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Abstract 

Background: Strawberry fruit is a rich source of antioxidants that are beneficial for human health. However, the rapid 
decline of strawberries dramatically reduces the shelf life and raises postharvest losses. To develop an efficient and 
ecological approach for maintaining the quality, strawberries (Fragaria x ananassa, cv. Festival) were treated with 0.5% 
chitosan coating (0.5% Ch), guava leaf‑based chitosan nanoparticles coating (Gl‑ChNps), and a combination treat‑
ment of 1.3 mW/cm2 laser light followed by Gl‑ChNps coating (combined treatment), then stored for 12 days at 10 °C 
and 85–90% RH. The untreated fruit served as a control.

Results: Semi‑spherical particles with an average size of 21.92 nm, a monodisperse nature, and high solution stabil‑
ity were formed. The findings revealed that the combined treatment completely suppressed fungal decay com‑
pared to 50% decay in control, and significantly reduced weight loss percentage to 4.68% compared to 27.35% in 
control. In accordance, the combined treatment had the maximum anthocyanin content and vitamin C, at 42 and 
81.1 mg/100 g, respectively. The results showed that treated strawberries had less change in color, total soluble solids, 
titratable acidity, and pH during storage than untreated strawberries, which exhibited higher chemical changes.

Conclusions: The edible film of chitosan nanoparticles acted as a semi‑permeable barrier that modified and 
restricted gas exchange, reduced water loss, and delayed fruit senescence. In addition, the combination of laser light 
with chitosan nanoparticles has been shown to control the pathogens and retain the freshness of strawberries.
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Introduction
The strawberry fruit (Fragaria × ananassa Duch.) is 
high in vitamins, minerals, and antioxidants, all of which 
positively impact human health. Unfortunately, the rapid 
decline of strawberries dramatically reduces the shelf 
life and raises postharvest losses. Gray mold caused by 
Botrytis cinerea Pers. and Rhizopus stolonifer rot are the 
most common causes of postharvest losses that influence 
the strawberry quality and appearance [1, 2].

Many studies have been carried out to prevent rotting 
and losses associated with poor handling and storage 
of strawberries, including cold storage [3, 4], modified 
and controlled atmosphere storage [5–7], and radiation 
[8–10]. Studies have shown the effectiveness of these 
approaches in extending shelf life and inhibiting micro-
bial growth; nonetheless, some adverse effects on flavor, 
anthocyanin content, organic acid, and vitamin C have 
been reported [11–13].

Surface coating with edible biopolymer (polysac-
charides, lipids, and proteins) film is one of the most 
well-known techniques to maintain quality fruits and 
vegetables [14–16]. The edible film is a thin layer of mate-
rial that acts as a semi-permeable physical barrier to 
control gas  (CO2/O2) exchange, reduce respiration rate, 
delay dryness, slow decline, and protect fruit skin from 
mechanical injuries and deterioration. Such a technique 
is cost-effective, simple, and environmental friendly [17, 
18], Nonetheless, consumer concerns must be consid-
ered, as the edible film’s composition should be organic, 
non-toxic, and chemical-free.

Chitosan is a biodegradable, biocompatible natural pol-
ysaccharide polymer with immunological, antibacterial, 
and wound healing characteristics [19, 20]. According to 
Radhakrishnan et al. [21], the edible film of chitosan was 
found to delay water loss, suppress microbial growth, and 

preserve the color of papaya, mango, and strawberries. 
Furthermore, chitosan film retarded enzymatic browning 
and discoloration in cut pieces of apple [22] and mush-
room [23]. However, the low solubility of chitosan in the 
aqueous solution limits its application as an antifungal 
agent [24], which promotes the use of nanoparticles form 
to improve chitosan’s antifungal activity and wettability. 
In this regard, Ramezani et  al. and Sathiyabama & Par-
thasarathy [25, 26] found that chitosan nanoparticles 
exhibited higher antimicrobial activity than chitosan in 
bulk form, possibly due to the nanoparticle’s larger sur-
face area, higher mechanical properties and more robust 
linking with bacteria cells. Furthermore, when compared 
to chemical synthesis using sodium tripolyphosphate, 
biological synthesis of chitosan nanoparticles using plant 
extract as a reducing and capping agent is an eco-friendly, 
simple, and rapid process with smaller particle size and 
more stable results [27, 28].

