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Abstract 

Biofertilizers are an alternative to face the sustainability problem that chemical fertilizers represent in agriculture. 
Among them, plant growth‑promoting rhizobacteria (PGPR) is a microbial group with high potential, but lack of 
reproducible results from their application is a bottleneck for its use in agricultural production. Here we highlight a 
factor that could partially explain this inconsistency: the total auxin level in the soil–plant system. Auxin production is 
recognized as a main mechanism for plant growth promotion by PGPR; however, the final effect of auxins depends on 
a fine balance of its content, and this will be a result of all the sources of auxin compounds in the system. In addition 
to the auxins produced by inoculated bacteria, the plant itself produces its own hormones as part of complex physi‑
ological processes, varying in amount and sensitivity. Also, soil organic matter displays like auxin activity, causing plant 
responses just like those produced by added auxins. Therefore, the inoculation of an auxin‑producing PGPR on plants 
might cause a wide variety of responses, ranging from effective growth promotion to growth restriction, depending 
on the total auxin content in root tissue. We think this must be considered for the practical use of bacterial biofertiliz‑
ers, in order to have better and more consistent results of inoculation.
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Graphical Abstract

Introduction
Biofertilizers are “biological products containing living 
microorganisms that, when applied to seed, plant sur-
faces, or soil, promote growth by several mechanisms” [1]; 
these constitute a biotechnological, sustainable, and envi-
ronmentally convenient alternative to increase agricul-
tural productivity in the face of the challenges posed by 
climate change and land degradation [2].

The potential of biofertilizers in sustainable agricultural 
development has allowed an exponential increase in the 
number of scientific publications on this subject since 
the last decade of the past century. In addition, the global 
biofertilizer market was valued at USD 2.6 billion in 
2021, and it may reach USD 4.5 billion by 2027, growing 
at a CAGR (compound annual growth rate) of 12% [3]. 
This indicates an actual tendency towards the use of such 
products in agriculture.

Plant growth-promoting rhizobacteria (PGPR) are 
the microbial group that offers the greatest potential for 
biofertilizer formulation because bacterial cells grow 
faster under laboratory conditions, and it is easier to per-
form scale processes [4]. Furthermore, there is robust 
evidence on the mechanisms involved in plant growth-
promoting (PGP) and increases in agricultural produc-
tion using PGPR have been reported [5].

However, the use of PGPR as an input in biofertilizer 
production still poses basic topics to be solved, cases 
reported as successful are not consistent and there is still 
a lack of results reproducibility [6]; these aspects have 
hampered further development in the biofertilizer indus-
try [7].

Bacterial indole-3-acetic acid (IAA) production is 
one of the leading plant growth promotion mechanisms 
described in PGPR [8–10]. More than 80% of bacte-
ria associated with the rhizosphere can synthesize IAA 
[11–13]. The production of IAA by rhizosphere bacteria 
is often selected as a desirable trait in bacterial strains for 
biological inoculants design [14]. Although IAA bacterial 
production is a PGP trait, this also is a virulence factor in 
plant-pathogenic microorganisms [12, 15], and a mecha-
nism in deleterious rhizobacteria [16–18].

Since the 1990s, publications associated with the isola-
tion of IAA-producing bacteria have increased exponen-
tially (Fig.  1). A rapid search in databases, repositories, 
and scientific search engines provides evidence for the 
number of publications using the bacterial production 
of IAA as a selection trait of isolates with PGPR poten-
tial (Fig. 1). It is important to highlight noteworthy that 
according to Scopus, 76% of publications on this topic is 
distributed among countries with emerging economies 
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(India, China, Pakistan, Brazil, Thailand, Indonesia, 
Mexico, Argentina, Malaysia, and Egypt), which could be 
related to the need to develop agricultural, sustainable, 
and economically convenient technologies.

In addition to the production of IAA or auxin-like com-
pounds by bacteria, and the endogenous content of plant 
auxins, the soil also has high auxin-like activity [19]. Early 
reports refer to the content of water-extractable IAA in 
the soil labile organic fraction [20– 22]. Another part of 
the soil organic matter involved in auxin activity is the 
humified fraction; this phenomenon is called the “auxin-
like effect” of humic substances [23–26]. The hormone 
activity of humified organic matter has given rise to the 
emergence of products of agrobiotechnological interest 
formulated based on humic substances [25, 27, 28].

The overexposure of plants to the auxin activity in 
the rhizosphere, when these are inoculated with IAA-
producing bacteria, could have negative effects on plant 
growth and it could explain part of the inconsistency of 
the inoculation of PGPR in planta. Much has been writ-
ten about the central of role auxins for plant growth and 
its multiple sources, including the plant itself, PGPR, 
soil native microbes, and soil organic matter. However, a 

comprehensive review articulating all these components 
is still lacking.

Here, we do not intend to address technical or theo-
retical details such as the bacterial IAA synthesis path-
ways or types of bacterial auxin-like compounds. It is a 
reasonable and argued opinion on a specific hypothesis: 
“total auxin level in the soil–plant system could partially 
explain the inconsistent results frequently obtained when 
PGPR are inoculated”. This hypothesis has practical 
implications for the research and application of biofer-
tilizers. Some data shown in this review are preliminary 
results of the authors. Therefore, the complete informa-
tion is part of future publications that will search for the 
answer to the questions derived from this research idea.

IAA production in PGPR
In bacteria, IAA production is part of the metabolic 
transformation mechanisms of tryptophan [29]. The 
available tryptophan can be used directly by bacteria for 
the synthesis of proteins [30], and nitrogen supply due to 
the amine groups released by its catalysis [30–32]. The 
enzyme Trp-aminotransferase catalyzes the deamination 

Fig. 1 Bibliometrics for “bacteria” “IAA” “isolation”
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of tryptophan during the IAA synthesis through the 
indole pyruvic acid pathway [12, 33]. However, excess 
tryptophan inhibits bacterial growth [31]. In this way, 
Patten et al. speculatively proposed that a function of the 
bacterial production of IAA is the detoxification of excess 
tryptophan [34]. Furthermore, recent evidence sug-
gests that the bacterial production of IAA is a protective 
mechanism against oxidative stress [35].

