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Abstract 

The quality of olive fruit (OF) is widely affected due to geographical variation, affecting OF’s chemical composition 
and biological properties. It is a novel and first-time study to evaluate the quality variation of 42 olive samples from 
different geographical origins based on phytochemical profile and their biological activities. The study reports the 
presence of unique chemical markers responsible for the difference in quality and biological activity of the olive sam-
ples. Biological activity (cytotoxic and antimicrobial) with GCMS phytochemical profile was evaluated. GCMS analysis 
confirmed the presence of 111 volatile compounds from various chemical classes with range (%) and average (%): 
esters (21.61–60.49) and 44.62, alcohols (20.73–49.2) and 38.06, hydrocarbons (3–38.88) and 15.39, ketones (0.16–3.87) 
and 0.75, acids (0.07–2.62) and 0.27, and aldehydes (0.12–1.47) and 0.45. The predominant ester was 13-methyl-pen-
tadecanoic acid methyl ester, a differentiation marker between these samples. Cytotoxicity assay showed a significant 
inhibitory effect against MCF7 (8–64%) and HCT116 (0.11–44%) cell lines, whereas the extracts with the highest cyto-
toxicity observed were O17 (52.00 ± 2.00) and O25 (64.00 ± 4.88). The antimicrobial activity exhibited a range of zones 
of inhibition (mm) against P. aeruginosa (0.00–17.00), E. coli (0.00–15.00), S. aureus (0.00–13), and resistant S. aureus, i.e., 
MRSA (0.00–12.00). The extracts with the highest antimicrobial activity, i.e., O8 and O39 had identical MIC and MBC 
of 12.5 and 25 µg/ml against P. aeruginosa. In contrast, an MIC (50 and 25) and MBC (100 and 50) against E. coli were 
determined for O39 and O8. The statistical PCA and K-mean cluster analysis (P < 0.05) confirmed the presence of a 
high number of esters, alcohols, and hydrocarbons in GCMS data. Moreover, O8, O23, O25, and O39 were suggested 
as comparatively better varieties than those OF samples (P = 0.001). The presence of distinct volatile markers in these 
42 OF samples may be further studied as a potential source of antimicrobials, food preservatives and therapeutic 
purposes.
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Graphical abstract

Background
Olea europaea L. is a small tree belonging to the fam-
ily Oleaceae, commonly known as olive in English and 
Zaitoon in Arabic. O. europaea produces edible fruits, 
the main source of olive oil; olive fruit and its oil have a 
long history of nutritional and medicinal values. Olive oil 
is the major dietary fat of the traditional healthy “Medi-
terranean diet”, which has been strongly associated with 
reduced prevalence of cardiovascular diseases and cer-
tain types of cancer [38]. The tree has been cultivated for 
centuries in tropical and warm temperate regions, par-
ticularly in the Mediterranean. Spain, Italy, and Tunisia 
produce over 50% of the global production of olives, with 
a production volume of approximately 12.5 million met-
ric tons in 2020 [22]. The quality and chemical composi-
tion of olive fruit and oil are affected by several factors, 
including agricultural practices, cultivars, genetics, and 
seasonal and environmental factors [19]. Moreover, the 
storage and transporting conditions could significantly 
impact olive products’ quality, taste, and health ben-
efits. The health uses of olive fruit and leaves have been 
reported to include respiratory tract, urinary tract infec-
tions, and GIT diseases, while the oil is applied to the 
scalp to prevent hair loss and to fracture limbs [11, 28, 
36]. Apart from folk use, the fruit and leaves have recently 

been reported for anti-oxidant effects with potential skin 
benefits [15].

The health benefits of olive oil, as well as its unique 
flavor and taste, are principally attributed to the occur-
rence of high amounts of monounsaturated fatty acids 
(MUFAs). These MUFAs are oleic acid (18:1) and pal-
mitoleic acid (16:1) and functional bio-actives, including 
phenolics, tocopherols, phospholipids, and carotenoids 
with multiple biological properties [23]. The biological 
properties of olive oil and its components have been sug-
gested due to its anti-oxidant, anti-cancerous, and anti-
microbial activities and the modulation of gene functions 
[40]. Olive leaf and seed extracts have shown consider-
able activity against bacteria, fungi, and viruses in sev-
eral in vitro and in vivo studies [12]. Virgin olive oil has 
been reported to reduce the count of inoculated Salmo-
nella enteritidis and Listeria monocytogenes by approxi-
mately 1000 CFU/g in salad and mayonnaises, suggesting 
a strong protective effect against foodborne pathogens 
[37].

Similarly, olive oil has shown strong bactericidal activ-
ity against several Helicobacter pylori strains, including 
three antibiotic-resistant strains [42]. Olive oil affects 
cancer development through biological roles [40]. The 
constituents of olive oil, e.g., oleic acid and another 
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hydrocarbon known as squalene, are essential in inhibit-
ing cancerous cell growth [49]. The phenolic constituents, 
including oleuropein and hydroxytyrosol, have exhib-
ited cancer cell inhibition effects in several studies and 
strong anti-oxidant activity [49]. The cytotoxic effect of 
olive oil constituents has been demonstrated against dif-
ferent cell lines, including breast, prostate, and colorectal 
cancerous cell lines [40]. The most popular tool to deter-
mine the amount of phytochemical profile of samples is 
gas chromatography–mass spectrometry (GC–MS). This 
analytical tool has been widely employed to study the 
fatty acid composition of olive oil for quality assessment 
and authentication purposes. Variations between olive oil 
from different origins have been reported based on the 
fatty acid content. In one study, the amount of oleic acid 
(18:1), a monounsaturated fatty acid, was found in differ-
ent ratios in Syria, Greek, and commercial oils, with the 
highest amount present in Syrian oil [3].

