides is 
their mode of action. While most synthetic insecticides, 
if not all, are neurotoxic to pests, many biopesticides 
have other modes of action, such as anti-feeding, mat-
ing disturbance, desiccation, and suffocation. Biochemi-
cal, microbial, and plant-incorporated protectants (PIPs) 
are the three types of biopesticides identified by the US 
Environmental Protection Agency (EPA) (Fig. 5). Recent 
reports of the various properties of biopesticides are pre-
sented in Table 1 [49].

Microbial pesticides
Microorganisms such as viruses, bacteria, fungi, proto-
zoa, and yeasts are used to produce biopesticides. Micro-
bial pesticides are a more effective alternative to chemical 
insecticides. Their pathogenicity to the target pest varies 
depending on the species [67]. The effect of microbial 
pathogens is induced by the invasion of the pathogen 
through the skin or the gut of the insect, which results 
in pathogen multiplication and the death of the host, i.e., 
the insect. Insecticidal toxins produced by pathogens 
are critical in their pathogenesis. The majority of toxins 
produced by microbial pathogens are recognized as pep-
tides, but their structure and toxicity vary considerably. 

Fig. 5  Classification of biopesticides with examples
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Humans and other non-target species can benefit from 
the effectiveness and safety of the pesticides. These path-
ogens leave their meals with little or no residues [68]. 
Microbial pesticides are ecologically safe and remove 
threats from other natural pests, resulting in increased 
biodiversity in managed ecosystems. As a result, micro-
bial agents are highly specific against target pests, allow-
ing beneficial insects to thrive in treated crops. This is the 
reason why, over the last 3 decades [69], microbial insec-
ticides have been introduced as biological control agents. 
Different pests can be controlled using different micro-
organisms as the AIs, such as bacteria, fungi, viruses, or 
protozoa; however, each active ingredient is relatively 
specific for its target pest. Some fungi, for example, con-
trol certain weeds, while others kill particular insects. 
As another example, Bacillus thuringiensis toxin may be 
more effective against Aedes aegypti, while the sphaericus 
strain is effective against a variety of insects, including 
Culex quinquefasciatus [70].

Biochemical pesticides
Biochemical pesticides are substances naturally occurring 
in the environment, which control pests via a non-toxic 
mechanism. The mechanism of action of biochemical 
pesticides is different from that of traditional pesticides. 
Traditional pesticides directly affect and destroy their 
target, but biochemical pesticides act indirectly. For 
example, they disrupt the sexual function of their tar-
gets. Natural plant-derived products such as terpenoids, 

alkaloids, phenolics, and other secondary chemicals may 
be used as biopesticides. Pesticidal properties have also 
been discovered in certain vegetable oils, such as canola 
oil [71].

PIPs
PIPs are pest-control substances made by plants and the 
genetic material needed for the plant to make the sub-
stance [72]. The majority of pesticides in use are syn-
thetic organic compounds with low molecular weights 
(LMWs, less than 500  g/mol or 0.5  kDa). These pesti-
cides’ environmental and analytical chemistry, as well 
as their potential effect on human and environmen-
tal health, have been thoroughly investigated. While 
LMW-synthetic pesticides have dominated the market, 
biopesticides are becoming an increasingly important 
part of the overall pesticide market [73]. The global 
market for all biopesticides is currently estimated to be 
worth $34 billion, accounting for approximately 6% of 
the total pesticide market. PIPs are biopesticides that 
are expressed directly in the tissue of genetically modi-
fied (GM) crops to protect them from pests such as 
insects and viruses. Because of the widespread use of 
insecticidal PIPs around the world, as well as the recent 
emergence of new PIPs targeting insect pests, this sec-
tion focuses on PIPs developed against insects [74]. 
Insect pests consume PIPs when feeding on the trans-
genic crop tissue. Cry protein and double-stranded 
ribonucleic acid (dsRNA) PIPs in the insect gut affect 

Table 1  Recent reports of various substances with biopesticide properties

Biopesticide Target pest Action References

Oxathiapiprolin Plasmopara obducens Fungicide [50]

Beauveria bassiana Arthropod pests Fungicide [51]

Alternaria destruens L. sinense Herbicide [52]

Myrothecium vaerrcaria Ticks Insecticide [53]