Auxins act by signal transduction mechanisms, so their 
role as a positive or deleterious factor to plant growth 
is dependent on concentration. Exogenous auxin excess 
generates damages in a hormonal loop regulation sys-
tem, and it can increase the ethylene concentration in 
roots. So, a decrease in plant growth is observed [36]. In 
this way, this trait could be plant-deleterious under some 
environmental conditions [8].

IAA production as a PGPR mechanism
IAA production by rhizobacteria undoubtedly plays a 
crucial role in the development of plants [6], and there 
is evidence regarding the PGP effect of IAA-producing 
bacteria. The effects of wheat seedlings inoculation with 
the mutant strain Azospirillum brasilense SPM7918, a 
low IAA producer, were estimated. Compared with the 
wild-type strain Sp6, SpM7918 showed a reduced ability 
to promote root system development [37].

Dobbelaere et  al. obtained evidence of bacterial IAA’s 
role in the wheat root system [38]. They performed 
experiments with wild and mutant Azospirillum brasi-
lense strains. The mutant was deficient in IAA production 
due to the mutation of the indole pyruvate decarboxylase 
gene (ipdC). Wild strain and IAA addition stimulated 
the root development in wheat seedling. However, the 
mutant strain inoculation did not induce any response to 
the treatment.

On the other hand, Patten and Glick evaluated the 
response of canola seedlings to the inoculation with 
wild and mutant Pseudomonas putida (ipdC-lower IAA 
producer) [39]. The wild strain increased in root length 
by 35–50% compared to the mutant strain. Idris et  al. 
evaluated IAA production by a wild strain of Bacillus 
amyloliquefaciens and five mutant strains with reduced 
IAA production [40]. Afterward, Lemna minor seed-
lings were treated with extracellular filtrates to determine 
the PGP effect of bacterial auxins; the mutated variants 
showed a significant decrease in IAA production, and 
only the wild strain and two mutant variants induced 
changes in plant growth.

Spaepen et al. described the effect of the A. brasilense 
Sp245 IAA producer strain on the root architecture of A. 
thaliana [9]. The inoculation of the wild strain induced 
the growth reduction in the seedling’s main root and 
allowed for the proliferation of lateral roots. Increases 

in the root and shoot fresh weight were observed; such 
changes did not occur when the seedling was treated 
with a mutant variant of the strain (FAJ0009—knockout 
of the ipdC gene). The transcriptomic analysis of the root 
tissues of the plant showed that the wild strain induced 
increases in the expression of genes involved with the cell 
wall organization, tissue differentiation, organogenesis, 
induced systemic resistance, and the response to ethyl-
ene. These physiological responses have been associated 
with the action of auxins in plants.

Recently Duca et  al. induced IAA overproduction in 
Pseudomonas sp. UW4 (WT-UW4), through its transfor-
mation with pRK415 plasmid, recombined with nit gene, 
which codifies nitrilase, an enzyme that converts indole-
3-acetonitrile in IAA [41]. Canola seedling inoculation 
with mutant strain stimulated the lateral root produc-
tion and increased roots length significantly regarding 
wild strain, this indicates the importance of the biosyn-
thetic pathway indole–acetonitrile in IAA synthesis, and 
it revealed the IAA role in canola growth promotion by 
UW4 strain.

Although there is solid empirical evidence on the influ-
ence of auxin-producing bacteria on plant development, 
its role as a PGPR mechanism still raises some questions; 
for example, IAA production in the soil does not act 
independently; it is synergistic with other PGPR mecha-
nisms [6]. Moreover, IAA production has been described 
as a virulence factor from plant pathology bacteria [15, 
42]. IAA bacterial production is also a mechanism impli-
cated in plant growth inhibition by deleterious rhizobac-
teria (DRB) [43].

Importance of IAA production for PGPR screening 
programs
Many PGPR prospecting programs are based on the iso-
lation and selection of IAA-producing strains. However, 
some evidence provided in this review has shown that 
this bias does not guarantee successful or reproduc-
ible results with their inoculation under field or green-
house conditions. Here, we present some examples of 
PGPR bioprospecting strategies based on IAA-produc-
ing strains selection. Etesami et  al. proposed the choice 
of bacterial IAA production as the best trait for PGPR 
strains selection for biotechnological purposes; they con-
cluded that a simple screening method to detect endo-
phytic and rhizosphere IAA-producing bacteria is more 
efficient, economic, and reduces the probability of leav-
ing out candidates with biotechnological potential [14].

Seven bacterial strains of the genus Acinetobacter spp., 
previously isolated from banana crops in Indonesia, were 
selected for their ability to produce IAA. The increase 
in IAA production was optimized by replacing tryp-
tophan with mung bean, sprout extract, and fish meal 
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[44]. Pereira et al. screened cultivable bacteria with plant 
growth activity from the sugarcane rhizosphere under 
various levels of drought stress, proposing that the IAA 
bacterial production is an essential criterion for PGPR 
strains selection and concluded that IAA producer bacte-
ria in soil could stimulate plant growth, even under stress 
conditions such as drought [45]. Genera Acidovorax and 
Pseudomonas were the main IAA producers.

Variability of IAA production across bacterial isolates
One of the factors that can influence the variability of 
the results with the inoculation of PGPRs under field or 
greenhouse conditions is the significant variation in the 
IAA bacterial production, even between isolates of the 
same species. Sridevi and Mallaiah evaluated the IAA 
production by 26 strains of Rhizobium sp., isolated from 
nodules of Sesbania sesban (L.) Merr. All the strains were 
positive for the qualitative detection of IAA, but the 
quantification allowed to establish that the amount of 
IAA was different between strains despite coming from 
the same nodules type and geographic zone. IAA pro-
duction among the 26 strains was also differed depending 
on the type of carbon and nitrogen source type [46].

Gilbert et  al. isolated 42 endophytic bacterial strains 
from duckweed tissues. Based on colorimetric and chro-
matographic evidence, they reported the production of 
different types of indole compounds by the strains and 
found a significant correlation between the indole type 
and the duckweed genus from which the bacterial strains 
were isolated. IAA bacterial production correlated only 
with isolates of some duckweed genera [47]. Therefore, 
this trait does not necessarily define the effectiveness of 
a strain as PGPR. This trait is neither an adequate filter to 
select candidate strains to develop biofertilizers.

