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Abstract 

Background A modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method has been 
tested for quantifying six active compounds of pharmaceuticals (PhACs), i.e., two different antibiotics, two anti-
inflammatories, one antifungal, and one anti-depressant, extracted from roots, leaves and stems, pulp, pits, and oil 
obtained from olive trees. The different matrices have been polluted with all contaminants at 25, 50, and 250 µg  L−1 
and the recoveries were determined by liquid chromatography tandem–mass spectrometry. The validation 
of the method has been carried out by determining linearity, recovery, precision, limits of detection (LODs), and lim-
its of quantification (LOQs) values. A matrix-matched calibration for each matrix has been adopted in order to avoid 
the matrix effect at the aforementioned levels of fortification.

Results The recoveries of PhACs from the different matrices were always above 70% and the relative standard 
deviation (RSD) always ≤ 20%, conditions required for the validation of the method. The LOD and LOQ values were 
always lower than 25 µg  L−1, i.e., always lower than the minimum concentration used in the experiment; therefore, 
the method can be validated at 25, 50, and 250 µg  L−1.

Conclusions This method can represent a valid alternative to the traditional extraction methods to quantify pharma-
ceuticals extracted also from fatty matrices.

Keywords Contaminants extraction, Emerging contaminants, Olive pulp, Olive pits, Olive oil, Liquid chromatography, 
Mass spectrometry
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Background
The reuse of treated wastewater is becoming a world-
wide agricultural practice for the irrigation of olive trees, 
especially in semi-arid regions [1]. In the Mediterranean 
basin, the annual irrigation volume in an olive orchard 
ranges approx. from 1500 to 3000   m3/ha [2–6]. Waste-
water can supplement the irrigation water requirements 
and can supply nutrients for crops with a reduction of the 
chemical fertilization, promoting the circular economy 
by recovering nutrients [7, 8]. Nonetheless, recent stud-
ies demonstrated the presence of organic contaminants, 
such as pharmaceuticals (PhACs) in treated wastewater 
intended for crops irrigation [9–11]. As a consequence, 
crops irrigated with treated wastewater can uptake and 
translocate PhACs in their tissues from few μg   kg−1 to 
few mg  kg−1 [12] and thus present a potential health risk 
to humans and livestock which feed on them [13, 14]. The 
Water Reuse Regulation EU (2020/741) [15] lays down 
minimum requirements for water quality and monitoring 
and provisions on risk management, for the safe use of 
reclaimed water in the context of integrated water man-
agement. The risks concerning the release of wastewater 
contaminants into the environment have garnered signif-
icant public concerns in the last years.

Olive oil is a lipid source within the Mediterranean 
diet, and its consumption brings benefits in terms of 
decreasing illness and reducing cardiovascular and 
neurological disorders, and cancers [16]. According 
to the data of the oil season 2021/2022, world olive oil 
production was about 3 million tons and its two-thirds 

have been obtained in Europe [17]. Although the con-
sumption of olive oil for food purposes is the priority, 
olive leaves can be used in the cosmetic and pharma-
ceutical fields. Some bioactive molecules present in 
olive leaves, such as oleuropein and hydroxytyrosol, 
have strong beneficial properties for human and ani-
mal welfare [18]. In particular, El and Karakaya [19] 
reported that olive leaves exerted antihypertensive, 
antiatherogenic, anti-inflammatory, hypoglycemic, and 
hypocholesterolemic effects, in addition to being used 
as an extract, an herbal tea, and a powder in the human 
diet. With a view to recycling waste biomass, even olive 
pits are finding uses. Recently, Galitsopoulou et al. [20] 
have highlighted the phenolic, antioxidant, nutritional 
and microbiological properties of olive pits, hypoth-
esizing their future use as a functional food. Another 
study highlighted the potential of olive pits powder as 
component of composites [21].

Regarding the extraction and quantification of con-
taminants in matrices containing high amounts of fats, 
the main problem is the total removal of fats before the 
extract passes through the chromatographic system. 
For this reason, the QuEChERS method that includes 
the clean-up steps can solve the aforementioned prob-
lem, as reported by Cunha et al. [22]. Furthermore, the 
coupling of the QuEChERS extraction method with the 
use of LC–MS or GC–MS spectrometers allows hav-
ing a rapid method of quantifying different PhACs in 
oil and olive samples, even at very low concentration. 
García-Reyes et  al. [23] compared different types of 
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extraction and quantification of pesticide residues in 
olives and oil and found that the QuEChERS method 
was effective.