Heterorhabditis bacteriophora Otiorhynchus sulcatus Insecticide [54]

Heterorhabdits species Helicoverpa armigera Insecticide [55]

Micro-encapsulated baculoviruses Insect crop pests Insecticide [56]

Hydrolate derived from
A. absinthium

Meloidogyne javanica Nematicide [57]

Biopesticide methionine Honey bees Insecticide [58]

Spider venom neurotoxin Hive beetle Insecticide [59]

Cordycepin C. militaris Fungicide [60]

Crucifalexins Fungi Fungicide [61]

Chromobacterium sp. Panama Larval mosquito Insecticide [62]

B. pumilus chitinase R. solani
T. harzianum

Fungicide [63]

Triflumezopyrim Rice planthoppers Insecticide [64]

SK gene Tribolium castaneum Insecticide [65]

D-limonene Fungi Fungicide [66]
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insect development or cause insect mortality in various 
ways [75]. Cry protein PIPs interact with specific recep-
tors on epithelial cells in the insect midgut, insert into 
the cell membrane, and eventually form transmem-
brane pores, which lead to cell lysis and pest death. 
There are several types of Cry proteins, each with a 
specific structure and toxicity that is unique to certain 
insect orders. Lepidoptera (e.g., the corn borer) is poi-
soned by Cry1 proteins, while Coleoptera (e.g., the corn 
rootworm) is poisoned by Cry3 proteins.

Cry proteins were the first-generation insecticidal 
PIPs. The next-generation dsRNA PIPs have been 
recently approved. Following ingestion, the dsRNA 
PIPs in the pest insect are transported into a target cell. 
dsRNA is cleaved into small interfering RNA molecules 
(siRNA, 20 nucleotides) within the cell, which guides 
the insect’s endogenous RNA interference (RNAi) 
machinery to degrade the complementary mRNA. The 
degradation of the targeted mRNA prevents it from 
being translated into basic pest insect proteins, caus-
ing sublethal effects (e.g., decreased growth) or pest 
mortality (Fig. 6). The first dsRNA PIP to be approved 
by the FDA targets the corn rootworm (Diabrotica vir‑
gifera virgifera) by interfering with the synthesis of the 
Snf7 protein, which is an important vacuolar sorting 
protein [76].

Nano‑pesticides
Engineered nanoparticles are now being used, or have 
the potential to be applied, as novel carriers for pesti-
cide delivery. A range of formulation types has been sug-
gested, including nano-emulsions, nano-encapsulations, 
nano-vesicles, nano-gels, nano-fibers, etc., which can be 
used to improve the efficacy of existing pesticide AIs or 
to enhance their environmental safety profiles, or both 
[77]. The most common nanoparticles are illustrated in 
Fig. 7.

Nano‑emulsion
Nano-emulsion is a biphasic dispersion system formed 
by mixing surfactants; AIs dissolved in the oil phase 
and the water phase [78]. The nanometer-sized droplets 
(~ 20–200  nm) make this system kinetically stable and 
give it a transparent or translucent appearance [79, 80]. 
Nano-emulsion of pesticides is an oil-in-water (O/W) 
dispersion, which can dissolve poorly water-soluble pes-
ticides into small oil droplets and greatly improve their 
bioavailability and efficacy [81, 82]. In addition, nano-
emulsion significantly reduces the use of organic sol-
vents and surfactants compared to traditional pesticide 
formulations, and has attracted considerable attention 
from researchers in recent years [83, 84]. For exam-
ple, Jiang et  al. presented a nano-emulsion system that 