Wagi and Ahmed selected 2 strains of Bacillus spp. 
with PGPR activity, and IAA production was one of the 
traits. However, its production was different between 
both strains, even under the same culture and incuba-
tion conditions [48]. This variability makes it difficult to 
choose IAA production as a selection trait for promising 
PGPRs.

Environmental modulation of IAA production in bacteria
The dependence of bacterial IAA synthesis on environ-
mental conditions could also partially explain the vari-
ability of the results with the PGPR inoculation in planta. 
Sarwar et  al. evaluated IAA production in 19 different 
soil samples. They determined in controlled experiments 
that IAA production by soil microbiota depends not only 
on tryptophan concentration, but also on environmental 
factors such as glucose and nitrogen concentration, pH, 
temperature, aeration, and incubation time. The effect 

of these variables is greater than the soil’s physical and 
chemical properties on the IAA production by the micro-
bial population [107].

Ona et al. evaluated the IAA production in vitro by A. 
brasilense Sp245 in a batch reactor (5 L), variating some 
environmental conditions. The experiments showed a 
maximum production of IAA and the overexpression of 
the IPDC gene (indole-pyruvate decarboxylase) with the 
addition of 50 µg.mL−1 of tryptophan, under microaero-
philic conditions (approximately 5% dissolved oxygen) 
for 18  h, other culture conditions (oxygen and trypto-
phan concentration) were less efficient for IAA produc-
tion [49]. Sridevi and Mallaiah showed differences in IAA 
and biomass production of 26 strains of Rhizobium sp. 
strains under different tryptophan concentration condi-
tions, carbon source, and nitrogen source conditions. 
Some strains increased their IAA production with man-
nitol as a carbon source, and others reacted similarly 
with sucrose, galactose, or glucose. Regarding the nitro-
gen source, some strains increased their IAA production 
with  KNO3,  NaNO3,  NaNO3 or,  (NH4)2SO4, while other 
strains showed this result with organic nitrogen sources 
such as L-glutamic acid [46].

Hoffman et  al. reported the isolation of endophytic 
bacterial strains of the Luteibacter sp. genus from the leaf 
tissue of tomato plants. The strains were higher produc-
ers when the tomato plants they were isolated from were 
previously exposed to phytopathogenic fungus Pestalo-
tiopsis aff. neglecta, the bacterial IAA production could 
also be modulated by exposure to phytopathogens, and it 
may be a phytoprotection response [50].

Chandra et  al. optimized the IAA production in  vitro 
by three bacterial isolates with PGPR activity. The isolates 
CA1001 and CA2004 showed better IAA production at 
pH 9 (91.7 mg.mL−1) and at temperature 37 °C (81.7 mg.
mL−1). Dextrose (1%) was the best carbon source for iso-
late CA1001, with an IAA production of 104  mg.mL−1. 
Isolate CA2004 showed a better production of IAA at 
1.5% and 1% beef extract as nitrogen sources, respec-
tively. Isolate CA1001 showed 32 mg.mL−1 IAA produc-
tion at 0.5% nicotinic acid concentration. The CA1001 
and CA2004 isolates were evaluated in three different 
plant models and showed variable results according to 
the plant model [51].

Through a trial with corn seedlings under hydroponic 
conditions, Karnwal evaluated the effect of root exudates 
on IAA production by the bacterial strains Kocuria rosea 
VB1 and Arthrobacter luteolus VB2. The exudation pat-
terns (type of compound and concentration) significantly 
modulated the IAA production of the strains, which has 
interesting practical implications for its possible inocula-
tion in soil [52].



Page 6 of 17Pantoja‑Guerra et al. Chem. Biol. Technol. Agric.            (2023) 10:6 

Auxin response in plants: determinants of variation
Auxins lead to the formation of new tissues and plant 
organogenesis; when exogenous factors such as light pat-
terns, temperature changes and irrigation regime syn-
chronize with endogenous factors such as gravitropic 
responses or changes in plant phenology, they induce the 
formation of new tissues that facilitate the adaptation of 
plants to such changes.

Auxins are accumulated in individual cells or small 
meristematic cell groups out of emergent plant tissue as 
a response to these stimuli; simultaneously, the rest of the 
auxin content migrates in the opposite direction to the 
tissue growth (Fig.  2); in this way, the response of aux-
ins is triggered in the tissue in formation [53–55]. PIN 
(PIN-FORMED proteins) transport proteins regulate the 
concentrations of auxins inside the cell and facilitate their 
entry into and exit from the interior of endosomes, as 
well as their exchange within the extracellular medium.

When the required amount of IAA accumulates, it 
reaches the nucleus of the plant cell and induces the 
repressor peptide degradation (AUX/IAA), which regu-
lates the transcription of the genes in charge of coding 
the auxin response factors (ARF) (Fig. 2) [55, 56]. Specific 
amounts of auxins in growing tissues or during organo-
genesis act as “adhesion” factors between the AUX/IAA 
repressor proteins and one ubiquitin, the latter transport-
ing the repressor complex to the 26S proteasome, which 
degrades the repression and releases the expression of 
ARF genes.

The ARF expression regulates various processes of 
plant growth and development. The NPH4/ARF7 genes 
are expressed, which lead to the expression of a reporter 
gene in aerial and vascular tissues of primary roots; 
ARF19 is an active promoter in aerial vascular roots 
and tissues in seedlings, NPH4/ARF7 and MP/ARF5 are 

expressed during embryogenesis, HSS/ARF2 is related 
to seedling growth, while ARF6 and FWF/ARF8 aid in 
the formation of flowers [57]. ARF1 and ARF2 control 
leaf senescence and floral organ abscission. ARF3 and 
ARF4 participate in organ polarity specification. ARF3 
also integrates the functions of AGAMOUS (AG) and 
APETALA2 (AP2) during floral meristem determinacy 
[58, 59].

In tomato plants, SlARF3 forms epidermal cells and 
trichomes; SlARF9 regulates cell division during early 
fruit development; SlARF7 is associated with crosstalk 
between auxin and gibberellin signaling; SlARF4 regu-
lates the sugar metabolism during fruit development [58]. 
In rice, OsARF16 and OsARF12 regulate the iron defi-
ciency response [58]. In addition, 50 ARF genes (OfARFs) 
were detected in Osmanthus fragrans, and many OfARF 
genes are associated with regulating flower developmen-
tal stages [60].