Abdallat et  al. [24], in a study conducted in Jordan, 
found diclofenac in olives, but not in twigs and leaves, 
suggesting a high rate of plant uptake, especially dur-
ing the olive’s growth period. Oueslati et  al. [1] tested 
the pomological characteristics and the olive oil qual-
ity after the irrigation with untreated industrial poul-
try wastewater, but no consideration has been made on 
the possible fate of organic contaminants in the plant 
organs and in the oil. Christou et al. [12] reported a low 
potential of table olives for contaminants of emerging 
concern uptake. To our knowledge, few studies have 
been carried out on the fate of PhACs in the olive tree 
and in the resulting oil. Instead, several studies have 
been conducted on the extraction and quantification of 
PhACs in fruits and vegetables [13, 25–30]. More stud-
ies have instead been conducted on the fate of pesti-
cides in olives and oil. Recently, García-Vara et al. [31] 
validated a modified QuEChERS method for the extrac-
tion of 42 pesticides including organophosphates, phe-
nylureas, anilines, neonicotinoids, and others from 
olives. Previously, Anagnostopoulos and Miliadis [32] 
validated a short sample preparation step based on ace-
tonitrile extraction coupled with a gas and liquid chro-
matography–tandem mass spectrometry to determine 
the residues of 32 pesticides in olive oil and olives. 
Gilbert-López et  al. [33] also developed a QuEChERS 
method coupled with liquid chromatography–electro-
spray tandem mass spectrometry to quantify 104 pes-
ticides in olives.

The objective of this study was to evaluate the 
QuEChERS extraction approach for the identification 
and quantification of some active substances, more 
frequently reported in treated wastewater [34, 35], 
that can enter and translocate in olive tree with the 
irrigation.

We believe that this study can help researchers in the 
critical step of extracting PhACs from complex matrices 
such as oily ones. The possibility of using this method for 
the simultaneous extraction of some PhACs from com-
plex matrices represents the innovation of this study. In 
addition, this method is eco-sustainable, because requires 
low quantity of solvents and water, and limited spaces 
with respect to other traditional extraction methods. In 
this way, useful and rapid indications would be obtained 
regarding the fate of PhACs in oil and olives, given that 
studies on this subject are not available in the literature. 
Finally, we believe that this research can provide a sup-
port tool applicable for the regulatory environmental 
monitoring programs in the olive sector and in all fields 
dealing with oily matrices.

Materials and methods
Plant material
Plant samples were collected by 3-year-old olive plants 
(Olea europaea (L.) cv. Ogliarola) grown in open field 
located in Apulia region (southern Italy). In particular, 
the following organs were collected: fine roots (1–5 mm 
in diameter), 1-year vegetative shoots from which mature 
leaves and stems were sampled, olive fruit from which 
pulp and pit were separated, and olive oil.

Selected pharmaceuticals
Acetonitrile (ACN), LC–MS grade water, magnesium sul-
fate anhydrous  (MgSO4), sodium citrate (Na citrate), and 
primary secondary amine (PSA) were purchased from 
Sigma-Aldrich. The extraction tube (citrate buffer) con-
tained 0.5 g of Na Citrate Dibasic Sesquihydrate, 1 g Na 
Citrate Tribasic Dihydrate, 1 g NaCl, and 4 g of  MgSO4, 
while the clean-up tube contained 900 mg of  MgSO4 and 
150 mg of PSA for roots, and 900 mg of  MgSO4, 150 mg 
of PSA, and 150 mg octadecyl silica (C18) for pulp, seeds, 
oil, leaves, and stems. The QuE-Lab® Tubes used for the 
extractions were bought from Lab Instruments (Italy). 
The analytical standards (purity > 99%) of carbamazepine, 
climbazole, clarithromycin, diclofenac, ketoprofen, and 
sulfamethoxazole were supplied from Lab Instruments 
(Italy). Table  1 shows the physico-chemical characteris-
tics of selected PhACs.

Pharmaceuticals stock standard and internal standards 
solution
Ten mg of the pure standard of each PhAC for pharma-
ceuticals stock standard solution and the same quantity 
of isotopically labeled internal standards for internal 
standards solution were dissolved in 10  mL of ACN 
(climbazole, ketoprofen) and methanol (MeOH) (carba-
mazepine, diclofenac, clarithromycin, sulfamethoxazole) 
to obtain the single standard solutions at 1000  mg   L−1. 
Successively, to obtain the pharmaceuticals stock stand-
ard solution at 50  mg   L−1, 1  mL of each standard solu-
tion was dissolved in 14  mL of the solvent and stored 
at − 18 ± 3  °C in the dark. Matrix-matched calibration 
curves were established at three different concentration 
levels for each analyte (25, 50, and 250 µg  L−1) by spiking 
blank samples of the selected matrices after the extrac-
tion process, in order to assess the linearity of the ana-
lytical method. The same final concentrations levels of 
the external standards were used to obtain the external 
standard calibration curves.