Guava leaves’ antimicrobial and antioxidant properties 
have been linked to bioactive components, such as fla-
vonoids, polyphenol, and ascorbic acid [29]. Because of 
its recognized medical characteristics and availability, it 
has been used as a reducing and capping agent in several 
investigations for green nanoparticle production [30, 31].

On the other hand, laser light has been shown to 
have a bio-stimulation impact on microorganism phy-
tochromes, altering their vitality and growth [32–34]. 
The exceptional characteristics of laser light, such as 
monochromaticity, collimation, and coherence [35, 36], 
enable laser application for efficient surface disinfec-
tion of plants. However, few studies have examined the 
effectiveness of laser exposure in maintaining the quality 
of fruits and vegetables [37, 38]. This investigation aims 
to evaluate the effect of a combined treatment of laser 
sterilization and edible chitosan nanoparticles coating on 
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the quality attributes of strawberry fruit when used as a 
refrigeration complement.

Materials and methods
In this experiment, strawberries were distributed into 
four groups: untreated strawberries (control), 0.5% chi-
tosan coating (0.5% Ch, positive control), guava leaf-
based chitosan nanoparticles coating (Gl-ChNps), and 
a combined treatment of laser exposure and Gl-ChNps 
coating (combined treatment).

Preparation of chitosan (0.5% Ch) and chitosan 
nanoparticles (Gl‑ChNps) coatings
Chitosan solution was obtained by adding 0.5% (w/v) 
chitosan (deacetylation of 93% and molecular weight of 
161.16 kDa) to 1% (w/v) ascorbic acid under stirring for 
90 min at room temperature until the chitosan was com-
pletely dissolved [39].

The chitosan functionalities were enhanced by 
crosslinking chitosan with guava leaves (Psidium guajava 
L.) extract at room temperature to produce its bio-nano-
structure as a cost-effective and eco-friendly green route. 
Chitosan nanoparticles (Gl-ChNps) were prepared based 
on ionic gelation interaction between positive charges 
of chitosan and negative charges of guava leaf function 
groups. Nanoparticles were optimized following the 
approach documented in a prior study published by our 
group [40] that detailed the preparation and characteri-
zation procedures of ChNps based on guava leaf extract.

In brief, Gl-ChNps were formed using a 1:1 mixture 
of chitosan solution (5  mg/ml) adjusted at 5 pH with 
1  N NaOH and dried guava leaves extract 10% (w/v). 
The mixture was stirred at 110 rpm for 30 min. For the 
obtained solution, dynamic light scattering (DLS), trans-
mission electron microscope (TEM), and zeta potential 
analyses were measured and discussed in detail in our 
previous study [40]. Chitosan and chitosan nanoparticles 
coatings were prepared and used fresh.

Laser irradiation
A continuous wave (CW) diode laser at a wavelength of 
450 ± 10 nm, 100 mW output power, and a beam diame-
ter of 2 mm was employed in this study. A beam expander 
of an expansion power of 50-fold was placed in front of 
the laser light to enlarge the collimated beam. The opti-
mum exposure time of laser light was selected after pre-
liminary experiments that were discussed in depth in a 
previous study published by our group [38].

Strawberry preparation
Fresh strawberries (Fragaria × ananassa cv. Festival) with 
red color on more than 75% of the surface and uniform in 
size were purchased from a local market. On the previous 

day, fruits were picked and transported from Qalyubia, 
Egypt, in a refrigerated truck. Strawberries were carefully 
immersed in distilled water for 30 s to remove dust, then 
dried on a soft cloth for 30 min.