Moreover, Syrian oil contained the highest amount of 
polyunsaturated fatty acid linolenic acid (18:3), followed 
by Greek oil. Overall, Syrian oil contained the highest 
content of unsaturated fatty acids compared to Greek and 
commercial oils. This shows an enormous variation of 
the phytochemical profile and its composition in O. euro-
paea samples based on geographical origin.

The objective of the study is to evaluate the quality of 
an enormous number of olive samples (42) from different 
origins in terms of phytochemical profile using GCMS, as 
well as a comparative biological evaluation of the cyto-
toxicity and antimicrobial activity in correlation to the 
volatile chemical markers observed.

Material and methods
Olive (Olea europaea) fruit samples
The 42 seedless fresh-olive fruit (OF) samples from dif-
ferent geographical origins, as reported in our previ-
ous study, were collected during the year 2021 at local 
markets and properly coded; Egyptian (O1–O3), Greek 
(O–O9), Jordan (O10–O19), Moroccan (O20–O27), Pal-
estinian (O28), Spanish (O29–O32), Syrian (O33–O39), 
and Turkish (O40–O42) samples [6].

Preparation of OF samples
Liquid–liquid extraction was performed where the sam-
ples (1 g of the methanolic extracts) were dissolved and 
partitioned in n-hexane solvent (20 mL). The LLE process 
was repeated 3 times, and the n-hexane solvent was col-
lected and evaporated. The final extract was dissolved in 
10 mL GCMS grade solvent for a final concentration of 
1 mg/mL of the extract. The n-hexane extracted samples 
were filtered (0.2 μm), diluted (5 ppm), and subjected to 

GCMS. The GC–MS chemical study for qualitative and 
quantitative analysis of the phytochemical profile is per-
formed and reported herein.

GC–MS profiling for volatile compounds
The GC separation was performed using a Shi-
madzu-2010 plus gas chromatograph equipped with a 
split/splitless injector and coupled with QP2010 Ultra 
MS detector. The column used for the application was a 
nonpolar Rxi-5MS capillary column (30  m × 0.25  mm, 
1.00 μm; Restek Corporation); whereas, helium was used 
as a carrier gas (1.5  mL/min). For GCMS analysis, the 
oven was initially maintained at 50 °C for 1 min, ramped 
to 150 °C at a rate of 5 °C/min (held for 1 min), and finally 
ramped to 280 °C at a rate of 10 °C/min (held for 5 min). 
The temperatures for the ion source and MS transfer lines 
were maintained at 250 and 280  °C, respectively. Mass 
spectra (33–450 m/z) were acquired following a 6.5-min 
solvent delay. Shimadzu GCMS  Solution® (V. 4.52) was 
used for data acquisition, processing, and GC–MS con-
trol. The area normalization method (%content) was used 
for semi-quantification [48]; whereas, compound identi-
fication was achieved by mass spectral searching within 
the NIST11 Library database.

Cell lines and culture conditions
Cancer cell lines, MCF7 (human breast adenocarci-
noma), and HCT116 (human colorectal carcinoma) were 
obtained and sub-cultured in RPMI-1640 media (10% 
FBS) at 37 °C, 5%  CO2, and 100% relative humidity.

Cytotoxicity assay
The MTT assay was performed using MCF7 and HCT116 
cells to evaluate OF-samples’ cytotoxicity. One concen-
tration for each of the 42-OF-samples, i.e., 100  μg/mL 
(DMSO 0.1%; n = 3), was tested for comparative evalua-
tion of the samples. The positive control used in the study 
was doxorubicin (5 µM) [1, 2].

Microorganisms and culture media
Bacterial strains: Staphylococcus aureus (ATCC-25923), 
methicillin-resistant Staphylococcus aureus (MRSA, 
ATCC-43300), Pseudomonas aeruginosa (ATCC-15442), 
and Escherichia coli (ATCC-35218); whereas, the cul-
ture media: Muller Hinton agar (Oxoid, CM-0337) and 
Muller Hinton broth (Oxoid, CM-0405) were used for 
agar diffusion (MIC) and broth dilution method (MBC), 
respectively.

Preparation of the standard inoculum
The tested organisms were grown on Muller Hinton agar 
medium (37 °C, 24 h.), and selected colonies were inocu-
lated with the help of a sterile loop in Muller Hinton broth 
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Fig. 1 Representative GC–MS chromatograms for olive samples
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to form a homogenous suspension of bacterial strains. The 
suspension was standardized (0.5 McFarland turbidity) 
using calibrated Vitek Densichek Biomerieux Analyzer.