On the other hand, IAA sticks to the ABP1 membrane 
receptor, which activates a cascade reaction through 
a second messenger that enters the cell nucleus and 
induces the overexpression of the H + ATPase enzyme. 
Evidence shows the increase in activity of the preexist-
ing H + ATPases in the cell due to the bond between 
IAA and ABP1. Both phenomena increase the pumping 
of H + into the apoplastic space allowing its acidifica-
tion [61]. The apoplast acidification generates a loss in 
the rigidity of the cell wall, which facilitates its flexibil-
ity during root elongation and induces the active mitosis 
points emergence that becomes new secondary roots [26, 
62]. The accumulation of H + also changes the polarity 
of IAA through protonation, facilitating auxin transport 
between plant tissues [57].

Auxins act through a system of signal transduction. 
Such mechanisms are dependent on the concentration of 
the signaling molecule, which indicates that, during their 
formation, each tissue requires a specific concentration 
of auxins to trigger the response of elongation and cell 
division. So, increments in the optimal concentration of 
auxins induce plant growth inhibition, and changes in its 
development patterns can be observed [63].

Endogenous factors of modulation
The metabolism of auxins is not entirely clear. The com-
plexity of homeostatic processes generates a lot of dif-
ficulties with deterministic approximations of changes 
in the IAA concentrations and their derivatives at each 
stage of plant growth. However, some progress has been 
made, as explained below.

Variability in endogenous auxin activity by plant species
Some publications have described the differential effect 
with the application of exogenous auxins in mono and 

Fig. 2 IAA mechanism in the plant cell
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eudicot plants. Masuda made an interesting experimen-
tal approach to the effect of IAA on tissue models of 
monocot (oat coleoptiles) and dicot (azuki epicotyls) 
plants. The author proposed that if the effects of auxin 
activity are observed in cell elongation and division, it 
is necessary to know the cell wall composition of both 
models before and during IAA-induced elongation. In 
this way, it would explain the differential response of 
both models to auxins. The uronic acid found in hemi-
cellulose is considered a labile compound. Chromato-
graphic patterns and methylation analysis results show 
that the oat coleoptile cell wall contains a small amount 
of xyloglucan in hemicellulose, auxins decrease the 
glucans content, and it causes an increase in arabinose 
and xylose. The rapid cell extension induced by auxins 
in monocots could be due to the breakdown of inter-
connections between cellulose microfibrils. The data 
obtained from epicotyls of azuki showed that approxi-
mately 80% of the xyloglucan chains linked by hydrogen 
with cellulose microfibrils are linked to rhamnogalactu-
ronan, in dicots, the main constituents of hemicellulose 
are xyloglucans and galactans. At the same time, rham-
nose is found only in pectin compounds [64].

Usually, eudicot plants are more sensitive to exog-
enous auxins and respond to lower hormone concen-
trations than monocot plants; this is the operating 
principle of auxinic herbicides. The explanation for this 
phenomenon has been hypothesized in three points: 1) 
the transport of auxins during embryogenesis is essen-
tial for plant development that defines the differentia-
tion of the tissues. In this way, two cotyledons facilitate 
the auxins transport, which increases their sensitiv-
ity; 2) the reticulated vascularization of the leaves of 
dicot plants facilitates the distribution of the aux-
ins and allows the plant to respond to small hormone 
doses, in comparison with the parallel vascularization 
of the monocot plants; 3) the root architecture in dicot 
plants consists of a primary root from which lateral 
roots emerge, while in monocot shoot-borne, adventi-
tious roots are the predominant phenotype; this implies 
a fibrous constitution, which is less sensitive to exog-
enous auxins and leads to the degradation of auxins 
before its activity starts [65, 66].

Due to the above, monocot and dicot plants probably 
respond differently to inoculation with auxin-producing 
bacteria since some evidence indicates that the inoculum 
concentration emulates the “dose effect” of the exogenous 
application of auxins in plants [67]. Some exploratory 
tests developed in our laboratory show that maize seed-
lings (monocot) respond phenotypically to doses from 
1–10  ppm of IAA (Fig.  3), while in eudicot models as 
cucumbers, they respond to doses from 0–1 ppm (Fig. 4).

In this way, exploratory assays with these plant mod-
els, but applying several inoculum concentrations of 
auxin producer PGPR strain Lysinibacillus sp. PB211, 
has allowed detecting differential effects in plant biomass 
production in both plant types according to inoculum 
concentration. These experiments were done in green-
house conditions using sand as plant growth substrate, 
and plant mineral nutrition was supplied with Hoagland 
solution during irrigation.

Maize plants consistently presented (after three repeti-
tions of the test) significant increases in biomass produc-
tion with the inoculation of 1E8 spores per mL of PB211 
(Fig. 5), while in cucumber this result was obtained with 
the inoculation of a concentration of 1E4 spores per mL 
(Fig.  6). Suarez et  al. described a directly proportional 
relationship between the inoculum concentration of a 
bacterial strain producing auxins and the expected effect 
of auxin excess on plants [67]. On the other hand, these 
results agree with the previously described regarding the 
sensitivity of mono and dicot plants to exogenous auxins.

Variability by developmental stage
In vitro studies with corn grains allowed to know the 
endogenous mobility rate of auxins (homeostasis) from 
the seed towards the emerging tissues during germina-
tion in corn through the radioactive isotope dilution 
technique. During germination, conjugation, hydrolysis, 
and the mobility from the endosperm towards the roots 
and leaves regulate changes in the concentration of avail-
able IAA. In this way, the concentration of endogenous 
IAA varies according to the growth stage of the plants. 
This document also provides evidence of the effect of the 
exogenous addition of auxins and light stimuli on endog-
enous IAA homeostasis [68].