For coating treatments, strawberries were immersed in 
the prepared chitosan (0.5% Ch), or guava leaf-based chi-
tosan nanoparticles (Gl-ChNps) solutions for 2 min, then 
raised and left to dry on a clean soft cloth at room tem-
perature for 2 h [41].

For the combined treatment, the fruit sample was 
exposed to a diode laser (450 nm) at fluence of 234 mJ/
cm2. The sample was 20  cm away from the radiation 
source; strawberries were turned upside down and 
exposed to the same laser duration of 3 min to guarantee 
a thorough exposure on the whole surface of fruit. After 
laser exposure, the strawberries were coated with Gl-
ChNps solution by dipping for 2 min, then raised and left 
to dry at room temperature for 2 h.

All samples, both untreated and treated, were packed 
in perforated plastic boxes, each holding approximately 
350 g and ~ 13 strawberries; the initial weight of each box 
was recorded after packaging, and the boxes were stored 
at 10 °C and 85–90% relative humidity for 12 days.

Quality attributes
Fungal decay
The percentage of infected strawberries was used to cal-
culate the fungal decline. Any fruit with signs of contami-
nation, brown spots, or softening areas was considered 
rotten and counted. According to [13], fungal decay 
(%) = (The number of decayed fruits/ Total number of 
fruits) × 100.

Weight loss percentage
The decayed fruits were discarded, and the final weight 
was measured. The percentage of weight loss was cal-
culated as follows: weight loss % = (Initial weight–Final 
weight)/ Initial weight × 100.

Firmness
The fruit firmness was measured using a digital pen-
etrometer with a 10  mm diameter of flat end plunger 
(ST308—made in Italy) and expressed in kg/cm2. Fruit 
firmness was assessed at three distinct points in the 
equatorial region, and the average was recorded [42]. The 
firmness loss was calculated as a percentage of the initial 
value.

Surface color
The surface color of both sides of each strawberry was 
measured on the equatorial zone using a chromam-
eter (CR-400, Konica Minolta, Japan) according to the 
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Commission International de I’Eclairage (CIE) LAB color 
parameters: L* (luminance), a* (redness–greenness) and 
parameter b* (yellowness–blueness). Parameters a* and 
b* were used to calculate chroma: C* = [a*2 + b*2]1/2 and 
hue: h° = arctangent[b*/a*] [43, 44].

Titratable acidity and pH
Titratable acidity was measured in strawberry puree 
using the titration method [45] and expressed as the 
percentage of citric acid per 100  g of fresh weight. In 
addition, the value of the pH of strawberry juice was 
measured using a pH meter (Model Lutron pH-224-Tai-
wan) at 20 °C [46].

Total soluble solids
The total soluble solids (TSS) of the strawberries puree 
were measured via a digital refractometer (BEB53, Boeco, 
Germany) at 20 °C and expressed as a percentage [47].

Ascorbic acid
Spectrophotometric determination of ascorbic acid 
was performed as described by Bajaj and Kaur [48] and 
expressed as mg/100 g of fresh weight.

Anthocyanin content
Anthocyanin content was measured using the pH-
differential method [49]. 4  g of strawberry puree was 
extracted with 40  mL of solvent ethanol: 0.1  M HCl 
(85:15%, v/v) and sonicated for 10  min. After cen-
trifugation, one mL of sample extract was mixed with 
9 mL of each of the buffer solutions potassium chloride 
(0.025 M, pH 1.0) and sodium acetate (0.4 M, pH 4.5), 
and the absorbance (A) was measured using a spectro-
photometer at 520 and 700  nm, respectively. The total 
anthocyanins content was expressed as mg of pelar-
gonidine-3-monoglucosid per 100  g of fresh weight 
according to the following formula: A = [(A510–A700) 
pH1.0–(A510–A700) pH4.5].

