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Abstract 

Background The interest in the development of products that cause less damage to the environment associated 
with the loss of efficiency of chemical nematicides for the control management of nematodes is growing. Thus, the 
adoption of biological control or the use of biopesticides are excellent options for these products like those based 
on chemical compounds, such as commercial pesticides and anthelmintic (AH) drugs. Spent mushroom substrate 
(SMS), a product of the mushroom production industry, has great potential for biological control due to its high levels 
of mycelium, residual enzymes, high humidity and unique microbiota that may contain other nematode antagonists. 
For this reason, this study aimed to evaluate the potential of spent mushroom substrate (SMS) from Pleurotus djamor 
cultivation in the control of Meloidogyne javanica in lettuce and assess its effects on plant resistance enzymes and soil 
biological activity.

Results SMS reduced by 98.68% the nematode reproduction, and a plateau was reached at SMS concentrations 
above 15%. For the population density of nematode (nematode g‑1 root), this reduction was 99,75%. Higher con‑
centrations of SMS caused phytotoxicity in lettuce, with reduction of vegetative variables, chlorophyll content and 
nitrogen balance in the leaves; however, SMS increased the anthocyanin content. Guaiacol peroxidase activity was the 
highest in treatments containing 0% and 30% SMS and phenylalanine ammonia‑lyase activity was the highest in the 
60% SMS treatment, suggesting induction of resistance to M. javanica. The maximum soil basal respiration was esti‑
mated to be achieved with 25.75% SMS, whereas the maximum soil metabolic quotient was estimated to be achieved 
with 8.8% SMS. Soil biomass carbon increased with increasing SMS proportion.

Conclusions Spent substrate from P. djamor cultivation incorporated in soil at proportions of 15, 30, 45 and 60% is 
efficient in controlling M. javanica in lettuce.
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Graphical Abstract

Background
The global edible mushroom market is estimated at 
US$16.7 billion and projected to reach US$20.4 billion 
by 2025 [19]. In Brazil, predictions indicate a growth in 
mushroom production and consumption. This is due to 
the process of cultural interconnection, which includes 
changing culinary habits and focusing on healthier and 
more functional foods (Martínez-Ibarra 2019). In most 
Western countries, a large part of mushroom production 
is still carried out under rustic conditions by small rural 
producers, who combine fungiculture with other agricul-
tural activities [36].

Mushrooms can be grown on different substrates, 
such as wood, fruit pulp and peel, banana leaves, cof-
fee pulp [45, 55], grasses [41, 43], olive pruning residues 
[1], and industrial effluents [28], often combined with 
nitrogen or protein sources to maintain an adequate 
carbon/nitrogen (C/N) ratio [39]. Examples of nitro-
gen and protein sources include plant and oilseed meals 
(originating from soybean, cotton, sunflower, wheat, 
and maize, rice straw, sugarcane bagasse, juice waste, 
and wine waste [8, 9]. After a given number of cycles, 
which may vary according to fungal species and grow-
ing medium and commercial production, the substrate 
used for mushroom production has to be changed, gen-
erating a residue commonly known as spent mushroom 

substrate (SMS. The latter can be used as animal feed 
[60] as well as for bioremediation and organic ferti-
lization [54], e.g., for tomato and cauliflower plants 
[29] [66], Sirić et al. 2022. An interesting characteristic 
is that some cultivated mushrooms have nematopha-
gous activity, holding potential in the control of soil 
nematodes [5, 23, 41].