Extraction and quantification of pharmaceuticals
Fresh spiked or unspiked samples of olive roots, leaves 
and stems, pulp, seeds, or oil were added to 6  mL of 
MilliQ water into polypropylene centrifuge tubes and 
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shaken vigorously for 1  min by using a Vortex mixer at 
maximum speed (Vortex Fisher Scientific FB15013 Top-
Mix; Fig.  1). Successively, 10  mL of ACN and the rela-
tive internal standard at the middle level of calibration 
curve were added to the solutions. The use of isotopi-
cally labeled internal standards helps compensate for any 
matrix effect (signal suppression/enhancement) and fur-
ther improve accuracy and precision [36]. Aliquots of a 
pharmaceuticals stock standard solution were added 
to achieve the concentrations of 25, 50, and 250 µg   L−1, 
respectively. The tubes were hand-shaken for 1  min, 
and then salting-out with citrate buffer was performed. 
The combination between  MgSO4 and NaCl allowed to 
reduce the amount of matrix components co-extracted 
and to influence the peak shapes and areas of several 
contaminants [37]. The  MgSO4 during the clean-up pro-
cess facilitates the partitioning of solvents, improves the 
recovery of polar analytes, and removes any water from 
the organic phase [36, 38]. After the addition of the salt, 
the tubes were immediately manually shaken for 1 min to 
prevent the formation of  MgSO4 conglomerates [36] and 

centrifuged for 5 min at 3700 rpm. Clean-up step of sam-
ples was carried out as reported in Fig. 1. PSA is typically 
used to remove fatty acids, sugars, organic acids, lipids, 
and some pigments, while C18 has been used for leaves 
and stems, pulp, seeds, and oil to remove their higher 
lipid contents compared to those of roots [39]. The same 
procedure was applied without the addition of the phar-
maceuticals stock standard solution to check the possible 
presence of selected contaminants in samples. Figure  1 
shows the scheme of the QuEChERS method used for the 
extraction of PhACs from different parts of olive plants 
and olive oil. The different amounts of sample used for 
the extraction of PhACs are related to the different water 
contents in the starting matrices.

Data acquisition was done in full scan, positive 
mode, by a Thermo Scientifc™ UltiMate 3000 UHPLC 
equipped with a degasser, a high-pressure gradi-
ent pump, a WPS autosampler, a column oven, and a 
Q Exactive mass spectrometer. Ten microliter of each 
sample and of selected syringe standards were injected 
in Accucore™ aQ C18 Polar Endcapped (2.6  μm; 

Table 1 Physico-chemical properties of the selected PhACs

PhACs Molecular 
Weight 
g/mol

Chemical
Structure

Therapeutic class Water     
Solubility

mg/L

KOW pKa

Carbamazepine 236.3 anti-depressants 18 at 25 °C 2.45 13.9

Clarithromicin 748.0 antibiotic 1.693 at 25 °C 3.16 8.99

Climbazole 292.8 antifungal 58  at 25 °C 3.76 6.49

Diclofenac sodium 296.1 anti-inflammatory 2.37 at 25 °C 4.15 4.15

Ketoprofene 254.3 anti-inflammatory 51  at 22 °C 3.12 4.45

Sulfamethoxazole 253.3 antibiotic 610 at 37 °C 0.89 1.6

MW: Molecular weight; Water solubility; KOW: octanol/water coefficient; pKa: acid ionization constant
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100 × 2.1  mm) column (Thermo Fisher Scientifc) and 
maintained at 40 °C. The system conditions are reported 
in De Mastro et al. [40]. Data acquired were processed 
by the Thermo Xcalibur 4.0.27.10, Chromeleon, and 
Trace Finder 3.3 methods, and 5-ppm mass tolerance 
was used for each extracted ion chromatogram. Table 2 

provides UHPLC detection parameters used for the 
analysis.