DPPH radical‑scavenging activity
The antioxidant activities were evaluated using the DPPH 
method described by Brand-Williams et  al. [50]. Five 
grams of each sample were prepared in 50  mL metha-
nol. An aliquot of the extract was added to a metha-
nolic DPPH solution (100 μL, 0.2 mM). The mixture was 
stirred and left in the dark for 15  min. The absorbance 
was then measured against a blank at 517 nm. Percentage 
scavenging effect was calculated as: [(A0–A1) /  A0] × 100, 
where:  A0 is the absorbance of the control (without 
sample) and  A1 is the absorbance in the presence of the 
sample.

The statistical analysis
All treatments were carried out in triplicate. One-way 
analysis of variance (ANOVA) was used to analyze the 
data using the Excel program (Microsoft Office Pro-
fessional Plus 2010), assuming a 95% confidence level 
(P < 0.05). The means of data were separated using Tuk-
ey’s honest significance test (HSD).

Results and discussion
Chitosan nanoparticles characterization
The crosslinking of protonated ammonium groups of chi-
tosan with anionic groups of guava leaf extract resulted 
in semi-spherical nanoparticles with an average size of 
21.92 nm. The nanoparticles have a monodisperse nature, 
as measured by the polydispersity index (PDI) of 0.471, 
and good stability, as evaluated by the zeta potential 
of  -27.1 mV, which aid in preventing agglomeration.

Quality attributes of strawberry
Fungal decay of strawberry
The findings did not show any deterioration in any of the 
treatments until the fourth day of the storage, Table 1 and 
Fig. 1. Furthermore, chitosan nanoparticles coating (Gl-
ChNps) inhibited decay more effectively than chitosan 
in bulk (P < 0.05, HSD = 5.99), which can be attributed to 
the uniformity of nanoparticles coating, that improved 
adhesion, cohesion, and durability. According to Eshghi 
et al. [41], the antimicrobial activity of chitosan is related 
to the biopolymer’s ability to induce severe damage in 
mold cell structure, which could explain the lower decay 
observed in coated strawberries compared to the control. 
This coating contributes to a decrease in respiration rate 
and physical damage in strawberries.

On the sixth day, the infected uncoated strawberries 
reached 20.23%, and progressively increased to 50.25% 
by the end of the storage period, while the strawber-
ries coated with Gl-ChNps had only a 11.12% decline. 
Eshghi et  al. [41] found that on the twelfth day of stor-
age at 4 ± 1  °C and 70% RH, 20% of ChNps coated fruit 
displayed visible fungal rot. This increased degradation 
percentage compared to the present results suggests that 
guava leaf extract could improve the antimicrobial activ-
ity of chitosan nanoparticles.

On the other hand, the combined treatment showed no 
signs of deterioration after 12 days of storage at 10 °C. In 
a previous study by Wang and Gao [51], the same result 
was achieved with 1.5% Ch coated fruit; however, straw-
berries were stored at 5 °C.

In this regard, the role of laser exposure before Gl-
ChNps film in the combined treatment is evident in the 
inhibition of microbial development.
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According to Braga et  al. [52], exposure to light acti-
vates the photosensitizer in microorganisms, which 
damages the cell’s biomolecular structure by producing 
reactive oxygen species (ROS), such as singlet oxygen 
and hydroxyl radicals, effectively damaging the cell mem-
brane, intracellular enzymes, and nucleic acids [53]with 
little to no negative effects on the host. Zhang et al. [54] 
reported that, a combination of blue light and salicylic 
acid reduced the incidence and severity of strawberries 
decay compared to control. In addition, for 10  days of 
cold storage, pulsed light of 11.9 and 23.9 J/cm2 delayed 
and reduced the incidence of strawberries inoculated 
with Botrytis cinerea by 16–20% compared to control 
[55].