Fig. 6  A naturally occurring bacterium that produces a protein toxic to certain types of insects. The gene inside the bacteria, which is responsible 
for producing that toxin, i.e., the Bt gene, can be transferred to crops, making them more resistant to the corresponding insect
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encompassed environmentally friendly surfactants, ester-
ified vegetable oils, and 41% (w/w) herbicide glyphosate 
isopropylamine [85]. This nano-emulsion had a small 
particle size (< 200  nm) and lower surface tension than 
the commercial cationic surfactant system (Roundup®), 
which would cause the droplets to be deposited uniformly 
on leaves with lower contact angle and increase the wet-
ting, spreading, and permeation. Visual injury assess-
ment indicated that the nano-emulsion formulations 
showed significantly lower effective dose 50  (ED50) than 
Roundup®, suggesting that they exhibited higher bio-
logical efficacy. In another study, Feng et al. developed an 
abamectin (Abm)-loaded nano-emulsion containing 2% 
Abm, 5% castor oil polyoxyethylene, and 7.5% hydrocar-
bon solvent, which conformed to the quality indicators of 
the Food and Agriculture Organization (FAO) [86]. Com-
pared with commercial oil/water emulsions (EW) and 
microemulsions (ME), the nano-emulsion exhibited vari-
ous advantages such as a smaller dynamic contact angle 
on cabbage leaves, higher insecticidal activity, and lower 
cytotoxicity. Although a nano-emulsion of pesticides with 
remarkable physical stability can be readily obtained, the 

most common approach is high-energy emulsification, 
and the oil phase and emulsifiers may still be toxic [87, 
88]. To overcome these challenges, green nano-emulsions 
and low-energy methods (e.g., self-emulsification, phase 
transition, phase inversion temperature methods, etc.) 
are promising strategies [89, 90]. Du et  al. developed a 
green nano-emulsion of β-cypermethrin using renewable 
fatty acid methyl ester (methyl laurate) as the oil phase, 
“green surfactant” alkyl polyglycoside, and the non-ionic 
surfactant polyoxyethylene 3-lauryl ether (C12E3) as the 
mixed surfactant [89]. The nano-emulsion incorporating 
β-cypermethrin had a nearly monodisperse droplet size 
distribution (polydispersity index (PDI) < 0.2 Mw/Mn), 
which indicated excellent wetting and spreading proper-
ties on the hydrophobic surface compared with the com-
mercial β-cypermethrin nano-emulsions, suggesting a 
biocompatible strategy for pesticide delivery.

Nano‑encapsulation
Nano-encapsulation of pesticides is a delivery method 
in which AIs are encapsulated in various nanomaterials 
and released in a controlled way [91]. Encapsulation by 

Fig. 7  Nanoparticles in pesticide delivery: A Lipid-based nanoparticles. B Inorganic nanoparticles. C Polymer-based nanoparticles. D Nanofibers. E 
Nano-gels
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nanomaterials can protect AIs from premature degrada-
tion (e.g., photolysis, hydrolysis, biodegradation, etc.) and 
unnecessary losses by leaching and volatilization, and it 
is more effective in practical applications than traditional 
pesticide formulations [92, 93]. After the rational design, 
nanomaterials can also enable the encapsulation system 
to exhibit sustained release behavior to prolong the con-
trol period or give it stimulus-responsive release proper-
ties to achieve precision control [94–96].

Various nanomaterials including organic materials 
(e.g., synthetic and natural polymers [97–102], lipids 
[103, 104], plant-derived nanoparticles [105–107], etc.), 
and inorganic materials (e.g., silica-, carbon-, calcium-, 
and clay-based nanoparticles, etc.) have been applied for 
nano-encapsulation of pesticides [95, 108]. AIs are often 
encapsulated into nanocarriers via incorporation, elec-
trostatic complexation interactions, or covalent bond-
ing, which will improve uptake, dispersibility, mobility, 
adhesion, and controlled or target release, thus leading 
to increased bioavailability and a longer effective life-
time of AIs. Due to their excellent biocompatibility and 
biodegradability, as well as their abundant functional 
groups, various forms of polymer-based nano-encapsu-
lated pesticides, including nano-capsules, nano-spheres, 
nano-micelles, nano-gels, and nano-fibers, have been 
extensively investigated [100]. Lipid-based nano-encap-
sulation of pesticides not only can lead to effective encap-
sulation of hydrophobic or hydrophilic AIs without the 
need to use organic solvents but also can enhance their 
penetration and absorption in insect epidermis, result-
ing in an increased insecticidal activity. More recently, 
several published articles have demonstrated that the 
nano-encapsulation of the pesticides based on plant viral 
nanoparticles (red clover necrotic mosaic virus, tobacco 
mild green mosaic virus) could increase the mobility or 
distribution of Abm, a nematicide, within the soil com-
pared to the free Abm, leading to enhanced crop protec-
tion against plant–parasitic nematodes in the soil [106]. 
Although nano-encapsulation of pesticides based on low-
cost organic materials has been widely investigated, many 
challenges still need to be addressed, such as physico-
chemical instability and acid monomers formed by poly-
mer degradation leading to the decomposition of AIs. 
Deteriorative reactions occur when polymers are sub-
jected to heat, oxygen, and mechanical stress, and during 
the useful life of the materials when oxygen and sunlight 
are the most important degradative agencies. Moreover, 
degradation may be induced by high-energy radiation, 
ozone, atmospheric pollutants, mechanical stress, biolog-
ical action, hydrolysis, and many other influences [109].