Agar diffusion assay
The assay was performed for individual bacterial strains 
suspended in Mueller Hinton broth in three directions 

Table 1 Cytotoxic inhibition activity of the 42 extracts against two cell lines (MTT 72 h, % ± SD)

Sample origin Sample code MCF7 HCT116

Egyptian green olive plain O1 8.00 ± 0.34 22.00 ± 2.77

Egyptian natural olive red O2 24.00 ± 3.99 10.00 ± 1.00

Egyptian olive Kalamata O3 22.00 ± 4.56 10.00 ± 0.99

Greek olive nafplion green O4 14.00 ± 2.77 12.00 ± 2.00

Greek olive Cretan green O5 13.00 ± 1.10 2.00 ± 0.05

Greek olive jumbo green O6 22.00 ± 3.00 17.00 ± 1.11

Greek olive Kalamata jumbo black O7 14.00 ± 2.39 1.20 ± 0.09

Greek olive Kalamata medium black O8 60.00 ± 7.30 13.00 ± 2.34

Greek stuffed olive with pepper O9 45.00 ± 5.56 29.00 ± 3.01

Spanish olive whole black O10 33.00 ± 1.10 17.00 ± 2.03

Spanish olive whole green O12 23.00 ± 2.33 19.00 ± 1.44

Spanish stuffed olive pine green O11 33.00 ± 0.92 2.00 ± 0.09

Spain black olive O13 23.00 ± 2.34 1.00 ± 0.03

Turkish green large olive O14 35.00 ± 3.00 14.00 ± 2.00

Turkish grilled olive O15 27.00 ± 3.01 14.00 ± 1.00

Turkish cracked green olive O16 14.00 ± 1.50 8.00 ± 0.44

Jordan black olive in oil O17 52.00 ± 2.00 34.00 ± 3.22

Jordan green olive in oil O18 16.00 ± 1.40 19.00 ± 1.67

Jordan green olive with zaatar O19 26.00 ± 3.60 44.00 ± 5.03

Jordan apple green olive O20 27.00 ± 2.99 14.00 ± 1.98

Jordan green olive with lemon O21 32.00 ± 2.56 16.00 ± 2.87

Jordan black olive in brine O22 21.00 ± 2.10 9.00 ± 0.95

Jordan green olive in brine O23 45.00 ± 1.98 2.00 ± 0.06

Jordan green olive O24 25.00 ± 3.45 15.00 ± 1.56

Jordan green balad olive O25 64.00 ± 4.88 25.00 ± 1.00

Jordan green nusi olive O26 22.00 ± 2.11 15.00 ± 2.33

Moroccan green olive andalas O27 12.00 ± 2.00 14.00 ± 1.03

Moroccan green black olive O28 22.00 ± 2.87 5.00 ± 0.05

Moroccan green olive with lemon O29 30.00 ± 2.65 0.11 ± 0.01

Moroccan dried olive black O30 21.00 ± 1.10 19.00 ± 1.01

Moroccan green olive with herbs O31 21.00 ± 2.54 18.00 ± 3.00

Moroccan green olive with red peppers O32 17.00 ± 2.71 16.00 ± 4.32

Moroccan cocktail olive O33 30.00 ± 2.33 17.00 ± 3.22

Moroccan purple olive O34 24.00 ± 2.00 9.00 ± 0.93

Syrian black olive salqin O35 19.00 ± 2.34 5.50 ± 0.56

Syrian green olive nybaly O36 25.00 ± 2.00 2.00 ± 0.05

Syrian black olive with garlic O37 26.00 ± 1.00 21.00 ± 1.98

Syrian black large olive O38 30.00 ± 3.00 14.00 ± 2.45

Syrian black selptin olive O39 41.00 ± 6.30 24.00 ± 5.22

Syrian black Kalamata olive O40 8.00 ± 0.67 7.00 ± 0.99

Syrian green olive O41 25.00 ± 2.30 7.00 ± 0.19

Palestine green olive O42 41.00 ± 3.32 5.00 ± 0.92

Standard drug Doxorubicin 85.11 ± 5.25 37.0 ± 2.01
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Table 2 Evaluation of the antimicrobial activity of the 42 olive variety extracts against four reference bacterial strains using agar 
diffusion assay

R resistant, mm millimeter, N.D not determined, DMSO dimethyl sulfoxide, SD standard deviation

Sample origin Sample code Bacterial strains

P. aeruginosa
ATCC – 15,442

E. coli
ATCC – 35,218

S. aureus (MRSA)
ATCC –43,300

S. aureus
ATCC -25,923

Diameter of inhibition zone (mm ± SD)