Validation of QuEChERS method
The validation of the QuEChERS method was 
done according to Caldas et  al. [41]. Three levels of 

Sample homogenization

Transfer 2 g of sample (roots, pulp, pits or leaves 

and stems) to 50 mL tube
Transfer 4 g of sample (oil) to 50 mL tube

Add 6 mL of H20 and shake 

vigorously for 1 min 

Add 10 mLACN and internal 

standard

Salting with 4 g MgSO4 + 1 g NaCl + 0.50 g NaCitrate Dibasic Sesquihydrate

+ 1 g NaCitrate Tribasic Dihydrate

Shake by hand and centrifuge for 5 

min at 3700 rpm

Roots clean-up: 

6 ml supernatant + 900 mg MgSO4 + 150 mg PSA

Pulp, seeds, oil, leaves and stems clean-up: 

6 ml supernatant + 900 mg MgSO4 + 150 mg PSA + 150 mg C18

Shake for 1 min and centrifuge for 5 

min at 3700 rpm

Transfer 1.5 mL of filtered 

supernatant (0.22 μm) to the LC vial

Fig. 1 Workflow of the optimization of the QuEChERS process. ACN: acetonitrile; PSA: primary secondary amine;  MgSO4: magnesium sulfate 
anhydrous; NaCl: Sodium Chloride; C18: Octadecylsilane

Table 2 Target analytes and respective deuterated standard with exact mass and retention time obtained from Thermo Scientifc™ 
UltiMate 3000 UHPLC

tR: retention time; IS: internal standard

Compound Abbreviation Precursor ion mass tR (min) IS IS precursor ions

Carbamazepine CBZ 237.10223 5.94 Carbamazepine d10 247.16500

Climbazole CLZ 293.10513 6.68 Climbazole-d4 297.13023

Clarithromycin CLR 748.48416 7.04 Clarithromycin-n-methyl d3 751.50299

Diclofenac DCF 296.02396 8.58 Diclofenac-d4 300.04906

Ketoprofen KTP 255.10157 6.53 Ketoprofen-d4 259.12667

Sulfamethoxazole SMX 254.05938 4.52 Sulfamethoxazole-d4 258.08449
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fortification, i.e., 25, 50, and 250 µg  L−1 for each contami-
nant replicated six times, were used to evaluate the recov-
ery. The calibration curves were obtained by plotting the 
area ratio (peak area of the analyte divided by the peak 
area of the internal standard) of each calibration level 
against its corresponding concentration. Prior to calibra-
tion, blank extracts of the studied samples were meas-
ured to ensure they did not contain PhACs. Additional to 
the instrument calibration using the calibration solution, 
quality control samples were prepared with blank matrix 
with PhACs and internal standard enrichment at concen-
tration of 50  µg   L−1 and were injected every 5 samples 
during the analyses, confirmed with concentration varia-
tion lower than 20% with respect to the theoretical con-
centration. The coefficient of determination (r2) of each 
analytical curve has been used to evaluate the linearity 
of the calibration curve. The precision of the validation 
method has been evaluated through the relative stand-
ard deviation (RSD%). The limit of detection (LOD) and 
the limit of quantification (LOQ) have been determined 
according to the ISO 11843-2.

Results and discussion
The quantifiers and qualifiers were selected, considering 
previous studies and available mass spectrometry data-
bases. Average recoveries of all the tested compounds 
were determined using six replicates at three concentra-
tion levels. The absolute recoveries of PhACs from the 
different matrices were always above 70% and the relative 
standard deviation (RSD) always ≤ 20%, conditions that 
met the validation requirements according to the guide-
lines of Sante et al. [42] (Table 3).

The average recovery, considering the matrices globally, 
was 85.34%. In particular, the greatest recovery occurred 
in the pulp (90.11%), the least in the pit (81.88%), while 
for oil the average recovery was 82.14% (Table 3, Fig. 2).

Considering the individual PhAC, the maximum recov-
ery occurred with carbamazepine (94.92%), while the 
minimum recovery with sulfamethoxazole (76.58%). 
The differences in the recovery percentages can be pre-
sumably ascribed to the different chemical properties of 
PhACs studied. In fact, SMX is a poorly soluble com-
pound, and therefore, it may have had a lower affin-
ity with the organic solvent and be extracted in smaller 
quantities than the other PhACs.

Table  4 reports the linearity of the method in roots, 
leaves and stems, pulp, pits, and oil, respectively, evalu-
able through the correlation coefficients (r2).