Porous inorganic materials such as silica and calcium 
carbonate are ideal carriers for pesticides because of 
their large surface area, tunable pore size, high loading 

capacity, and good biocompatibility [110–116]. The 
controlled release properties and anti-photolysis abil-
ity of AIs are significantly enhanced after encapsulation 
in those materials. Some articles have reported that the 
release behavior of encapsulated AIs could be regulated 
through controlling the pore structures (e.g., 2D hex-
agonal channel, 3D open network structure, single large 
pore, etc.), thus further improving the efficacy in prac-
tice [117, 118]. In addition, some inorganic materials 
with specific shapes or structures have been reported 
for controlling the encapsulated AI loss. For example, 
the Wu group reported a high-energy electron beam 
(HEEB)-modified natural nano-clay that could effectively 
encapsulate chlorpyrifos and increase its adhesion on 
crop leaves through the 3D network structure [119]. In 
another study, Sharma et  al. used graphene oxide deco-
rated with copper selenide nanoparticles for the encap-
sulation of chlorpyrifos, which led to enhanced adhesion 
to cauliflower leaf due to the resistance of graphene oxide 
to aqueous runoff, the ability of carbon to bind to the 
organic surface, and the piercing effect by a sharp sheet 
on the plant leaf [120].

In general, nano-encapsulated pesticides have two typi-
cal release behaviors: (i) sustained (slow) release and (ii) 
stimuli-responsive release. For the sustained release of 
nano-encapsulated pesticides, AI concentrations remain 
within an effective control window against pests for a 
long period, avoiding frequent pesticide application. 
To achieve optimal control efficacy, developing stimuli-
responsive nano-encapsulated pesticides that can pre-
cisely deliver AIs to the target is crucial. So far, various 
stimuli-responsive (e.g., pH-, enzyme-, temperature-, 
redox-, light-, ionic strength-, and humidity-responsive) 
nano-encapsulated pesticides have been reported for 
promoting the smart release of AIs in response to biotic 
(plant pathogens, insects, and weeds) or abiotic (tem-
perature, sunlight, drought, soil texture, flooding, and 
salinity) stimuli, and have been discussed in detail in the 
previous reviews [94, 121–126]. These controlled release 
properties indicate the potential of nano-encapsulated 
pesticides for improving pesticide-use efficiency.

Vesicles such as liposomes and niosomes are versatile 
drug vehicles that are composed of various phospholipids 
or non-ionic surfactants [127, 128]. In general, they could 
carry both lipophilic and hydrophilic drugs anchored into 
their bilayer or encapsulated in their cavity, respectively. 
These vesicles have the potential to be used as carriers for 
pesticide delivery. Some studies have utilized vesicles for 
pesticide delivery. Kang et al. examined the impact of the 
nanoform of pyrifluquinazon on the destruction of the 
green peach aphid, Myzus persicae. The nanotype of pyri-
fluquinazon was constructed using liposomes and was 
subsequently covered with chitosan to make the unstable 
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core materials more durable [129]. Moreover, to decrease 
the toxicity of paraquat, which is a widely used herbi-
cide, photo-responsive and user-friendly vesicles loaded 
with paraquat were utilized. In this formulation, paraquat 
could only be released upon UV or sunlight irradiation 
[130]. Zhang et al. used liposomes to deliver the dsRNA 
of the P0 gene to the tick Rhipicephalus haemaphysa‑
loides and evaluate the anti-tick characteristics of this 
system. Their findings revealed that P0 dsRNAs are virtu-
ally silenced [131]. Some of the studies that focused on 
nucleic acid delivery using vesicles in the context of crop 
protection are presented in Table 2.