Egyptian green olive plain O1 R R R N. D

Egyptian natural olive red O2 12 ± 1.0 R R R

Egyptian olive Kalamata O3 14 ± 1.0 15 ± 1.0 R R

Greek olive nafplion green O4 R N. D N. D N. D

Greek olive Cretan green O5 R 12 ± 1.0 R R

Greek olive jumbo green O6 R R R 13 ± 1.0

Greek olive Kalamata jumbo black O7 R R R R

Greek olive Kalamata medium black O8 17 ± 1.1 12 ± 1.0 R 11 ± 1.0

Greek stuffed olive with pepper O9 R N.D R N. D

Spanish olive whole black O10 R R R R

Spanish olive whole green O11 R R R R

Spanish stuffed olive pine green O12 R R R R

Spain black olive O13 11 ± 1.0 R R R

Turkish green large olive O14 R R R R

Turkish grilled olive O15 R N. D R N. D

Turkish cracked green olive O16 11 ± 1.0 N. D R R

Jordan black olive in oil O17 R N. D R N. D

Jordan green olive in oil O18 R R R R

Jordan green olive with zaatar O19 R R R N.D

Jordan apple green olive O20 R 11 ± 1.0 R R

Jordan green olive with lemon O21 R R R R

Jordan black olive in brine O22 12 ± 1.0 R R R

Jordan green olive in brine O23 12 ± 1.0 R R 11 ± 1.0

Jordan green olive O24 13 ± 1.0 R R N. D

Jordan green balad olive O25 11 ± 1.0 R R R

Jordan green nusi olive O26 R N.D R N.D

Moroccan green olive andalas O27 R N. D R N. D

Moroccan green black olive O28 12 ± 1.0 R R N. D

Moroccan green olive with lemon O29 12 ± 1.0 N. D R N. D

Moroccan dried olive black O30 R N.D R R

Moroccan green olive with herbs O31 12 ± 1.0 12 ± 1.0 R N.D

Moroccan green olive with red peppers O32 13 ± 1.0 R R N.D

Moroccan cocktail olive O33 R R R 11 ± 1.0

Moroccan purple olive O34 R N. D R N. D

Syrian black olive salqin O35 R 12 ± 1.0 R R

Syrian green olive nybaly O36 R N. D R N. D

Syrian black olive with garlic O37 13 ± 1.0 R R N. D

Syrian black large olive O38 R R R R

Syrian black selptin olive O39 13 ± 1.0 15 ± 1.1 R 12 ± 1.1

Syrian black Kalamata olive O40 11 ± 1.0 R R 13 ± 1.0

Syrian green olive O41 R 12 ± 1.0 12 ± 1.0 R

Palestine green olive O42 14 ± 1.0 R 12 ± 1.1 13 ± 1.0

Standards Amikacin 21 ± 0.00 23 ± 0.00 − −
Vancomycin − − 18 ± 0.00 16 ± 0.00

Vehicle DMSO R R R R
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of the agar plate using sterile cotton swabs (100 μL), as 
reported [21].

MIC and MBC determination
For MIC and MBC, 200 μL of the selected optimum 
extracts (O17 and O25) (100  µg/ml) were added to the 
first column of the 96-well microtiter plates, followed by 
the addition of 100 μL Mueller Hinton broth to the sec-
ond column. Individual extract (100 μL) was transferred 
from the first well into the subsequent wells to produce 
twofold dilutions (50, 25, 12.5, 6.2, and 3.1  µg/ml). The 
adjusted McFarland bacterial suspension (10 μL of 0.5) in 
the Muller Hinton broth of either P. aeruginosa or E. coli 
was added to each well, and the experiment was repeated 
three times. The plates were incubated overnight (37 ºC) 
according to the clinical and laboratory standard insti-
tute, and the MIC and MBC were determined (CLSI 
M26− A, 1998).

Statistical analysis
The results were analyzed using SPSS (statistical package 
for social science students) software V 22.0 using princi-
pal component analysis and k-mean cluster analysis.

Results
GCMS profiling
The GCMS revealed the presence of 111 compounds 
from various chemical classes with a descending order 
(largest to smallest) of percentages/chemical class: esters 
(21.61–60.49%), alcohols (20.73–49.2%), hydrocarbons 
(3–38.88%), ketones (0.16–3.87%), acids (0.07–2.62%), 
and aldehydes (0.12–1.47%). Regarding the average (%) 
of 111 volatile compounds/chemical classes, the 42-OF 
samples showed a descending pattern of esters (44.62%), 
alcohols (38.06%), hydrocarbons (15.39%), ketones 
(0.75%), aldehydes (0.45%), others (0.41), acids (0.27%), 
and ethers (0.06%) as shown in Additional file 1: Table S1.

Among the 42-OF samples, O34 exhibited the high-
est (60.49%), whereas O23 revealed the lowest (21.61%) 
concentration for the ester compounds present in these 
samples. The major among these esters compounds was 
13-methyl-pentadecanoic acid methyl ester, with an aver-
age occurrence of 11.9%. The representative chroma-
tograms for OF-GCMS analysis are shown in Fig.  1 for 
sample Greek stuffed olive with pepper (O-09), Spanish 
stuffed olive pine green (O-11), Spain black olive (O-13), 
which shows the (tR) maximum up to 39  min for each 
sample. At the same time, the peak height is proportional 
to the concentration of a compound in the sample, which 
is given in more detail in Additional file 1: Table S1.

Cytotoxic assay
The 42-OF-samples exhibited cytotoxic activity within 
the range of 8–64% and 0.11–44% against MCF7 and 
HCT116 cell lines, respectively. Among the 42-OF-
samples, the most significant inhibition was observed 
for O17 and O25 on MCF7 (64% and 52%) and HCT116 
(25% and 34%), respectively (Table 1).

Antimicrobial activity
The antimicrobial activity for 42-OF-samples revealed 
significant zones of inhibition (mm) against the tested 
strains: P. aeruginosa (0.00–17.00), E. coli (0.00–15.00), 
S. aureus (0.00–13), and resistant S. aureus, i.e., 
MRSA (0.00–12.00). The maximum zones of inhibi-
tion (mm ± SD) were observed for O8 and O39 as E. 
coli (12 ± 1.0) for O8 and (15 ± 1.1) for O39; P. aerugi-
nosa (17 ± 1.1) for O8 and (13 ± 1.0) for O39. These two 
extracts did not exhibit any activity against the resistant 
S. aureus (MRSA), while significant activity was observed 
against the sensitive S. aureus (25,923) as: (11 ± 1.0) for 
O8 and (12 ± 1.1) for O39. Likewise, O42 showed a zone 
of inhibition against P. aeruginosa (14 ± 1.0), S. aureus, 
i.e., MRSA (12 ± 1.1), and S. aureus (13 ± 1.0). Except for 
O41 and 42, none of the OF samples revealed any activity 
against MRSA strain, as shown in Table 2. Further evalu-
ation of the OF-samples with optimum activity, i.e., O39 
and O8 revealed an identical MIC and MBC of 12.5 and 
25  mg/ml against P. aeruginosa. In contrast, a MIC (50 
and 25) and MBC (100 and 50) against E. coli were deter-
mined for O39 and O8, as shown in Table 3.