Dann et al. found short-time variations in the endog-
enous IAA concentration in branches of Prunus persica 
(L.) Batsch, which was consistent with changes in the 
diameter of branches [69]. These results indicate the 
relationship of plant growth with changes in the basi-
petal transport of endogenous auxins. Kobayashi et al. 
measured the IAA concentration in the leaves and ears 
of Oryza sativa L. cultivar Nihonbare (japonica vari-
ety) plants throughout their entire growth cycle. The 
IAA content in the ears was higher than in the leaves. 
However, the proportions of free and conjugated IAA 
changed according to the growth stage. At the begin-
ning of the tillering stage, there was a significant 
decrease in the conjugated IAA in leaves, and the free 
IAA remained stable and superior until the initiation of 
the panicle. There was a significant increase in the con-
jugated IAA in the ears from the heading stage to the 
anthesis, while the free IAA decreased. After this stage, 
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both types of IAA decreased [70]. These results pro-
vide evidence of the fluctuation of IAA concentrations 
for each stage of plant growth. Nordstrom and Eliasson 
evaluated the content of IAA and IAAsp (IAA conju-
gated with the amino acid aspartic acid) in various 
parts of pea leaf cuttings (Pisum sativum L. cv. Marma) 
during the formation of adventitious roots. From day 0 
to day 3, there was a significant increase in IAAsp lev-
els in the intact plant and a reduction in IAA levels in 
the internodes 4 and 5 of the cuttings. A decrease in 
IAA level in the root regeneration zone was achieved 
by eliminating the shoot apex, resulting in almost com-
plete inhibition of root formation. The conjugation con-
trols the accumulation of IAA in the tissue with Asp, 
and basipetal transport mobility from the apex root to 
the root’s tip occurs [71]. Gokani and Thaker provided 
experimental evidence for the role of endogenous auxin 

production on cotton fiber length in three different 
cultivars; the content of free and conjugated IAA var-
ies over time and between them. They also described 
a positive correlation between auxin content and fiber 
length. This correlation also varies between cultivars. 
The type of auxin (synthetic or natural) in in  vitro 
experiments also showed an effect on the length and 
weight of the fibers [72].

External factors of modulation
Effects of light on changes in endogenous auxin 
concentration
Light is an environmental factor regulating plants’ IAA 
synthesis, transport, and homeostasis. The FIN219 gene 
encodes a protein similar to the GH3 family proteins, and 
auxins induce its expression. In addition, this gene inter-
acts with another signaling component of phytochrome 

Fig. 3 Effects of IAA on the root of maize seedlings
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Fig. 4 Effects of IAA on the root of cucumber seedlings

Fig. 5 Effect of Lysinibacillus sp. PB211 on maize plants

Fig. 6 Effect of Lysinibacillus sp. PB211 on cucumber plants
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A; this gene regulates plants’ response to the far-red spec-
trum of light. The FIN219 mutant exhibited an elongated 
hypocotyl phenotype with the far-red spectrum [73].

Hoecker et  al. described the red-light spectrum effect 
on IAA homeostasis in Arabidopsis thaliana (L.) Heynh 
plants. The mutation in the red1 receptor-induced 
defects in cytochrome P450 CYP83B1. Therefore, the 
production of indole glucosinolates from the indole-3-ac-
etaldoxime (IAOx) pathway decreases and consequently 
increases IAA synthesis. Plants with overproduction of 
IAA acquire an ethyloated phenotype [74]. Sorin et  al. 
used Arabidopsis thaliana mutants better to understand 
the physiological and molecular basis of adventitious 
rooting. The argonaute1 (ago1) mutants show almost 
complete inhibition in adventitious root formation. The 
defect in adventitious rooting observed in ago1 was cor-
related with hypersensitivity to light (due to overexpres-
sion of phytochrome A- phyA), and an apparent decrease 
in endogenous levels of free and conjugated IAA was 
shown. The reaction of all ago1-3 mutants was differential 
for each light spectrum evaluated, but the phenotype was 
permanently stunted. The ARF17 gene, auxin-inducible 
gene repressor, was overexpressed in hypocotyls ago1-3. 
The overexpression of ARF17 showed less production of 
adventitious roots than the wild type, and it conserved a 
lower expression of GH3 genes [75].

The COP1 protein (CONSTITUTIVE PHOTOMOR-
PHOGENIC 1) is a type of ubiquitin ligase. It is a central 
integrator of photoreceptor responses through CSN rec-
ognition (the COP9 signalosome); subsequently, COP1 
is degraded by the 26S proteasome. Light through COP1 
modulates root and shoots growth in Arabidopsis. COP1 
regulates auxin transport from shoot to root by control-
ling the transcription of the PIN-FORMED1 auxin out-
put carrier gene (PIN1). In this way, the levels of auxins 
derived from the shoots to the roots are adjusted. In 
addition, the intracellular distribution of PIN1 and PIN2 
in the root is dependent on COP1, which facilitates the 
adjustment of root growth [76].

The tip of the root plants shows positive gravitropism; 
this behavior is governed by the root cap. Suzuki et  al. 
experimentally demonstrated the role of auxins and 
their light dependence on modulating root growth. Corn 
seedlings exposed to light showed the typical reaction 
of positive gravitropism ("U" curvature of the root tip). 
Decapitation (removal of cap root) of the root tip gener-
ated roots without curvature. The exposure of seedlings 
to light generated a higher content of endogenous root 
auxins than plants in darkness. The effect of light on root 
endogenous auxins content was reverted by decapitation 
of the root tip. The treatment of light-exposed seedlings 
with chemical auxin blockers inhibited the curved phe-
notype. The overexpression of the Zmvt2 and Zmyuc 

genes suggests that IAA accumulation in the transition 
zone is due to light-induced activation [77].

Effects of water availability on endogenous auxin activity
Pustovoitova et al. evaluated the effect of water stress on 
IAA content in Cucumis sativus L. leaves. IAA concen-
tration was higher in irrigated plants from the first days 
of the experiment. After day 4, both treatments (with and 
without irrigation) showed a decrease in the levels of IAA 
in the leaves. However, on day 15, the IAA levels in the 
soil without irrigation were significantly lower. Abscisic 
acid concentrations also modulate the homeostasis of 
IAA under dryness conditions [78].

In experiments performed with rice (japonica rice 
Zhonghua 11—Oryza sativa subsp. Japonica), Xiushui 
11 (XS11), indica rice Zhenshan 97 (ZS97), Minghui 63 
(MH63), 9311, IR64, and ZH11 some observations were 
made related to various abiotic stress stimuli. The endog-
enous content of IAA decreased under drought stress 
conditions but increased gradually under heat and cold 
stress. Several IAA biosynthetic and pathway-signaling 
genes showed changes in their transcription under these 
conditions, and these transcription changes were corre-
lated with endogenous IAA concentrations [79].