Nanoparticles
Nanoparticle-based pesticides discussed herein mainly 
include two types, nanoparticles directly used as pes-
ticides and pesticide nanoparticles. Organic/inorganic 
nanoparticles are widely investigated as pesticides for 
the management of insect pests and bacterial and fungal 
diseases of plants [140]. For example, some articles have 
reported the insecticidal activity of silica nanoparticles, 
nickel nanoparticles, and titanium dioxide nanoparticles 
against weevils (Sitophilus oryzae), cattle tick (Rhipi‑
cephalus microplus, Hyalomma anatolicum anatolicum), 
mosquito (Anopheles subpictus, Culex quinquefasciatus, 
and Culex gelidu), and Haemaphysalis bispinosa [141–
143]. Many metalloids (e.g., gold, silver, copper, platinum, 
etc.) and metal oxides (e.g., silver oxide, zinc oxide, cop-
per oxide, titanium dioxide, etc.) [144–146], as well as 
nonmetal nanoparticles (e.g., sulfur [147, 148], reduced 
graphene oxide [149], and chitosan [150, 151], etc.), can 
be directly used as nano-pesticides owing to their anti-
fungal or antibacterial activity.

In recent years, the use of bottom–up or top–
down nanotechnology to formulate pesticide AIs as 
nanocrystalline particles has shown significant promise 

for improving the solubility and dispersion of poorly 
water-soluble pesticides [93]. After nanosizing pesti-
cides, their solubility, permeability, dispersion, pen-
etration, and bioactivity could be greatly improved 
[152]. Compared with commercial emulsions in water, 
nanosuspensions showed increased retention on leaf 
surfaces, improved anti-photolysis, and enhanced bio-
availability. In a study by Wang et al., a pyraclostrobin 
solid nanodispersion with a mean particle size of 20 nm 
and zeta potential of − 29.3  mV was prepared via the 
self-emulsifying method which exhibited superior 
wettability, retention, and storage stability [153]. As a 
result, the solid nanodispersion showed a greater than 
fourfold increase in fungicidal activity compared to the 
conventional water dispersible granule. Owing to their 
ease of large-scale production and wide applicability for 
almost all poorly water-soluble pesticides, the use of 
pesticide nanoparticles is emerging as the key innova-
tive strategy for reducing pesticide consumption.

Nano‑gels
Nano-gels have gained considerable interest from 
researchers as nanoscopic drug carriers and are mainly 
used for delivering bioactive mediators in a time-con-
trolled or site-specific manner. Using van der Waals 
forces or covalent bonds, hydrophilic polymers are 
cross-linked and can absorb high volumes of water. 
Extensive studies have been conducted on nano-gels 
as the carriers of essential oils and pheromones [154, 
155]. The potential of nano-gel systems for the delivery 
of AIs in a constant, targetable, and controlled manner 
has been proven.

Pheromones are environmentally friendly and highly 
specific biological control agents which require to be pro-
tected against decomposition in ambient conditions and 
released slowly. As evidence has revealed, the evapora-
tion of pheromones is significantly decreased in nano-gel 
carriers compared with the pure AIs. This extends their 
efficacy up to 33 weeks compared with that of the pure 
AIs, which is only 3 weeks [155]. As proposed by Brunel 
et al., the performance of copper-based antifungal treat-
ments can be improved using pure chitosan nano-gels 
[156].

The Institute of Pesticide Formulation Technology 
(Gurgaon) has recently presented a permethrin nano-gel 
formulation (a synthetic pyrethroid pesticide) for endur-
ing the impregnation of this pesticide in clothes. This 
formulation protects individuals against mosquito bites 
while working in forest areas [157]. Another research 
has developed chitosan nano-capsules containing lemon-
grass oil in the form of gel for long-lasting anti-mosquito 
effects [158].