Weight loss percentage
As shown in Fig.  2, untreated strawberries lost 27.35% 
of their weight after 12 days of storage, whereas 15.9 and 
6.71% of weight loss were found in the 0.5% Ch and Gl-
ChNps treated fruit, respectively, (P < 0.05, HSD = 6.75). 
The 0.5% Ch coating was more effective in delaying 
weight loss and significantly decreased weight loss by 
41.86% compared to the control. As the skin of strawber-
ries is very thin, it is prone to rapid water loss, resulting 
in a weight loss and shriveling. On the other hand, the 
edible coating provides a physical barrier to  CO2,  O2, and 
ethylene, which reduces gas exchange and water loss. Lee 
et  al. [56] observed that control strawberries showed a 
higher respiration rate than multi-polysaccharide coated 
fruit during storage. According to Hernández-Muñoz 
et al. [57], 1.5% Ch reduced weight loss by 48.92% com-
pared to control, suggesting that a thicker layer created 
by a coating with a higher concentration of chitosan pre-
vented excessive moisture loss. Furthermore, strawber-
ries treated with polysaccharide edible coating solutions 
comprising oregano essential oil, sodium alginate, chi-
tosan nanofibers, and cellulose nanocrystals lost 10.8% 

of their weight after 9 days of storage as opposed to 37% 
of untreated fruit [56]. This is due to the thin layer coat-
ing, which reduces moisture loss and inhibits microbial 
infection.

In our pervious study [38], strawberries that had been 
exposed to 3 min of laser light lost weight by 4.86% com-
pared to 21.53% of control after 7 days of storage. Accord-
ing to Romero Bernal et al. [55], additional stress factor(s) 
would be required to increase light action and achieve a 
higher level of inactivation of fungal contamination while 
retaining the quality of the fruit. This was demonstrated 
by the combination of laser light and Gl-ChNps coating, 
which completely prevented the decay and had the small-
est weight loss of 4.68% after 12 days of storage.

Firmness
Strawberry is a soft fruit that loses its firmness rap-
idly over the validity period, which has a substantial 
impact on the consumer’s acceptability [2]. During stor-
age, the firmness of all coated strawberries was signifi-
cantly higher than that of uncoated strawberries (P˂0.05, 
HSD = 0.36), as shown in Fig.  3. On the fourth day of 
storage, uncoated fruit lost around 71% of their flesh 
firmness, and 82% by the end of the storage period, com-
pared to 68.21, 24.86 and 10.4% for 0.5% Ch coating, Gl-
ChNps coating, and combined treatment, respectively. 
The results suggested that combined treatment coat-
ing had a positive effect on maintenance of strawberry 
firmness.

According to Del-Valle et  al. [58], fruit texture prop-
erties are affected by the structure, degradation of poly-
saccharides in the cell wall, and loss of water due to 
the cell breakdown, which explains why the combined 
treated strawberries had the least significant firmness 
loss, as their water content and the cell turgidity pressure 
remained unchanged. Contrarily, Zhang et al. [53] found 
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that a combination of UV-A light and chitosan–gallic 
acid coating caused a decrease in firmness compared to 
the control, and that the high temperature generated by 
the UV-A bulb caused increased water loss, which accel-
erated the deterioration of texture and color. This sug-
gests that the low power laser light has no heat effect on 
the surface of fruit.

It was found that the firmness of 0.5% Ch treated fruit 
was significantly higher than that of uncoated fruit up to 
8 days of storage, but the difference faded to insignifi-
cance after that. This finding is consistent with Lee et al. 
[56], who found that after 9 days of storage at 6  °C and 
25% RH, coated strawberries had retained more than 40% 
of their firmness. Conversely, the uncoated strawberries 
had lost nearly 90% of their firmness. Eshghi et  al. [41] 
also reported that after 8 days of storage at 4 ± 1 °C, the 
loss of firmness in uncoated fruit was around 45% com-
pared to 27% in fruit coated with chitosan nanoparticles.

As reported by Tanada-Palmu and Grosso [59], the cre-
ation of a sufficient internal atmosphere as a result of the 
edible film coating may explain the delay in softening and 
senescence.