In an experimental system with mutant plants 
(DR5:GUS), it was observed that drought stress signifi-
cantly decreased auxin activity in Arabidopsis plants. 
Mutants yuc1, yuc2, and yuc6 with lower endogenous 
IAA levels showed decreased stress resistance com-
pared to wild-type plants. The viability of the plants was 
restored with the exogenous addition of IAA. The resist-
ance of plants to drought stress is significantly modulated 
by auxin activity. Additionally, the endogenous hormone 
content is regulated by water availability in the soil [80].

Auxins have a direct effect on the resistance of 
plants to drought stress. The addition of IAA signifi-
cantly increased the dry weight and relative water con-
tent of clover plants under drought stress. This effect 
was reversed by adding an IAA inhibitor (L-AOPP). In 
addition, treating IAA in plants under drought stress 
increased the endogenous content of abscisic and jas-
monic acid. Exogenous IAA treatment also up-regulated 
the auxin response genes (GH3.1, GH3.9, IAA8) and 
stress response genes (bZIP11, DREB2, MYB14, MYB48, 
WRKY2, WRKY56, WRKY108715, and RD22) [81].

Changes in nutrient availability modulate endogenous IAA 
in plants
Bates and Lynch evaluated the effect of phosphorus (P) 
variation on root hair elongation in A. thaliana. Plants 
in P starvation (only supplemented with 1  mmol of P) 
presented a phenotype with significantly elongated root 
hairs compared to plants supplemented with sufficient 
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phosphorus (1 mol). These results were attributed to an 
auxin signaling response, which induces the emergence 
of root hairs and stimulates their elongation. Hence, the 
plants compensate for the lack of phosphorus by seek-
ing new sources. The mutant A. thaliana—axr2 (low 
concentration of auxins in the roots) did not present the 
elongated phenotype under P starvation conditions, but 
this was restored by adding exogenous auxins [82]. The 
mutant A. thaliana—axr2 (low concentration of auxins 
in the roots) did not present the elongated phenotype 
under P starvation conditions, but this was restored with 
the addition of exogenous auxins. The role of auxin on 
root architecture modulation under P starvation was also 
proven through tests with mutant Arabidopsis thaliana 
DR5:uidA plants [83].

Pérez-Torres et  al. developed a theoretical model 
based on a transcriptomic experimental approach of A. 
thaliana plants growing under conditions of phospho-
rus deficiency. The authors observed that under condi-
tions of inorganic phosphorus (Pi) deficiency, there is 
an increase in the expression of TIR1 (Transport Inhibi-
tor Response1), which induces the degradation of the 
repressor AUX/IAA and triggers the expression of the 
auxin response factor ARF19, which is responsible for 
the modulation of the root architecture. In this way, they 
concluded that phosphorus deficiency increases the sen-
sitivity of plants to auxins [84]. Miura et al. contributed 
to the refinement of the theoretical model of auxin reg-
ulation in A. thaliana under conditions of phosphorus 
deficiency. They provide evidence that SIZ1 (E3 SUMO-
protein ligase SIZ1-transcriptional activator controlling 
the phosphate deficiency responses) participates in the 
regulation of auxins activity to modulate root system 
architecture in response to Pi starvation. siz1 causes the 
typical phenotype in Pi starvation: the inhibition of pri-
mary root (PR) elongation and the promotion of lateral 
root (LR) formation. Although mutations in siz1 caused 
the opposite phenotype (more significant PR growth 
inhibition and LR development), this response was also 
obtained in wild plants supplemented with IAA under Pi 
starvation [85].

The APSR1 gene (Altered Phosphate Starvation 
Response1) modulates the expression of some changes 
in root architecture under Pi starvation conditions. The 
mutation of this gene in A. thaliana results in an indif-
ferent response to the Pi concentration in root architec-
ture variables. There is an indirect relationship between 
the expression of APSR1 and PIN7 auxin transporters 
functioning, which are less expressed in APSR1 mutant 
plants. Because of its structure and subcellular localiza-
tion, APSR1 probably acts as a transcription factor for 
PIN7 accumulation at the root tip [86].

Walch-Liu et  al. summarized the mechanisms of 
changes in root architecture in nitrogen-deficient media. 
In addition, they explain the role of the ANR1 gene and 
its effect on the regulation of auxin transport from leaves 
to roots. Thus, soil nitrogen deficiency also affects plants’ 
endogenous auxin homeostasis [87].

Tian et  al. evaluated the effect of fertilization with 
increasing nitrate concentrations on root architecture, 
endogenous nitrogen content, and endogenous auxin 
content in maize plants. Nitrates inhibited root growth, 
and this was due to a decrease in cell elongation and not 
due to changes in the length of the meristems. The IAA 
concentration in the phloem exudates was decreased 
with high concentrations of nitrates. Exogenous naphtha-
lene acetic acid (NAA) and IAA restored the elongated 
phenotype of the primary root at high nitrate concentra-
tions [88]. The auxin response of plants to nitrates availa-
bility is regulated by the presence of glutamine/glutamate 
or their ability to synthesize them. In an experiment, 
Gifford et  al. chemically blocked glutamine/glutamate 
synthesis in A. thaliana; consequently, the activity of 
the auxin response factor ARF8 and its 126 possible tar-
gets were repressed. ARF8 expression was subsequently 
restored with the addition of glutamine [89].

Effects of exogenous auxin activity on endogenous IAA 
homeostasis in plants
Some evidence indicates that the exogenous IAA activ-
ity in roots changes the endogenous homeostasis of 
IAA in plants. Inoculation of wheat plants with auxin-
producing PGPR strains induced significant increases in 
endogenous IAA synthesis. In addition, there was a posi-
tive correlation between the bacterial production of aux-
ins and endogenous synthesis in plants of Vigna radiata 
[90]. Applying 100  mg.L−1 C of humic acids extracted 
from leonardite under hydroponic conditions in a growth 
chamber induced significant increases in IAA synthesis 
in leaves and roots of Cucumis sativus L. cv Ashley [91].