Several members of the mushroom genus Pleurotus 
have been reported to interact with nematodes, such 
as P. cornucopiae [23, 69], P. cystidiosus, P. strigosus, P. 
subareolatus [69], P. florida [23], P. ostreatus [23, 41, 
69], P. sajor-caju [23], and P. tuber-regium [24, 41]. 
Some species can act as predators of plant–parasitic 
nematodes [69], extending their hyphae and paralyz-
ing these phytoparasites through secretion of toxins, 
such as ostreatins, or production of toxin-containing 
structures known as toxocysts [6, 15, 24]. It is note-
worthy that the information on interactions between 
nematodes and Pleurotus djamor is scarce. In addition 
to controlling nematodes, SMS can be used to improve 
soil microbiological quality and increase organic matter 
and mineral availability, stimulating plant development 
[20] and reducing leaching. Furthermore, studies sug-
gested that SMS amendment may induce plant resist-
ance against pathogens, owing to the presence of 
secondary metabolites and toxic fungal structures [4, 



Page 3 of 11Lopes et al. Chem. Biol. Technol. Agric.           (2023) 10:13  

57]. It may be feasible to apply SMS as substrate/sup-
plement for vegetable seedling production. An interest-
ing advantage of such use is that, at the time of planting 
in the field, seedlings would have been pre-exposed to 
fungi and their metabolites.

Herein, it was hypothesized that spent substrate from 
P. djamor cultivation may be able to control nematodes 
and activate natural defense mechanisms in plants. This 
study aimed to assess the potential of P. djamor SMS 
in the control of Meloidogyne javanica in lettuce and 
investigate its effects on plant development, total chlo-
rophyll content, nitrogen balance, flavonoid content, 
anthocyanin content, defense enzyme activities, and 
soil microbial activity.

Methods
Installation of the experiment and seedling production
The experiment was carried out in a greenhouse 
(23°47′34.5″S 53°15′22.1″W, 430  m above sea level) 
between July and September 2021. The design was 
completely randomized with five treatments and six 
replications. Treatments consisted of five proportions 
of SMS (0%, 15%, 30%, 45%, and 60%) added to a com-
mercial substrate  (Bioplant®) for seedling production. 
SMS, obtained after two cycles of P. djamor cultivation, 
was kindly donated by a local mushroom grower. The 
growing substrate was initially composed of 80% Pine 
spp. sawdust pellets, 18% wheat bran, 1% hydrated lime, 
and 1% calcitic limestone. Before start the process, the 
components of cultivation substrate are pasteurized. 
The producer mixes all the dry components in a con-
crete mixer, such as sawdust and wheat bran. When 
the mixture is quite homogeneous, water is added until 
reaching a moisture content of 62–65%. Afterward, the 
mixture is placed in heat-resistant plastic bags and the 
substrate is pasteurized for 6 h at 95ºC.

Mixtures of SMS and commercial substrate at the 
proportions defined in the experimental design were 
placed in 128-cell polystyrene trays and sown with 
seeds of lettuce ‘Vera’. At 18  days after sowing, seed-
lings were transplanted to pots containing 950  cm3 of 
autoclaved (120 °C, 2 h) soil and sand at a ratio of 2:1, 
previously limed (0.7 g  pot−1) and fertilized with NPK 
fertilizer (15-09-12, 0.12 g  pot−1). After 10 days, plants 
were inoculated with a suspension containing 2000 eggs 
and eventual second-stage juveniles (J2) of M. javanica. 
Nematodes were extracted from a pure population 
maintained on soybean M6210 IPRO, according to the 
method proposed by Hussey and Barker and adapted by 
Boneti and Ferraz [11]. The suspension was quantified 
under an optical microscope (Motic® BA210E) using a 
Peters’ chamber and calibrated to 2000 eggs + J2  mL−1. 

Nitrogen top dressing (2% urea, 0.1  g  pot−1) was per-
formed 30 days after transplanting.

Vegetative and physiological parameters
After 50  days of cultivation, plants were evaluated for 
total chlorophyll index, nitrogen balance index (NBI), fla-
vonoid, content, and anthocyanin content using a port-
able chlorophyll meter (Force A, Dualex Scientific™, 
Orsay, France). Results are the mean of three readings 
from the middle third of each plant. Plants were then 
removed from the pots and divided into shoots and 
roots. Shoot fresh weight was determined using an ana-
lytical balance. Leaf number was determined by counting 
the number of leaves per plant, starting from the basal 
region to the last expanded leaf and excluding yellow 
and/or dry leaves, whenever present [10]. Head height 
was measured from the stem to the top of the head using 
a millimeter ruler. Shoot dry weight was determined by 
placing samples in paper bags and drying in a forced-air 
oven at 65 °C (Marconi MA35/1000) to constant weight. 
Root samples were thoroughly washed, placed on paper 
towels to remove excess water, and weighed to obtain the 
root fresh weight.