Surface color
The results showed that all the samples darkened during 
the storage time, Fig.  4a. However, after the fourth day, 
the uncoated sample was significantly darker (more rip-
ening) than the coated fruit samples (P˂0.05, HSD = 6.03). 
By the end of the storage period, the loss percentage of 
the L* parameter was 46.15, 23.89, 18.96, and 17.48% 
for uncoated, 0.5% Ch coating, Gl-ChNps coating, and 
combined treatment, respectively, which is consistent 
with Perdones et al. [60], who found that the coated fruit 
showed the highest luminosity values at the end of stor-
age. This could be attributed to the coating layer’s control 
of moisture loss, which decelerates the ripening process 

and helps to minimize the external color changes in the 
fully ripe strawberry.

On the other hand, the coated sample showed a 
slightly increased in chroma, as an indication of matu-
ration over the storage time. At the end of the storage 
period, chroma increased to 36.45, 41.09, and 43.04 of 
strawberries treated with 0.5% Ch coating, Gl-ChNps 
coating, and combined treatment, respectively, with-
out a significant difference among treatments, Fig.  4b. 
Meanwhile, the uncoated sample was less deeply red, 
and chroma dropped by 51.66% (P <  0.05, HSD = 9.36), 
which can be attributed to the greater water loss and 
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surface drying of the uncoated ripe strawberries Nunes 
et  al. [61]. In contrast, Hernández-Muñoz et  al. [57] 
found that both coated and uncoated fruit developed 
a less vivid coloration, as shown by lower chroma val-
ues; however, chroma was reduced by roughly 10% for 
coated fruit and 30% for control.

The fruit was obtained with a red color surface cover-
ing 75% of the surface, with a hue angle in the orange–
red range of 65.45°. As a result of ripening over time, 
the external color developed to red and deep red with a 
decrease in the hue angle.

In accordance with Lee et al. [56], the red surface color 
of the coated strawberries turned fewer darker than 
that of the control. The findings showed that all treat-
ments reduced the hue angle without significant differ-
ence (P > 0.05) and by the end of the storage period, hue 
angle decreased to 40.09°, 41.08°, 45.68°, and 45.74° for 
uncoated fruit, 0.5% Ch coating, Gl-ChNps coating, and 
combined treatments, respectively. This implies that the 
coating minimized the surface color change by reducing 
moisture loss and cell wall degradation.

Titratable acidity (TA) and pH
Titratable acidity is directly related to the amount of 
organic acids in the fruit, and a reduction in acidity may 
be expected as a result of metabolic changes in fruit or 
due to the use of organic acids in the respiratory process 
[62]. The initial TA of strawberry, measured as a per-
centage of citric acid per wet weight, was 0.77%, and it 
increased slightly for all treatments, possibly because of 
water loss through storage. However, the coating treat-
ments had a negligible effect on the acidity percentage 
of strawberries compared to the uncoated fruit (P > 0.05, 
data not shown), implying that the organic acids have not 
yet been metabolized [15]. This result is consistent with 
Vargas et al. [63], who found that acidity did not increase 
significantly during storage and was not affected by coat-
ing application. Conversely, Lee et al. [56] and Yan et al. 
[64] found a slight decrease in acidity of all strawber-
ries; however, the effect of coating on the acidity was 
negligible.

The results showed a slight decrease of the initial pH 
value of 3.36 through the storage without a significant 
difference between treatments (P > 0.05, data not shown). 
According to Perdones et  al. [60], samples coated with 
chitosan containing lemon essential oil had significantly 
lower pH values at the end of storage (p < 0.05), indicating 
that essential oil components may affect fruit metabolic 
activity. Other research found that the pH of strawberries 
increased slightly during storage without significant dif-
ferences between coated and uncoated fruit [65].