Statistical analysis
SPSS V 22.0 was used to classify and analyze the data.

Principal component analysis (PCA)
To evaluate the variability and correlation of the compo-
nents in the extracted data, PCA was applied where the 

Table 3 Assessment of MIC (µg/ml) and MBC (µg/ml) of the 
selected extracts against two bacterial strains

MIC minimum inhibitory concentration, MBC minimum bactericidal 
concentration, ATCC  American Type Culture Collection

Sample origin Sample code Bacterial strains

P. 
aeruginosa 
(ATCC – 
15,442)

E. coli 
(ATCC – 
35,218)

MIC MBC MIC MBC

Syrian black selptin olive O39 12.5 25 50 100

Greek olive Kalamata medium 
black

O8 12.5 25 25 50
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Table 4 PCA analysis for GCMS, cytotoxicity and antimicrobial dataset

Components PC1 PC2 PC3 PC4 PC5

PCA for GCMS data set

O1 0.165 0.677 − 0.069 0.516 − 0.237

O2 0.752 0.577 0.297 0.051 − 0.067

O3 0.291 0.732 0.374 0.353 0.202

O4 0.582 0.786 0.140 0.091 − 0.080

O5 0.626 0.624 0.409 0.187 0.087

O6 0.454 0.698 0.398 0.291 0.171

O7 0.829 0.504 0.196 0.092 − 0.075

O8 0.719 0.595 0.337 0.098 − 0.007

O9 0.561 0.713 0.374 0.170 0.012

O10 0.780 0.556 0.242 0.127 − 0.019

O11 0.294 0.559 0.728 − 0.038 − 0.028

O12 0.289 0.399 0.851 0.025 − 0.042

O13 0.793 0.118 − 0.016 0.526 − 0.125

O14 0.216 0.887 0.363 0.151 0.074

O15 0.823 0.504 0.229 0.111 − 0.002

O16 0.486 0.803 0.263 0.186 0.082

O17 0.842 0.334 0.309 0.201 0.163

O18 0.437 0.168 0.725 − 0.061 − 0.240

O19 0.080 0.133 0.966 0.106 0.015

O20 0.912 0.174 0.251 0.170 0.155

O21 0.146 0.593 0.651 0.234 0.305

O22 0.213 0.792 0.465 0.213 0.096

O23 0.026 0.483 0.151 0.691 0.016

O24 0.660 0.639 0.329 0.177 0.067

O25 0.505 0.830 0.202 0.104 − 0.005

O26 0.693 0.659 0.238 0.063 − 0.108

O27 0.309 0.112 0.008 0.697 − 0.209

O28 0.479 0.838 0.227 0.062 − 0.081

O29 0.779 0.589 0.163 0.046 − 0.097

O30 0.729 0.120 − 0.014 0.593 − 0.121

O31 0.619 0.561 0.388 0.287 0.206

O32 0.745 0.474 0.334 0.254 0.157

O33 0.165 0.259 0.937 0.021 − 0.037

O34 0.923 0.226 0.178 0.057 0.003

O35 0.474 0.845 0.210 0.113 − 0.039

O36 0.686 0.661 0.264 0.046 − 0.114

O37 0.703 0.499 0.372 0.237 0.176

O38 0.677 0.616 0.324 0.188 0.082

O39 0.590 0.156 0.782 0.006 − 0.060

O40 0.820 0.513 0.219 0.042 − 0.082

O41 0.647 0.624 0.236 0.030 − 0.132

O42 0.866 0.246 0.271 0.118 0.182

Individual %variance 36.27 31.61 17.03 6.50 2.72

Cumulative %variance 36.27 67.89 84.92 91.43 94.16

Components PC1 PC2

 PCA for cytotoxicity and antimicrobial assay

  MCF7_activity 0.328 0.797

  HCT116_activity − 0.412 0.765
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Eigenvalue was applied to classify the data. The PCA for 
42-OF samples suggested five components (PC1−PC5) 
with a cumulative %variance of 94.16 and an individual 
%variance for each component: PC1 (36.27), PC2 (31.61), 
PC3 (17.03), PC4 (6.50), and PC5 (2.72). The major vari-
ability of 36% was exhibited by PC1 loaded with OF-
samples: O2, O5, O7, O8, O10, O13, O15, O17, O20, 
O24, O26, O29–32, O34, O36–39, and O40−42. This 
implicates the presence of major amounts of volatile 
compounds in these groups. The next major variability 
of 31.61% as represented by PC2 consisted of the  OF-
samples: O1, O3–4, O6, O9, O14, O16, O22, O25, O28, 
and O35. The samples with more potent cytotoxicity and 
antimicrobial activities, i.e., O25, O39 and O42 (PC1), 
O17 and O8 (PC2) are loaded in these two components 
where a distribution of an enormous number of volatile 
components has been observed. The remaining compo-
nents with %variability and OF samples are briefly pre-
sented in Table 4.