Nematode analysis
After fresh weight determination, roots were subjected 
to the above-mentioned method for nematode extrac-
tion and quantification. The number of nematodes per 
root system was divided by root fresh weight to obtain 
the number of nematodes per gram of root (population 
density). Reproduction factor was calculated as the ratio 
of final to initial population [42].

Enzyme analysis
PAL and POX activities were measured in plant leaves 
and roots at the end of the experimental period. Fresh 
shoot and root samples (0.5  g) were collected from the 
median portion of each organ for enzymatic analysis, 
with three replications per treatment. Samples were 
ground in a mortar with liquid nitrogen, polyvinylpyr-
rolidone, and 50  mM potassium phosphate buffer (pH 
7.0) containing 0.1 mM EDTA. After centrifugation, the 
extract was transferred to 1.5 mL microtubes and stored 
in a freezer (−  8  °C) for subsequent protein quantifica-
tion [12]. Protein concentration (mg  mL−1) was deter-
mined against a standard curve of bovine serum albumin.

Guaiacol peroxidase (POX; EC 1.11.1.7) activity was 
measured based on the conversion of guaiacol to tetra-
guaiacol in the presence of hydrogen peroxide, and the 
results were expressed in ∆abs470  min−1   mg−1 protein 
[34]. Phenylalanine ammonia-lyase (PAL,EC 4.3.1.5) 
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activity was determined according to Umesha [71]. 
Absorbance readings were taken at 290  nm. Enzymatic 
activity was calculated from the difference between the 
absorbance of sample and blank based on a standard 
curve of trans-cinnamic acid. Results were expressed in 
mg trans-cinnamic acid  h−1  mg−1 protein [71].

Soil biological analysis
At the end of the experiment, around 400 g of soil were 
collected from three replicates per treatment for biologi-
cal analysis. Soil microbial biomass carbon was deter-
mined according to the fumigation–extraction method 
[64]. Soil basal respiration and metabolic quotient (qCO2, 
representing the ratio of soil basal respiration to micro-
bial biomass carbon) were estimated according to Silva 
et al. [65]. All analyses were performed in triplicate.

Statistical analysis
Data were subjected to analysis of variance at the 5% sig-
nificance level. When necessary, to meet Shapiro–Wilk 
normality assumptions, data were transformed to 

√
x + 1 

before regression analysis at the 5% significance level, 
with the exception of enzyme data, whose means were 
compared using Tukey’s test at the 5% significance level. 
Statistical analyses were performed using Sisvar soft-
ware [17]. Data for nematode population were subjected 
to linear-plateau segmented regression analysis using R 
statistical language (R Core Team 2021) [50]. The regres-
sion model consisted of two segments, the first describ-
ing an increasing or decreasing line up to a given p value 
(response plateau) and the second assuming a nearly con-
stant value [59].

Results
Nematode population density and reproduction factor 
decreased with increasing SMS proportion, reaching the 
plateau at about 15% SMS (Fig. 1A, B) with reductions of 
99.75% and 98.68%, respectively, compared to the control 
(0% SMS) (Additional file 1).