Total soluble solids (TSS)
Total soluble solids of strawberries mainly contain sugars 
and organic acid, which are important contributors to the 
flavor. TSS are expected to increase throughout the stor-
age period in line with the progress of the ripening pro-
cess and water loss [60]. On the fourth day of the storage, 
TSS value decreased from the initial value at 6.1% to 5.9, 
5.9, and 5.8% after 0.5% Ch coating, Gl-ChNps coating, 
and combined treatment, respectively, due to fruit meta-
bolic activity and respiration, Fig. 5. While TSS value of 
the control sample significantly increased to 6.8% and 
then reached 7.7% by the end of the storage (P˂0.05, 
HSD = 0.83). This could be caused by excess water loss 
and degradation in the cell wall of control sample [57].

By the end of the storage, Gl-ChNps coating and com-
bined treatment maintained TSS value at 6.3 and 6%, 
respectively, in agreement with Vargas et al. [63] and Yan 
et al. [64], who found that soluble solids did not change 
significantly during storage and were not affected by 
coating application. The reduced TSS accumulation in 
coated fruit is probably due to a decrease in respiration 
and a delay in the ripening process [15]. TSS results show 
that the untreated strawberry fruit exhibited a more 
active metabolism than treated strawberries.

Ascorbic acid
Lee and Kader [66] suggested that storage temperature 
is the most important reason to maintain vitamin C 
in fruits and vegetables and the losses of vitamin C are 
accelerated during a long storage period at high storage 
temperature.  Cordenunsi et  al. [4] stated that ascorbic 
acid content (vitamin C) is affected by climatic condi-
tions, postharvest management, and cultivar variety.

There was no significant difference between treatments 
until the fourth day of the storage period. Ascorbic acid 
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content of strawberry fruit varied from its initial value of 
65.52 mg/100 g, Fig. 6. By the end of the storage period, 
ascorbic acid significantly increased in Gl-ChNps coat-
ing and combined treated fruit by 17.79 and 23.78%, 
respectively, whereas it decreased in control and 0.5% 
Ch coated samples by 30 and 7.2%, respectively, (P˂0.05, 
HSD = 12.02).

It has been reported that blue light exposure had no 
remarkable impact on ascorbic acid content [54], whereas 
exposure to low power of laser light increased the vita-
min content [38]. This explains why the combined treated 
sample contains more ascorbic acid than Gl-ChNps 
treatment.

The findings indicated that 0.5% Ch coating signifi-
cantly retarded the decrease of ascorbic acid compared 
to the uncoated sample. These findings are in agree-
ment with Pagliarulo et al. [67], who found a greater loss 
in the ascorbic acid in the control sample compared to 
the initial concentration of 66.76  mg/100  g, while this 
value increased in the coating samples. Wang and Gao 
[51] reported that different concentration of Ch coating 
retarded the decrease of ascorbic acid compared to con-
trol; however, by the end of the storage at 5 and 10  °C, 
ascorbic acid in coated strawberries had significantly 
decreased.

In contrast to Eshghi et  al. [41], a significant reduc-
tion in ascorbic acid content was observed for chitosan 
nanoparticles loaded with and without copper-coated 
fruit through storage at 4 ± 1 °C. The presence of copper 
ions in the coating formula accelerated the degradation 
of ascorbic acid content in strawberries compared to the 
uncoated sample, making the antimicrobial agents used 
in the coating solution a critical issue that could harm 
sensitive components, such as ascorbic acid.

Anthocyanin content
Figure 7 shows the changes in the anthocyanin content of 
coated fruit after storage for 12 days at 10 °C and 85–90% 
RH compared to the initial value of 23.9  mg/100  g. 
Untreated strawberries showed an increase in the antho-
cyanin content of 32 mg/100 g on the fourth day of stor-
age, followed by a rapid reduction of 17 mg/100 g by the 
end of the storage period. In line with Shin et  al. [68], 
anthocyanin concentration in red, ripe untreated fruit 
slowly decreased through storage, but a rapid reduction 
was observed in the fruit stored at 10  °C by the end of 
the storage time. A significant difference in anthocya-
nin content between control and treated samples was 
observed on the eighth day of the storage period (P < 0.05, 
HSD = 6.3).