The response of the detector was linear for each 
PhAC in the range considered with r2 between 0.9986 
and 0.9997 for roots, between 0.9965 and 0.9998 for 
leaves and stems, between 0.9994 and 0.9999 for pulp, 
between 0.9976 and 0.9996 for pits, and between 0.9995 

and 0.9999 for oil. Bragança et  al. [43] also reported a 
good linearity for PhACs isolated from soil in the range 
1.5–500 μg  kg−1.

The analysis of three blank samples without PhACs has 
been conducted to assess the selectivity of the method 
and to ensure they did not contain the studied com-
pounds. The matrix effect has been compensated by a 
matrix-matched calibration, as reported also in other 
studies [40, 44–46]. The average LOD value ranged from 
4.24 to 11.27 μg   kg−1 for oil and pits, respectively, while 
the average LOQ values from 8.49 to 18.05  μg   kg−1 for 
oil and stems and leaves, respectively (Table  4). Since 
LOD and LOQ values appeared always lower than the 
minimum concentration used in the experiments, the 
method can be validated in the range 25–250  μg   kg−1. 
The results of this study confirmed that the QuEChERS 
method with its clean-up step makes it possible to obtain 
excellent recoveries by purifying also the fat matrix to the 
maximum.

The average recovery of each PhAC was decreasing in 
the order CBZ > CLZ > CLR > DCF > KTP > SMX. This 
result can be ascribed to a different interaction of the 
single molecules with the solvent (ACN and water) in 
the presence of the citrate buffer. Although ACN is con-
sidered an excellent solvent for the extraction of many 
compounds with the least interference [45, 47, 48], an 
important parameter that influences the extraction per-
centage of a compound is its pKa [49]. When the pH of 
the extraction solution is lower than the pKa of the com-
pound, the non-ionized form of a compound prevails, 
and it is more easily extracted. Since the pH of the extrac-
tion solution was 6.8, CLR and CBZ were in their undis-
sociated form and, therefore, showed higher percentages 
of recovery. Regarding the CLZ, its pKa was similar to 
the pH of the extraction solution and it was also probably 
easily extracted. The recoveries of DCF, KTP, and SMZ 
were directly related to their pKa values, in the sense 
of lower pKa corresponded to lower recoveries, due to 
the dissociated forms prevailing over the undissociated 
ones. Other authors tested the acidification of ACN or 
water with acetic acid [43, 50] to increase the recoveries 
of compounds with low pKa. In contrast, to increase the 
recoveries of compounds with high pKa, Kvicalova et al. 
[51] proposed the addition of ammonium to ACN.

To our knowledge, no other study has been conducted 
on the fate of PhACs in oil and olives, probably due to 
the complexity of these matrices. In fact, fatty matrices 
can damage the chromatographic system. About this, the 
clean-up step provided by the QuEChERS method with 
 MgSO4-PSA-C18 can trap fatty acids, without to lose the 
planar structure of pesticides that remain in ACN [52]. 
Some studies have been conducted on the extraction 
of pesticides from these matrices with the QuEChERS 



Page 7 of 10Brunetti et al. Chem. Biol. Technol. Agric.           (2023) 10:80  

method with satisfactory results, confirming the effective-
ness of the clean-up step [22, 23, 53]. López-Blanco et al. 
[54] tested different clean-up sorbents for the analysis 
of different kind of pesticides in olives and olive oil and 
found good results in terms of recoveries using PSA + C18 
as sorbent material. Finally, previous studies suggested to 
increase the solvent/sample ratio to improve the recovery 
of very lipophilic molecules with QuEChERS method for 
high fat samples [53, 55, 56].

Conclusions
The proposed modified QuEChERS method, as well as 
being valid for roots, stems, and leaves, can be consid-
ered suitable for the extraction of PhACs from fat-rich 

matrices such as oil and olives. The clean-up step fore-
seen by the method allows to limit the damages to the 
chromatographic system deriving from the co-extraction 
of fats, consuming small amount of organic solvent. The 
QuEChERS method also allows to extract many samples 
simultaneously, reducing the time of the analysis and the 
costs. To our knowledge, no other QuEChERS method 
has been validated for the quantification of pharmaceu-
ticals extracted from roots, stems, leaves, oil, and olives, 
and results of this study may be useful for further studies 
on the fate of these contaminants along the food chain. 
Additional studies are needed to optimize the method for 
acid-sensitive or base-sensitive compounds, by correct-
ing the pH of the extractive solution. Finally, this study 

Table 3 Percentages of the extraction recoveries of pharmaceuticals

RDS: relative standard deviation; R%: recovery percentage; CBZ: carbamazepine, CLZ: climbazole, CLR: clarithromycin, DCF: diclofenac, KTP: ketoprofen, SMX: 
sulfamethoxazole, R: recovery percentage, RSD: relative standard deviation