There were no statistical differences in root fresh 
weight or head height between treatments, whose 
means ranged from 4.41 to 6.22  g and from 1.97 to 
2.42  cm, respectively (data not shown). On the other 
hand, increasing SMS proportions led to a reduction 
in shoot fresh weight (Fig. 2A), by 30.19% in seedlings 
grown in substrate supplemented with 60% SMS and 
by 2.69% and 4.67% in seedlings grown on 15% and 
30% SMS, respectively, compared with the control. 
Leaf number followed the same pattern (Fig. 2C), with 
60% SMS leading to a 33.33% reduction and 15% SMS 
causing a reduction of only 1.33%. There was a quad-
ratic effect on shoot dry weight, which was estimated to 
reach the maximum value at 10.83% SMS (Fig. 2B).

Chlorophyll content decreased with SMS addition 
(Fig. 3A), being lowest in seedlings grown in substrate 
containing 34.19% SMS, corresponding to a 21.79% 
reduction. In this study, NBI had a similar behavior to 
that of chlorophyll content, with lower values observed 
in the treatment containing 38.22% SMS, which led to 
a reduction of 35.66% (Fig.  3B). Anthocyanin content 
increased with SMS treatment, reaching a maximum at 
40% SMS (Fig.  3C). For flavonoid content, there were 
no significant differences between treatments, whose 
means ranged from 0.62 to 0.79 (data not shown).

Both enzymes were found to be activated only in 
leaves (Fig. 4A, B). PAL activity increased in seedlings 
grown on substrate containing 30% SMS (Fig. 4A). POX 
activity was the highest in treatments containing 0% 
and 30% SMS (Fig. 4B).

Fig. 1 A Number of nematodes per gram of root and B reproduction factor of Meloidogyne javanica on pre‑grown seedlings of lettuce transplanted 
to substrate containing different proportions of spent mushroom substrate (SMS) from Pleurotus djamor cultivation. Coefficient of variation: A, 
19.31%; B, 15.87%
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Regression models did not provide a good fit to soil 
basal respiration data. Experimental results indicated 
a peak of biological activity in substrate supplemented 
with 25.75% SMS, whose basal respiration was 14% 
higher than that of the control.

Microbial biomass carbon, which is the living portion 
of the soil [27], increased proportionally to SMS con-
centration (Fig. 5B). qCO2, by contrast, had the opposite 
behavior, and decrease as a function of increasing SMS 
concentration (Fig. 5C).

Discussion
Spent substrate from P. djamor cultivation efficiently 
controlled M. javanica reproduction on lettuce, demon-
strating the nematicidal potential of metabolites released 
during mushroom cultivation. Hyphae remaining from 
mushroom cultivation might have contributed to this 
effect by releasing hydrolytic enzymes, including pro-
teases, collagenases, and chitinases, which penetrate and 
digest the cuticle of nematodes [2]. The results of the cur-
rent study may also be explained by predation of Pleuro-
tus spp. on nematodes. These fungi form traps to capture 
and predate or parasitize nematodes [32, 63]. Pleurotus 
ostreatus and other species of the genus contain spe-
cialized cells in hyphae that are capable of secreting tiny 

droplets of toxins, which paralyze nematodes within 30 s 
of contact, without killing the parasites [70]. Although 
alive, nematodes remain immobile, and the liquids that 
extravasate from their tissues stimulate hyphal growth 
via chemotaxis, hyphae may then penetrate and digest 
nematode tissues, absorbing the nutrients released dur-
ing this process [6, 35, 69, 70].

The first nematicidal compound isolated and character-
ized from mushrooms of the genus Pleurotus (P. ostrea-
tus) was trans-2-decenedioic acid, derived from linoleic 
acid. The compound was obtained from aqueous extract 
of P. ostreatus substrate and found to have nematotoxic 
action. The toxin affects not only nematodes but also 
insects and fungi, possibly by altering cell membrane 
permeability [30]. These authors observed that, at a con-
centration of 300  µg   mL−1, the nematicidal compound 
immobilized Panagrellus redivivus by 95% in 1 h. Other 
compounds, such as saturated fatty acids (palmitic acid, 
lauric acid, stearic acid), unsaturated fatty acids (oleic 
acid, linoleic acid), fatty acid methyl esters (oleic acid 
methyl esters), carbonyl compounds, and alcohols (p-ani-
syl alcohol) were found to have high nematicidal activity 
[67]. These findings show the potential of the direct use 
of mushroom residues for the control of plant–parasitic 
nematodes [46]. There are reports that Pleurotus releases 