Table 2  Nano-vesicles employed for the delivery of nucleic acids 
(dsRNA) in the context of crop protection

Nano-vesicle composition Target species References

Lipofectamine Euschistus heros [132]

Lipofectamine Spodoptera frugiperda [133]

GenJe plus Blattella germanica [134]

Lipofectamine Drosophila suzukii [135]

Lipofectamine (Cellfectin,
DMRIE-C, Transfectin also
used in one assay)

Drosophila melanogaster,
Drosophila sechellia,
Drosophila yakuba,
Drosophila pseudoobscura

[136]

Cellfectin Spodoptera frugiperda Sf9
cell line

[137]

Effectene (Qiagen) Aedes aegypti [138]

Effectene (Qiagen) Aedes aegypti [139]
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Electrospun nano‑fibers
Electrospinning  has recently emerged as useful nano-
technology for the production of nanofiber materials that 
can be applied in different biomedical areas [159]. Elec-
trospinning technology can scale up and meet industrial 
manufacturing requirements. Recently, researchers have 
studied the nano-fibers generated by electrospinning for 
plant protection purposes. Although they are still in the 
early stages of agricultural application, electrospun nano-
fibers have the benefit of evading release bursts, resulting 
in the facilitation of the field application of essential oils 
and pheromones [160].

As reported by Hellman et al., pheromones can be effi-
ciently incorporated into nano-fibers composed of cellu-
lose acetate or polyamide (approximately 30 wt.%), and a 
nearly linear release can be obtained over several weeks 
[161].

Xiang et  al. presented an analogous nanofiber net-
work made of cellulose and poly (lactic acid) nanocrys-
tals. The thiamethoxam-loaded fibers were effective 
against whitefly over 9 days in a glasshouse experiment 
at 50% of the proposed dose for the pure AIs [162]. Pes-
ticides were delivered in a localized manner by coating 
seeds with electrospun cellulose diacetate (CDA) nano-
fibers containing fluopyram or Abm, and it was found 
that nanofibrous seed coating could be potentially used 
as an alternate approach for controlling plant patho-
gens, such as fungi and nematodes [163]. In another 
study, the authors produced the thiram/hydroxypropyl-
β-cyclodextrin inclusion complex nanofiber (thiram/
HPβCD-IC-NF) using electrospinning for efficient deliv-
ery of the pesticides [164].

Future perspectives
In a future perspective, the development of nanoparti-
cles that can act as fertilizers and pesticides is neces-
sary. Nanotechnology research in agriculture is still at 
its initial stages, but is developing quickly. The appli-
cation of nanostructures as agrochemicals for plant 
growth and protection has to be investigated due to 
their novel physicochemical characteristics [165]. With 
clear nano-bio interactions, transport, and fate in the 
plant and environment, these nanoparticles have sus-
tained release and resistance for plant protection man-
agement [166]. The majority of recently supported 
projects and future study calls seem to be concentrat-
ing on producing safer, environmentally friendly nano-
materials for efficient responses [165]. It is expected 
that the controlled release of pesticides by nanotech-
nologies will become essential in the near future to 
promote cropland fertility and protection with the 
least effect on the environment and human health 

[166]. Future studies should be conducted using natu-
ral sources rather than standard media and assess the 
interaction of nano-agrochemicals with other contami-
nants. Soon, using nanostructured catalysts will be pos-
sible, which will enhance the effectiveness of pesticides 
and herbicides, allowing the use of more moderate 
doses. Nanotechnology will also guard the environ-
ment obliquely by promoting the use of filters or cata-
lysts, which can decrease the contamination in soil and 
water [167]. Future opportunities for target delivery 
of crucial nutrients, pesticides, and genetic materials 
utilizing nanomaterials will provide new prospects for 
the agricultural revolution [168, 169]. However, sev-
eral features of nanoparticles are supposedly dangerous 
to human health. Therefore, these substances must be 
more cautiously studied. For example, for dry nano-
products, the relative ease with which nanopowders are 
suspendable in the air might lead to potential human 
inhalation and subsequent health hazards. On the other 
hand, suspensions of nanoparticles in water used as a 
soil drench or foliar sprays pose risks such as the trans-
formation of the particles into ions or aggregation into 
submicrometer- or micrometer-sized particles [170]. 
Experts should evaluate the influences of nanoparticles 
on human health and the environment, and improve 
the approaches used to assess and control any hazards 
they may pose. Researchers also need to find renew-
able methods to fabricate nanoscale materials to be 
employed in agriculture. Moreover, general approaches 
should be developed in the pioneer institutes or nations 
to test laboratory-scale nano-products in actual farm 
settings for more comprehensive technology valida-
tion. Finally, educative and developmental initiatives 
should be established via study plans to bring the users 
and experts together in addressing possible customer 
interests.