Cai et al. studied the variations in endogenous hormo-
nal content in two wheat varieties by adding exogenous 
hormones under field conditions. The addition of exog-
enous IAA induced a significant increase in the concen-
tration of endogenous IAA in shoots from the second 
day after the treatment. The addition of exogenous IAA 
negatively correlated with biomass production and tiller 
length [92].

Auxin‑like activity of soil
The soils able to harbor vegetation naturally contain spe-
cific concentrations of auxins, which induce the hormo-
nal activity of soil on the development of plants; these 
auxins come from the microbial activity of soil as well 
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from root exudation [22, 63, 107]. Some early reports 
since 1942 described the detection and quantification 
of bioavailable IAA in forest pristine soil samples and 
degraded soils from North America, a direct relation-
ship between soil fertility and IAA content was observed 
[20]. Afterward, Frankenberger and Brunner described a 
methodology for analytical quantification of IAA in soil 
samples by HPLC (high-performance liquid chromatog-
raphy); the detection of some intermediate compounds, 
such as indole acetamide acid and indole pyruvic acid, 
led to the deduction of the metabolic pathways used by 
soil microbiota for IAA synthesis [21]. More recently 
Szajdak and Maryganova quantified IAA contents on 
soil samples from Poland, and they found a direct rela-
tionship between the IAA concentration and humic sub-
stances content in the soil. Additionally, soils previously 
treated with peat had a higher content of IAA and humic 
substances [22].

On the other hand, humic substances have a biologi-
cal reactivity type, which exerts a hormonal effect of the 
auxin type called the “auxin-like effect”; such phenom-
enon is explained due to their chemical heterogeneity 
and the distribution of the hydrophobic and hydrophilic 
domains [24, 24–26, 62, 93, 94]. This has been described 
by (de Sanfilippo et  al., 1990), who suggest that, due to 
this effect, the application of high amounts of humic 
acids in plants is restrictive for their development [95].

Canellas et al. described the bioactivity of humic acids 
obtained from bovine manure vermicomposting; the 
addition of some concentrations of humic acids induced 
increases in length, surface area, and the number of lat-
eral roots of maize seedlings in a soil-free experimental 
system; an increase of the H + ATPase enzyme activity 
was also observed, such enzyme activity enhances the 
flux and gradient of hydrogen ions in the apoplastic 
space, which is associated with rooting elongation, this 
effect is similar to the one obtained by adding IAA in 
plant roots [23]. Furthermore, interchangeable auxin 
groups (as IAA) were also detected by structural chemi-
cal analysis of the humic acids from the compost. These 
results are solid evidence of the hormonal activity attrib-
uted to humic acids. This last finding agrees with recent 
reports indicating that some labile fractions can disinte-
grate from the humic suprastructure and interact with 
the root surface or enter the root tissues [24, 93, 96–98].

Canellas and Olivares [26] and Canellas et al. [25] dis-
played experimental evidence that correlates the hor-
monal activity of humic acids with changes in exudation 
root patterns, which implies changes in the rhizosphere 
microbial communities selection; such results suggest 
that the PGP effect of some rhizobacteria might depend 
on the soil humic content. It implies the need to explore 
this topic in the design of new biofertilizers.

These results agree with Valero et  al. who detected 
chemical groups similar to IAA in humic acids coming 
from bacterial solubilization lignite [99]. Then, Valero 
et al. provide evidence of auxin-like effect of these humic 
acids [100]. Taborda and Valero (2019-unpublished) 
found the effect of humic acids on the rooting of cactus 
plants in desert areas of Colombian Guajira (Fig. 7), this 
effect is attributed to the auxin-like activity of humic 
acids.

Although the bioactivity of humic substances has also 
been associated with effects type cytokinin [108, 109, 
113], abscisic acid—ABA [110, 110], alkamides [111], NO 
[112], gibberellic acid [25, 113], and the enzymatic home-
ostasis of reactive oxygen species [93], the hormonal 
mechanism of humified organic matter with more avail-
able evidence is the so-called auxin-like effect [93, 113].

Sum of effects: the soil–plant–bacteria system 
and the consistency of IAA‑producing PGPR.
Sum of “auxin‑like” effects
Auxins trigger a series of reactions associated with plant 
growth, especially during organogenesis and the emer-
gence of new tissues; for example, during the prolifera-
tion of secondary roots, which increases the absorption 
of nutrients by the plants and facilitates their adaptation 
to soil conditions; however, this effect is mediated by 
specific concentrations of auxins, and the excess of such 
molecules has a deleterious effect on plant development.

Although IAA production is a PGPR mechanism, 
their inoculation at inadequate concentrations dur-
ing periods of high auxin production by plants could be 

Fig. 7 Effect of humic acids on cactus plants root system
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deleterious for plant growth. Puga-Freitas et al. evaluated 
the growth and transcriptomic of A. thaliana (WT col-
0) and a mutant version of it (aux1-7/axr2-4), deficient 
in auxins production, with less IAA content in the root 
in soils with 2 levels of auxin-like activity by addition of 
earthworms. Mutant plants improved their growth and 
increased gene expression related to biotic and hormonal 
induction, cell structure, and differentiation; on the other 
hand, wild plants showed attenuated growth; this result 
was attributed to excess auxin content in soil–root inter-
action [101].

Suarez et  al. evaluated the effect of the inocula-
tion of Micrococcus luteus (high auxin producer) 
on A. thaliana at three concentrations  (105,  106, and 
 107  CFU   mL−1), to classify it either as a deleterious 
rhizobacterium (DRB) or as PGPR. The combined 
application of the highest dose of the bacterial strain 
and earthworms (Aporrectodea caliginosa) had a dele-
terious effect on the growth of A. thaliana [67]. These 
results agree with an increase in the concentration of 
IAA in the soil of the experimental system with the 
application of these treatments. Therefore, it is possi-
ble that the interaction of PGPR strains with the high 
production of IAA under high auxin activity condi-
tions in the soil can have a negative effect on plant 
growth. Although, in this case, the authors did not dis-
cuss the effect that earthworms have on auxin activ-
ity in the soil, the processing of soil organic matter 
by these organisms generates compounds with auxin 
activity, as shown by Canellas et al. [23], and Puga-Fre-
itas et al. [101].

Recently, Blouin suggested that auxin content acts in 
signaling within the chemical communication process 
between soil and plants. It is evidence of the coevolu-
tion between plants and other soil organisms [102]. In 
this way, some bacteria could hurt plant development 
if they are inoculated in soils with high auxin activity 
and plants with high levels of auxins in root tissues.