Fig. 2 A Shoot fresh weight, B shoot dry weight, and C leaf number of lettuce seedlings grown in substrate supplemented with different 
proportions of spent mushroom substrate (SMS) from Pleurotus djamor cultivation. Coefficient of variation: A, 12.83%; B, 3.81%; C, 11.64%. For 
analysis of leaf number, original data were transformed to 

√
x + 1
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fatty acids, such as linoleic acid, which are converted into 
highly reactive peroxides, instantly halting nematode 
activity [31, 58].

Previous studies demonstrated the nematicidal 
potential of toxins found in mushroom medium. The 
filtrates of liquid Pleurotus spp. medium afforded 

complete (100%) immobilization of M. javanica juve-
niles after 24  h of application; however, immobiliza-
tion efficiency differed according to species [23]. Other 
researchers obtained positive results with the use of 
Pleurotus spp. for the control of root-knot nematodes 
[5, 41]. Aqueous extracts of 10 basidiomycetes were 

Fig. 3 A Chlorophyll content, B nitrogen balance index, and C anthocyanin content of lettuce seedlings grown in substrate supplemented with 
different proportions of spent mushroom substrate (SMS) from Pleurotus djamor cultivation. Evaluations were performed at 40 days after inoculation 
of Meloidogyne javanica. Coefficient of variation: A, 10.85%; B, 7.72%; C, 0.86%. For analysis of NBI and anthocyanin content, original data were 
transformed to 

√
x + 1

Fig. 4 A Phenylalanine ammonia‑lyase (PAL) and B peroxidase (POX) activities in the leaves of lettuce crops grown in substrate supplemented with 
different proportions of spent mushroom substrate (SMS) from Pleurotus djamor cultivation. Coefficient of variation: A, 13.82%; B, 22.57%
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tested for M. incognita control; all extracts, particularly 
that of Pleurotus, inhibited hatching and increased J2 
mortality [73]. Furthermore, these authors found that 
treatment of soil with fungal extracts reduced nema-
tode reproduction by about 70%.

In addition to controlling root-knot nematodes, P. 
djamor spent substrate may efficiently promote plant 
development compared to commercial substrate and 
can, therefore, be used as an ingredient of plant sub-
strates [36]. The positive effect of SMS on root devel-
opment was attributed to reduction in soil compaction, 
clod and surface crust formation, and diurnal temper-
ature changes, as well as an increase in aggregate sta-
bility (organic matter) and water infiltration rate [68]. 
Aeration and moisture retention are two of the many 
benefits provided by SMS application in plant substrate, 
which may positively influence germination in a variety 
of plant species [36]. However, it is worth mentioning 
that SMS may have phytotoxic effects depending on its 
concentration, as observed in the current study; thus, 
care should be taken so as not to compromise plant 
development.

Plants treated with 60% SMS showed reduced devel-
opment throughout the production cycle. Thus, at the 
time of transplanting, seedlings subjected to high SMS 
concentrations showed a noticeable difference in size, 

explaining the lower shoot fresh weight, shoot dry weight, 
and leaf number of these plants. Phytotoxic effects were 
also observed in plants treated with 75% SMS. The results 
of this treatment are not reported, because such effects 
culminated in plant death. Spent Agaricus bisporus sub-
strate had a similar effect on tomato seedlings, causing a 
2-day delay in germination [16].