Marketed safe and target‑delivered pesticides
Since the AIs of traditional pesticides are more toxic, 
the demand for harmless outcomes with a safer perfor-
mance propelled the development of bio- and nano-pes-
ticides and the growth of their commercialization [171, 
172]. Microbial-based pest-control products are gain-
ing recognition and show an influential growth within 
the market for pest management technologies (Table 3). 
Despite the possible advantages of nanotechnology appli-
cations in agriculture and the increasing trend of pat-
ent applications (mainly from agrochemical companies), 
nano-based pesticide products have limited market reach 
[173]. Today, two types of nanomaterials have appeared 
in nano-enabled industrial pesticides accessible in the 
market (Table 4).
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Conclusion
Population growth, the increasing need for food, and 
restrictions on areas under cultivation have led to pesti-
cide overuse. As a result of climatic changes and contin-
ued global warming, the development of all possible pests 
on crops, fruits, vegetables, and livestock is possible. 
Pests are migrating to previously unexplored territories, 
putting farmers, and plants at risk. Therefore, synthetic 
pesticides are used by farmers to control these pests. 
However, the widespread use of pesticides causes harm 
to a wide variety of nonpathogenic species, and there has 
also been an increase in pathogens in foods, which leads 
to further deterioration of soil and water quality.

Nanotechnology is a relatively new method of pesti-
cide delivery and application that is becoming increas-
ingly relevant. The use of nanotechnology and modern 

nanomaterials is becoming more prevalent in agricul-
ture and the food industry. Nano-based products have 
improved stability and efficiency/potency due to changed 
solubility and adhesion to surfaces, permeability across 
biological membranes, and targeted and controlled 
release. As a consequence of these altered properties, 
using lower pesticide concentrations is now possible. 
Moreover, biopesticides or natural-based chemicals with 
significant anti-pest effects are currently being manu-
factured. The vast majority of natural substances have 
drawbacks such as a short duration of action and poor 
stability; therefore, nanotechnological approaches have 
been applied, either for the development of stable biope-
sticide nano-formulations with long-term effects or for 
the “green” synthesis of active inorganic nanomaterials 
that are antimicrobial, antifungal, and antiparasitic.
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Table 3  Several marketed microbial pesticides

Pathogen Marketed product Reference

Bacteria

 Bacillus thuringiensis
var. kurstaki (Bt)

Bactur®, Bactospeine®, Bioworm®, Caterpillar Killer®, Dipel®, Futura®, Javelin®, SOKBt ®, 
Thuricide®, Topside®, Tribactur®, Worthy Attack®

[174]

 Bacillus thuringiensis var. israelensis (Bt) Aquabee®, Bactimos®, Gnatrol®, LarvX®, Mosquito Attack®, Skeetal®, Teknar®, Vectobac® [175]

 Bacillus thuringiensis var. tenebrinos Foil®, M-One®, M-Track®, Novardo®, Trident® [176]

 Bacillus thuringiensis var. aizawai Certan® [177]

 Bacillus popilliae and
 Bacillus lentimorbus

Doom¨, Japidemic¨® Milky Spore Disease, Grub Attack® [176]

 Bacillus sphaericus Vectolex CG®, Vectolex WDG® [176]

 Bacillus subtilis strain 713 Serenade® [178]

 Bacillus pumilus strain 2808 Sonata® [178]

Fungi

 Beauveria bassiana Botanigard®, Mycotrol®, Naturalis® [179]

 Lagenidium giganteum Laginex® [180]

Protozoa

 Nosema locustae NOLO Bait®, Grasshopper Attack® [175]

Viruses

 Gypsy moth nuclear
 plyhedrosis (NPV)

Gypchek® virus [181]

 Tussock moth NPV TM Biocontrol-1® [182]

 Pine sawfly NPV Neochek-S® [183]

Table 4  Marketed nano-pesticides

Nano-pesticides Marketed product References

Copper-based nano-pesticides Kocide® 3000 (DuPont) 
and NANOCU

[184]

Silver-based nano-pesticides Zeroxxee®, Silver leaf, 
Zeromix® Zerebra 
Agro®

WA-CV-WA13B, WA-AT-
WB13R, WA-PR-WB13R

[185]
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