PhACs Level of fortification

25 (µg  L−1) 50 (µg  L−1) 250 (µg  L−1)

R% RSD R% RSD R% RSD

Roots CBZ 71.8 2.07 111.3 4.02 93.8 7.99

CLZ 98.8 3.66 100.8 3.02 99.5 3.25

CLR 90.9 3.80 93.9 4.60 96.1 1.83

DCF 86.6 11.03 84.3 3.44 80.2 3.95

KTP 95.0 3.97 80.8 2.48 83.8 3.76

SMX 73.7 8.71 72.2 4.81 70.1 1.68

Leaves and stems CBZ 95.1 4.28 87.1 3.45 98.9 5.40

CLZ 90.7 11.35 96.7 4.57 98.5 4.24

CLR 82.6 0.52 85.1 4.74 86.9 3.30

DCF 82.6 7.89 76.4 4.96 80.6 5.13

KTP 84.4 7.84 73.9 3.01 74.0 1.58

SMX 81.7 1.50 75.3 0.44 72.2 3.50

Pulp CBZ 101.9 9.99 110.1 0.62 98.5 6.83

CLZ 81.4 4.40 96.5 4.12 100.8 7.10

CLR 80.0 4.96 103.0 2.92 102.2 6.27

DCF 80.8 4.58 75.7 3.58 94.2 5.10

KTP 95.6 5.52 80.9 4.62 82.3 4.12

SMX 80.2 7.62 78.9 6.76 78.9 6.79

Pit CBZ 90.8 4.02 93.4 2.52 94.2 8.56

CLZ 79.7 6.06 82.5 5.18 89.7 2.40

CLR 75.7 2.53 104.8 3.19 85.0 3.04

DCF 79.5 7.32 70.6 2.80 80.9 3.76

KTP 73.5 9.62 70.4 4.45 72.0 2.31

SMX 72.5 5.35 75.5 3.95 83.0 2.21

Oil CBZ 89.9 5.84 96.4 1.68 90.5 2.18

CLZ 89.2 3.35 102.9 1.40 92.8 0.28

CLR 76.6 4.74 82.8 1.29 82.8 2.11

DCF 75.5 3.69 71.2 2.64 70.4 2.64

KTP 77.9 4.29 74.0 5.28 71.1 0.97

SMX 70.4 3.37 90.0 1.33 73.9 4.13
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can be extended to the study of other widely consumed 
fatty matrices of vegetable origin.
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LC–HRMS  Liquid chromatography–high-resolution mass spectrometry
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Fig. 2 Liquid chromatography–high-resolution mass spectrometry (LC–HRMS) chromatograms of oil samples spiked with pharmaceuticals stock 
standard solution at concentration of 50 μg  L−1

Table 4 Performance of the method for the target PhACs evaluated

CBZ: carbamazepine, CLZ: climbazole, CLR: clarithromycin, DCF: diclofenac, KTP: ketoprofen, SMX: sulfamethoxazole, LOD: limit of detection, LOQ: limit of 
quantification

PhACs Roots Leaves and stems Pulp Pit Oil

r2 LOD LOQ r2 LOD LOQ r2 LOD LOQ r2 LOD LOQ r2 LOD LOQ

(µg  kg−1) (µg  kg−1) (µg  kg−1) (µg  kg−1) (µg  kg−1)

CBZ 0.9997 4.9 9.7 0.9986 9.0 18.0 0.9994 11.0 22.0 0.9987 8.6 17.2 0.9999 4.6 9.3

CLZ 0.9986 8.8 17.7 0.9988 8.4 16.9 0.9998 6.9 13.9 0.9991 11.8 23.6 0.9999 3.1 6.2

CLR 0.9995 10.6 21.2 0.9989 8.0 16.1 0.9997 12.6 25.3 0.9976 7.1 14.3 0.9999 4.0 8.0

DCF 0.9995 5.3 10.6 0.9981 10.6 21.2 0.9998 9.2 18.4 0.9995 5.1 10.3 0.9996 4.9 9.8

KTP 0.9996 4.6 9.2 0.9998 3.2 6.3 0.9999 7.6 15.3 0.9994 5.7 11.4 0.9998 3.4 6.8

SMX 0.9997 4.3 8.6 0.9965 14.2 25.5 0.9995 8.3 16.6 0.9996 4.6 9.1 0.9995 5.4 10.8
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