Because SMS contains lignocellulosic compounds (e.g., 
wheat or rice straw, sugarcane bagasse, sawdust), which 
act as a source of carbon, and additional protein nutrients 
(organic bran or mineral elements) [18], it is possible that 
seedling development and plant growth were affected by 
nitrogen imbalance. It is also possible that the salinity of 
the culture medium increased after the production cycle 
[48], resulting from addition of inputs, such as limestone, 
gypsum, and chemical fertilizers. Furthermore, the sub-
strate used here was not subjected to composting, a prac-
tice that tends to promote stability and reduce salinity 
(Colella et al. 2019). It should be noted that the negative 
effects of SMS on vegetative development were negligible 
at low concentrations, thus not precluding the use of the 
material. The application of SMS in legume production 
can contribute to integrating production chains. Produc-
ers may optimize space, minimize costs, and maximize 
product diversity [36].

Fig. 5 A Basal respiration, B microbial biomass carbon (MBC), and C metabolic quotient of soil under lettuce seedlings grown in substrate 
supplemented with different proportions of spent mushroom substrate (SMS) from Pleurotus djamor cultivation. Coefficient of variation: A, 3.07%; B, 
15.02%; C, 23.23%. For basal respiration and microbial biomass carbon, data were transformed by 

√
x + 1
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There was a decrease in chlorophyll content, which 
might be due to nitrogen imbalance. Nitrogen is indis-
pensable for the synthesis of chlorophyll, a compound 
that is essential for plant growth and adaptation to the 
most varied environments. Chlorophyll index is an indi-
cator of the physiological status of plants [53], and the 
quality of the molecule is related to photosynthetic activ-
ity [75]. Some saprophytic fungi, such as basidiomycetes, 
can only survive on substrates with high C/N ratios and, 
therefore, depend on nitrogen supplementation. These 
fungi, to meet their nitrogen needs, developed nematode 
predation strategies [33, 69]. Thus, the higher demand 
for nitrogen in the growth medium might have compro-
mised nitrogen absorption by plants, but remaining fun-
gal populations might have been favored.

NBI had a similar behavior to chlorophyll. The index is 
an estimate of nitrogen in plants, obtained from the rela-
tionship between chlorophyll index and flavonoid con-
tent [51]. Around 70% of nitrogen contained in the leaves 
is found in chloroplasts, participating in the synthesis 
and structure of chlorophyll molecules [74]. These find-
ings further support the interaction between nematodes 
and microorganisms from SMS.

Anthocyanins act as photoprotectors and antioxidants 
[13]. Higher anthocyanin levels in plant tissues tend to 
confer greater resistance to abiotic stresses, particularly 
drought stress [52]. However, there are few reports in the 
literature on anthocyanin accumulation in plants exposed 
to biotic stress, such as that caused by phytonematodes.

Peak PAL activity was observed in the treatment with 
the highest SMS concentration (60%). It is possible that 
microorganisms from SMS or their byproducts served 
as elicitors of plant resistance. In general, when plants 
are exposed to nematodes, resistance induction occurs 
within 8  days of inoculation [44, 49, 56]. In the current 
study, enzyme activity was evaluated only at the end of 
the experiment, which may explain the non-activation of 
POX and PAL routes in the root system and the reduc-
tion in POX activity as a function of increasing SMS 
levels.

PAL contributes to plant resistance to pathogens, as it 
is involved in the first step of phenylpropanoid synthesis, 
whereby phenylalanine is converted into trans-cinnamic 
acid, resulting in compounds, such as phytoalexins and, 
mainly, lignin [14, 49]. Lignin, in turn, confers resist-
ance to plant cell walls, restricting nematode activity at 
feeding sites [49]. PAL also acts as a precursor of several 
compounds, such as benzoic acid derivatives, coumarins, 
lignin precursors, flavones, isoflavones, flavonols, antho-
cyanins, condensed tannins, caffeic acid, ammonia, and 
other simple phenylpropanoids, all of which are impor-
tant for plant defense against pathogens [61, 62].