The PCA for cytotoxicity and antimicrobial activity 
produced two components with a cumulative variabil-
ity of 50.96% and individual variability of 28.75% (PC1) 

and 22.21% (PC2). The components loaded in PC1 con-
sisted of antimicrobial activity, which showed more 
component variation of 28.75% compared to cytotox-
icity activities loaded in PC2. The data suggest more 
variation in OF samples regarding antimicrobial activ-
ity due to lack of activity at most instances, particularly 
against the resistant strain of MRSA. On the contrary, 
the OF samples revealed a comparatively high activity 
for cytotoxicity assay, representing a low variation in 
components (Table 4 and Fig. 2).

K-mean cluster analysis
The K-mean cluster analysis classifies the data into clus-
ters based on the nearest mean among the data set. For 
GCMS, six clusters with high F-value and significance 
(P = 0.001) were observed as cluster 1 (2 samples), clus-
ter 2 (1 sample), cluster 3 (1 sample), cluster 4 (15 sam-
ples), cluster 5 (1 sample), and cluster 6 (91 samples). 
The two samples in cluster 1 and one sample in cluster 
5 represent the ester chemical class of volatile oils; one 
sample in cluster 2 represents alcohols, and one in clus-
ter 3 represents hydrocarbons. These samples denote 
the presence of more amounts (%) of such chemical 
classes in the 42-OF samples. This may be appropriately 
explained by the high quantity of esters (44.62%) fol-
lowed by alcohols (38.06%), and hydrocarbons (15.39%) 
among the chemical classes reported by GCMS in these 
42-OF samples. The cluster with chemical class distri-
bution is shown in Table 5 and Fig. 3.

Regarding K-mean cluster analysis for cytotoxicity 
and antimicrobial activity, four clusters were proposed: 
cluster 1 (2 samples), cluster 2 (4 samples), cluster 3 
(21 samples), and cluster 4 (15 samples). As denoted 
in Fig. 4, cluster 1 represents two extracts (OF-41 and 
42) which are the only samples with activity against 
S. aureus (MRSA). Cluster 2 represents samples with 
activity against all cell lines and microbial strains except 
MRSA. These extracts are O8, O23, O25, and O39. The 
K-mean effectively distinguished the GCMS samples 
with more amounts of chemical compounds and the 

Table 4 (continued)

Components PC1 PC2

  P. aeruginosa 0.676 0.097

  E. coli 0.487 − 0.071

  S. aureus (MRSA) 0.551 − 0.136

  S. aureus (25,923) 0.672 0.283

  Individual %variance 28.75 22.21

  Cumulative %variance 28.75 50.96

Fig. 2 Three-dimensional representation for cytotoxicity and 
antimicrobial assay components
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samples with more potency against the cell lines and 
microbial strain studied. The K-mean for cytotoxic-
ity and antimicrobial activity is shown in Table  5 and 
Fig. 4.

The data produced with the current methodology were 
analyzed with the help of descriptive, PCA, and K-mean 
cluster analysis, which revealed a significant difference in 
terms of phytochemical profile as well as a correlation for 
the biological activities linked with a specific class and 
volatile chemicals of the phytochemical class in these 
olive samples. The statistical models fully support the sig-
nificance and correlation of the data extracted based on 
the current methodology.

Discussion
Olive oil and fruits are considered healthy because of 
their nutritional and medicinal properties. Bioactive 
compounds like triterpenoids and phenolics contrib-
ute to their high quality. Olive is known to be pro-
duced by over a hundred cultivars with different colors, 
shapes, and sizes where the quality and oil content of 
olive may be compromised, prone to various environ-
mental or geographical conditions [5, 33]. For instance, 
many studies have previously reported the variation in 
natural products such as black seeds and black pepper 
varieties [7, 8]. Current research collected 42 avail-
able olive fruit (OF) samples of different sizes, colors, 
and shapes. The selection for these samples was non-
specific and generalized, i.e., all the samples available at 
all the stores, hypermarkets, suppliers, shops, etc., were 
searched and collected irrespective of any targeted 
numbers or geographical origin.

GCMS analysis was performed for the extracts 
where several volatile chemical classes were reported, 
consisting of acids, alcohols, esters, ethers, hydrocar-
bons, aldehydes, and ketones. The predominant among 
these chemical classes was the ester chemical class 
(44.62%), followed by alcohols (38.06%) and hydrocar-
bons (15.39%). The predominant volatile compounds in 
these chemical classes were: 13-methyl-pentadecanoic 
acid methyl ester (esters), 2, 4-bis (1, 1-dimethyl ethyl) 
-phenol (alcohols), o-cymene (hydrocarbons), 2-pen-
tadecanone, 6, 10, 14-trimethyl- (ketones), 3-hydroxy- 
dodecanoic acid (acids), and 4-methyl- benzaldehyde 

Table 5 K-mean cluster analysis for GCMS, cytotoxicity and 
antimicrobial dataset