Considering that most bacteria isolated from the 
rhizosphere can produce auxins, that plant auxin 
endogenous content varies according to the spe-
cies and the phenological stage of development, and 
the soil has auxin activity, it is necessary to explore 
the effect of this auxin context on PGPR activity to 
enhance the production of biofertilizers. These top-
ics show the need to consider the characteristics of 
the soil and its humic content before applying PGPR 
inoculants. For example, in some soil types, it might 
be convenient to inoculate selected strains by express-
ing other mechanisms different from the production of 
IAA or low production. This consideration is impor-
tant because PGPR strains with high production of 
IAA are associated with positive effects in promoting 

plant growth. However, this may not be true in all 
cases.

One of the biggest challenges in producing biofertiliz-
ers is achieving the reproducibility of field results; the 
literature review allows for the detection of inconsist-
encies based on the knowledge gaps of PGPR mecha-
nisms and the conditions in which they are evaluated in 
the field. In this way, the total auxin level in the PGPR–
plant–soil relationship is a topic thus far unexplored in 
the design and application of biotechnological products 
of agricultural interest.

Effect of IAA sum on other PGPR mechanisms
Many PGPR strain screening programs for biofertilizer 
development are based on selecting a particular trait. 
However, the bacterial production of auxins is usually 
linked to the expression of other mechanisms. In this 
way, due to the dramatic effects of the bacterial produc-
tion of IAA on plant growth, it is reasonable to propose 
screening programs that always consider the bacterial 
production of IAA regardless of the trait pursued. Here 
are some examples.

Glick et  al. evaluated the effect of the strain Pseu-
domonas putida GR12-2 and its mutant version 
GR12-2/acd68, with deficiencies in ACC deaminase 
activity. The wild strain presented a marked PGPR 
effect on variables such as length, dry weight, and dry 
weight of the roots in canola seedlings. However, the 
mutant version of the strain presented harmful effects. 
In some cases, it presented lower growth than the con-
trol. The authors speculatively explained this result as 
follows: a reduction in ACC deaminase activity induces 
an increase in the concentration of ACC (1-aminocy-
clopropane-1-carboxylic acid), a precursor of ethylene 
(plant growth inhibitor), and it is synthesized from IAA 
[103]. Therefore, an imbalance in the bacterial produc-
tion of IAA and ACC deaminase activity could harm 
plants.

Duca et al. [41] provided evidence of the approaches of 
Glick et al. [103]. They evaluated the effect of the overex-
pression of IAA synthesis of the strain Pseudomonas sp. 
UW4 on its ACC deaminase activity. They used mutants 
that overexpress the activity of genes of the IAA biosyn-
thetic pathway from UW4 (IAM pathway). All trans-
formed strains increase the bacterial production of IAA 
and significantly reduce ACC deaminase activity. IAA is a 
precursor to the synthesis of ACC; this, in turn, is a pre-
cursor to ethylene synthesis. In this way, the overproduc-
tion of IAA alters the IAA–ethylene feedback regulation, 
which could affect ACC deaminase activity.

B. subtilis LK14, isolated from Moringa peregrina 
bark, was selected among several endophytic strains for 
its phenotypic traits associated with PGPR activity (high 
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ACC deaminase activity and high IAA production). 
Although this strain presented an apparent PGPR effect 
in tomato plants, the authors suggested a positive and 
complementary interaction between both traits [104].

Bacillus amyloliquefaciens FZB45 showed the ability 
to promote Chinese cabbage growth due to its phytase 
activity in high concentrations of phytates. Addition-
ally, FZB45 directly affected plant growth, probably due 
to IAA production. The bacterial production of auxins 
creates a response dependent on the inoculum concen-
tration; therefore, the authors suggest an interaction with 
the effects mediated by phytase [105].

Chaiharn and Lumyong screened bacterial strains 
with PGPR potential from rhizosphere agricultural soil. 
They selected the strains based on their ability to pro-
duce IAA and to solubilize inorganic phosphate in vitro. 
Based on these results, the authors suggest a combined 
effect of both mechanisms on the significant increase in 
the length of adventitious roots of bean plants [106]. The 
effect of exogenous auxins and variations in the concen-
tration of inorganic phosphorus on the root architecture 
has been previously reported.

Conclusions
We propose reevaluating the production of IAA as a 
trait to define the effectiveness of a bacteria as PGPR. 
Although bacterial IAA production by PGPR causes pos-
itive effects on plant growth, it is difficult to reconcile this 
effect with the rest of the auxin-like factors, such as plant, 
soil, and microbial populations in the rhizosphere.

In the first stage, we mentioned some research works 
that reported the IAA production as a selection trait for 
the PGPR isolation; we observed some inconsistencies in 
the results obtained and displayed the inconvenience of 
this trait as a selection factor. Later, some environmen-
tal factors that modulate the IAA production by bacte-
ria were explained. We highlighted that the variability in 
IAA bacterial production is a modulating factor of the 
results of the PGPR inoculation in planta.

On the other hand, some factors that determine the 
variation of the endogenous auxin response of plants 
were addressed. Factors such as plant species, growth 
stage, light type and intensity, water availability, nutrient 
availability, and exposure to exogenous auxin sources in 
the rhizosphere modulate endogenous auxin synthesis 
and signaling in plants. Therefore, these factors may also 
affect the effectiveness of IAA-producing bacteria inocu-
lation in plants.

Finally, this work shows the role of soil auxin-like activ-
ity, especially from humified organic matter, on plant 
growth and suggests that this effect can also modulate 
the PGP activity of IAA-producing bacteria. Therefore, 

the sum of auxin-like effects: IAA bacterial production, 
endogenous auxin signaling in plants, and the soil auxin-
like effect, as well as all the possible variation factors in 
each of them, can potentially affect the effectiveness of 
biofertilizers and biostimulants in agriculture.

In this way, this manuscript presented critical reason-
ing about the importance of auxin interaction in PGPR 
formulation and application. Moreover, this highlights 
the need to do trials to elucidate biochemical, ecologi-
cal, and evolutionary topics in the soil–plant–bacteria 
relationship to obtain better practical biotechnological 
applications.
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