Research on resistance induction stimulated by Pleu-
rotus is still scarce. A previous study showed that these 
fungi induce resistance to M. incognita in tomato when 
used alone or in combination with rabbit manure and 
wheat straw [57, 73] observed resistance induction in let-
tuce with the use of aqueous extracts of fruiting bodies 
of five Pleurotus species. The extracts showed nemato-
static activity in  vitro, reduced nematode reproduction 
factor, and increased nematode control. Hahn et al. [22] 
obtained good results with the use of Pleurotus extracts, 
including P. djamor extract, for M. javanica immobiliza-
tion and mortality.

POX activity in lettuce leaves was the highest in plants 
treated with 0% and 30% SMS (Fig. 4B). POX is an anti-
oxidant enzyme that accumulates in tissues subjected to 
some type of oxidative stress, in this case, nematodes. 
The enzyme is involved in the release of reactive oxy-
gen species to inhibit parasitic activity at feeding sites 
[40]. The high POX activity in the untreated sample can 
be explained by the high nematode population density, 
which likely promoted oxidative stress in plant tissues. 
Besides, the presence of fungal residues in SMS may acti-
vate enzymes involved in resistance induction (POX and 
PAL) and reduce the efficiency of microorganisms in uti-
lizing available carbon for growth.

The application of SMS at a concentration of 25.75% 
increased soil basal respiration by 14% compared to the 
control. This parameter represents the amount of car-
bon in the form of  CO2 resulting from the respiration 
of decomposing organisms present in the soil [37]. Spe-
cies of the genus Pleurotus decompose wood and plant 
residues [21] and are known for their ability to produce 
ligninolytic enzymes, such as laccase and manganese 
peroxidase [26]. Laccase is an oxidoreductase capable of 
catalyzing the oxidation of various aromatic compounds 
(especially phenol) while concomitantly reducing oxygen 
to water [72]. This information explains the high basal 
respiration in the 25.75% SMS treatment.

Although high respiration values generally indicate 
favorable soil conditions, it should be considered that, in 
the short term, high respiration rates imply the release 
of nutrients to plants, but, in the long term, they may 
imply loss of organic carbon from the soil to the atmos-
phere [47]. Treatments with low SMS concentrations 
were likely influenced by abiotic factors, such as sub-
strate porosity and, consequently, aeration. SMS has high 
water retention capacity, allowing the creation of a high-
humidity microclimate, which might have compromised 
microbial respiration [65]. In the experimental units, 
microbial populations were composed of nematodes and 
any remaining fungi in SMS, given that the soil used was 
previously autoclaved, eliminating other organisms [25]. 
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Therefore, the results agree with the hypothesis that 
treatments with a high concentration of spent P. djamor 
substrate promoted soil microbial biomass.

Anderson and Domsch [3] argued that qCO2 is a rel-
evant factor for assessing environmental and anthropo-
genic effects on soil microbial activity. In this study, the 
highest qCO2 was observed in treatments containing 
8.8% SMS (Fig.  4C). qCO2 is related to the efficiency of 
microorganisms in using available carbon for growth 
[7]. High values of qCO2 indicate a correlation with low 
biomass indices and low C and N contents [38]. A simi-
lar correlation was found in this study, where the low-
est qCO2 values occurred in treatments with the highest 
microbial biomass carbon.

Conclusions
Spent substrate from P. djamor cultivation is efficient in 
controlling M. javanica in lettuce cultivation. However, 
high SMS concentrations may negatively influence shoot 
development, with no negative effects on roots.

The interaction of SMS microorganisms with nema-
todes may, on one hand, affect chlorophyll, NBI, and 
anthocyanin contents but, on the other hand, protect the 
photosynthetic apparatus. The presence of fungal resi-
dues in SMS may activate enzymes involved in resistance 
induction (POX and PAL) and reduce the efficiency of 
microorganisms in utilizing available carbon for growth.

Overall, the present results demonstrated the potential 
of P. djamor spent substrate in the control of M. javanica. 
Further studies are needed to assess SMS efficiency and 
possible interactions of remaining hyphae with nema-
todes. SMS concentrations of 15–30% are effective for 
nematode control and do not exert phytotoxic effects on 
plant development.
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