Anthocyanin content of coated strawberry fruit 
increased gradually at a slow rate and did not decline at 
the end of the storage period, indicating that strawberries 
darkened with ageing, which is similar to Wang and Gao 
[51] who found that total anthocyanin increased at a slow 
rate in fruit treated with chitosan coating (0.5, 1.0, and 
1.5 g/100 mL) and did not display a decline compared to 
the control sample at the end of storage at 5 and 10 °C.

At the end of the storage period, the combined treated 
fruit had the highest anthocyanin content of 42 mg/100 g 
followed by 37.1 and 36.5  mg/100  g in Gl-ChNps and 
0.5% Ch coated strawberries, respectively. According to 
Eshghi et  al. [41], strawberries coated with copper-free 
nano chitosan had the highest anthocyanin concentra-
tion of 390 mg/kg after 12 days of storage at 4 ± 1 °C with 
70% RH. Considering that the quantity of anthocyanin is 
important in assessing the attractiveness and maturity of 
strawberries, it has been shown that coating of chitosan 
can improve the fruit’s appearance while preserving the 
health benefits of strawberry. According to our earlier 
findings [38], anthocyanin accumulation in strawberries 
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may be slightly influenced by laser light, while storage 
temperature had the main impact.

Antioxidant activity
The primary defensive function of fruit has been attrib-
uted to the antioxidants which can prevent chemical 
damage caused by free radicals. In addition to anthocya-
nins, other flavonoids, phenolic acids, and vitamins may 
also contribute to the protective effect against oxidative 
damage to cells. As shown in Fig.  8, antioxidant activ-
ity decreased over the storage period for all treatments 
(P < 0.05, HSD = 7.53), these findings were consistent 
with Cordenunsi et  al. [4]. It’s possible that the inverse 
relationship between antioxidant and anthocyanin con-
centration is due to the fact that antioxidant activity and 
anthocyanin have a complementary or superimposing 
impact in strawberries [69].

From the 8th to the 12th day of the storage, antioxidant 
activity was found to be relatively equal in coated sample, 
which can be attributed to the delay in the maturation 
and ageing of the coated samples.

At the end of the storage time, coated strawberries 
maintained the antioxidant activity compared to fresh 
fruit by reduction percentages of 18.44, 10.06, and 7.16% 
for 0.5% Ch coating, Gl-ChNps coating, and combined 
treatment, respectively, whereas the antioxidant activity 
reduction percentage of control reaches 31.27%, which 
may be due to senescence and deterioration in uncoated 
fruit, suggesting the ability of chitosan nanoparticles 
coating and combined treatment to retain higher antioxi-
dant activity in strawberries after storage. These results 
are comparable with the findings reported by Pagliarulo 
et al. [67] who observed a decrease in antioxidant activ-
ity with a significant difference between coated and 
uncoated fruit through the storage.

Wang and Gao [51] reported that the elevated level 
of antioxidant activity in chitosan coated strawberries 
strengthened the mechanism of microbial defense and 
emphasized the resistance against fungal attacks.

Conclusions
A novel postharvest approach combining laser irradiation 
with guava leaf-based chitosan nanoparticles coating was 
developed to maintain the quality of strawberries. The 
antimicrobial action of chitosan nanoparticles formed by 
crosslinking chitosan and guava leaf extract was shown 
to be more efficient than chitosan in bulk, as the edible 
coating of chitosan in nano-size could exhibit markedly 
improved barrier properties at a lower concentration of 
chitosan. Moreover, the intracellular reactive oxygen 
species (ROS) released after exposure to laser light com-
bined with chitosan nanoparticles effectively controlled 
pathogens, delayed senescence, and reduced water loss, 
which is reflected in the overall quality of strawberries.
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