Factors F-value Significance Clusters Samples

K-mean cluster analysis for GCMS data

 Zscore: O1 28.643 0.00 1 2

 Zscore: O2 242.133 0.00 2 1

 Zscore: O3 129.049 0.00 3 1

 Zscore: O4 162.693 0.00 4 15

 Zscore: O5 300.179 0.00 5 1

 Zscore: O6 202.767 0.00 6 91

 Zscore: O7 297.313 0.00 Total 111

 Zscore: O8 285.570 0.00

 Zscore: O9 225.880 0.00

 Zscore: O10 290.002 0.00

 Zscore: O11 107.871 0.00

 Zscore: O12 194.302 0.00

 Zscore: O13 58.976 0.00

 Zscore: O14 228.918 0.00

 Zscore: O15 371.892 0.00

 Zscore: O16 227.807 0.00

 Zscore: O17 531.912 0.00

 Zscore: O18 48.366 0.00

 Zscore: O19 381.985 0.00

 Zscore: O20 937.118 0.00

 Zscore: O21 227.174 0.00

 Zscore: O22 137.451 0.00

 Zscore: O23 14.340 0.00

 Zscore: O24 298.218 0.00

 Zscore: O25 188.534 0.00

 Zscore: O26 169.493 0.00

 Zscore: O27 5.561 0.00

 Zscore: O28 148.621 0.00

 Zscore: O29 218.282 0.00

 Zscore: O30 36.668 0.00

 Zscore: O31 265.768 0.00

 Zscore: O32 305.279 0.00

 Zscore: O33 528.296 0.00

 Zscore: O34 200.560 0.00

 Zscore: O35 174.198 0.00

 Zscore: O36 178.966 0.00

 Zscore: O37 256.120 0.00

 Zscore: O38 320.560 0.00

 Zscore: O39 280.236 0.00

 Zscore: O40 259.254 0.00

 Zscore: O41 75.926 0.00

 Zscore: O42 1374.378 0.00

Cluster analysis for cytotoxicity and antimicrobial assay

 Zscore: MCF7_activity 13.189 0.000 1 2

 Zscore: HCT116_activ-
ity

7.854 0.000 2 4

 Zscore: P. aeruginosa 10.465 0.000 3 21

Table 5 (continued)

Factors F-value Significance Clusters Samples

 Zscore: E. coli 2.885 0.048 4 15

 Zscore: S. aureus 
(MRSA)

0.00 − Total 42

 Zscore: S. aureus 
(25,923)

5.372 0.003
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(aldehydes). Although the study of quality variation was 
reported previously for olive fruit, based on the com-
parative evaluation of fatty acids [3], this is the first 
report to evaluate 42-OF samples from different geo-
graphical origins based on the phytochemical profile 
and biological properties of the samples.

As olive oil consumption has been linked to the pre-
vention of cancer [26, 31], these 42-OF-samples were 
tested for cytotoxic potential against various cell lines. 
An intra-comparative evaluation was performed for the 
42-extracts, using MCF7 and HCT116 cell lines, where 
the two samples, O17 (Jordan black olive) and O25 (Jor-
dan green balad olive) exhibited the maximum activity 
with an inhibition of 52% for O17 (Jordan black olive) 
and 64% for O25 (Jordan green balad olive). The findings 
in our study corroborate previous reports [9, 25]. The 
OF extracts in this study exhibited feeble antiprolifera-
tive effects against one cell line, showing strong inhibi-
tion against the other type. This may be due to the varied 
genetic context of each cell line, the uncertain response of 
cell lines against the tested compounds, as well as the use 
of non-standardized crude extracts against these cell lines 
by different researchers, which may affect the outcomes 

of the study [10, 32]. The antiproliferative effects, though, 
have been attributed to many compounds in most OF 
samples; 3, 4- (dihydroxyphenyl) -ethanol elenolic acid 
di-aldehyde and 3, 4- (dihydroxyphenyl) -ethanol elenolic 
acid ester secoiridoid aglycone has been reported as the 
most potent cytotoxic compounds at many instances 
[10]. This again supports the same phytochemical marker 
of olive to be used for a comparative quality evaluation 
and standardization of the olive samples. The GCMS 
analysis herein for the 42 OF samples showed the pres-
ence of 17-pentatriacontene in high concentration in O17 
(Jordan black olive), whereas 10-octadecenal, trichloro-
acetic acid, hexadecyl ester, and citronellol epoxide were 
found in maximum amounts in O25 (Jordan green balad 
olive) compared to other cultivars. This may be a valuable 
biomarker for further mechanistic studies on OF.

It is of utmost importance to mention here that a con-
sistent trend of halogenated and sulphonated compounds 
(chlorinated/fluorinated/sulphurous) have been observed 
in the phytochemical profile of most of the samples, as 
reported previously in an enormous amount of literature 
[4, 14, 20, 27, 34, 35, 39, 41, 43–47] [52]. Though most of 
these chemical compounds have been reported in these 

Fig. 3 Cluster distribution for the GCMS data of 42-OF-samples
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studies, they are not related to the chemistry of natural 
products. The authors suggest that such volatile com-
ponents originate from environmental contamination 
during cultivation or instrumental and solvent contami-
nation during extraction and GCMS analysis. Therefore, 
such compounds should be carefully evaluated when 
interpreting the results and selecting chemical markers 
for the quality control of medicinal plants.

The 42-OF-samples were studied for their antimicro-
bial potential against various bacterial strains. Similar to 
cytotoxicity, the general antimicrobial screening showed 
three OF samples: O8 (Greek olive, Kalamata medium 
black), O39 (Syrian black, selptin olive), and O42 (Pales-
tine green olive) with significant inhibition of the tested 
microorganisms. The MICs and MBCs were calculated 
for the most potent extracts of O8 (Greek olive, Kalamata 
medium black) and O39 (Syrian black selptin olive), 
which showed a similar MIC of 12.5 μg/ml against P. aer-
uginosa. In contrast, MICs of 25 (O8) and 50 (O39) μg/
ml with MBCs of 50 (O8) and 100 (O39) were observed 
against E. coli. A previous study reported a MIC of 0.625–
1.25 mg/mL for olive oil against Salmonella typhimurium 

and Staphylococcus aureus. The other samples presented 
a lack of inhibitory effect, possibly due to dilute concen-
trations compared to Guo et al. work [18, 29]. The GCMS 
profile for these samples (O8 and O39) suggested the 
presence of high amounts of 2-hexyl-1-decanol, 2-butyl-
1-octanol, 3, 7, 11-trimethyl-1-dodecanol, n-nonade-
canol, (Z) -7-hexadecenal, (Z) -9-octadecenoic acid, hexyl 
ester, octacosyl trifluoroacetate, nonadecyl pentafluoro-
propionate, octatriacontyl trifluoroacetate, and octacosyl 
heptafluorobutyrate, compared to other cultivars.

Aldehydes might be potential chemicals responsi-
ble for antimicrobial effects [16, 30]. The organic acids 
might also be responsible for antimicrobial effects, 
though the amount might not be high, while the esters 
might not be the active ingredients responsible for 
antimicrobial effects [17, 50, 51]. Phenolic compounds 
might be another category responsible for antimi-
crobial effects. However, our GC–MS results did not 
report these compounds [13, 24].

The statistical analysis using GCMS-PCA proved the 
presence of high amounts of esters, alcohols, and hydro-
carbons with significant quantities of ethers, aldehydes, 

Fig. 4 Cluster distribution for cytotoxicity and antimicrobial data of 42-OF-samples
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acids, ketones, and aldehydes. PCA revealed more vari-
ation in antimicrobial data for biological activities than 
cytotoxicity, where the OF samples presented signifi-
cant antiproliferative effects. The antimicrobial activity 
was sparse, and only three extracts showed reasonable 
activity. For the activity against MRSA, only O41 (Syr-
ian green olive) and O42 (Palestine green olive) showed 
considerable activity, whereas the rest of the samples 
were ineffective to retard the growth of MRSA. The 
K-mean cluster analysis of GCMS data and biological 
activities scrutinized the most effective four extracts of 
O8 (Greek olive, Kalamata medium black), O23 (Jordan 
green olive), O25 (Jordan green balad olive), and O39 
(Syrian black selptin olive). The MIC and MBC evalu-
ation for the two most effective extracts of O8 (Greek 
olive, Kalamata medium black) and O39 (Syrian black 
selptin olive) revealed a low  IC50 value against the 
tested organisms.

The outcomes of this research study with statistical 
calculations were the variation in the quality of food 
and herbs, as prone to various factors of environmental 
and geographical variations, including watering, salin-
ity, humidity, temperature, altitude, processing, packag-
ing, and storage, etc.[7, 8]. Hence, a proper evaluation 
using instrumental metabolomics analysis is of utmost 
importance to determine the quality of food and herbal 
products.

Conclusion
The GCMS analysis for 42-OF samples showed the 
presence of one hundred and eleven compounds which 
belong to the chemical classes of acids, alcohols, esters, 
ethers, aldehydes, hydrocarbons, and ketones. Among the 
42-OF samples, O17 (Jordan black olive) and O25 (Jor-
dan green balad olive) exhibited the most potent activity 
against the cancer human cell lines, whereas O8 (Greek 
olive Kalamata medium black) and O39 (Syrian black 
selptin olive) had the highest levels of inhibition against 
the tested microorganisms. These samples showed the 
presence of a unique pattern of volatile chemical com-
pounds with a predominant amount of esters which may 
be considered markers and valuable sources for further 
mechanistic studies of anticancer and antimicrobial natu-
ral products. Olive fruit may be a potential source to pre-
vent microbial growth in food products using Olea-based 
food preservatives.

Novelty and potential impact of the study
This is the first study comparing the quality variation 
of 42 olive samples from different geographical loca-
tions worldwide. The study aimed to evaluate the food 
quality of olive used in the Saudi Arabian market, as 
an enormous proportion of the local inhabitants are 

using olive and their oil for various food, nutraceutical, 
health, and therapeutic purposes. It is critical to know 
the quality of the olive in terms of its phytochemical 
and phytochemical profile as most of the health and 
therapeutic properties of olive are imparted due to the 
presence of these novel and active phytochemicals. 
This study evaluated the quality variation of olive sam-
ples not merely in terms of their phytochemical profile 
using GCMS; the samples were also subjected to vari-
ous comparative biological evaluations (cytotoxic and 
antimicrobial). The purpose was to standardize the 
quality of olive samples as per WHO guidelines, where 
the chemical, physical, and biological evaluations of the 
samples are of utmost necessity. This unique quality 
variation study, with the help of GCMS and biological 
evaluation, may be useful for the food and nutraceuti-
cal manufacturers for the quality control of marketed 
products, as well as for the end-user to be aware of the 
olive product with good quality in terms of active com-
ponents and health effects. This study is equally impor-
tant for the researchers in further studies that evaluate 
the impact of geographical origins and other factors on 
the quality of olive oil.

Additionally, the study investigated the correlation 
between phytochemical profile and biological activi-
ties wherein specific classes with unique volatile chemi-
cals were responsible for most of the olive activities. 
Notably, such volatile substances may act as potential 
markers for researchers to select the most potent olive 
products and explore their mechanistic properties for 
food and nutraceutical manufacturers for quality con-
trol and standardization purposes of olive products.
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