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Abstract 

Background  Paper mulberry has been considered as a high-quality protein feedstuff to cope with the shortage 
of feed and the development of livestock. In addition, the features of high moisture and low water-soluble carbohy-
drate concentration in fresh paper mulberry make it difficult to ensile. Therefore, it is important to find an optimal way 
to improve the paper mulberry silage quality. In this study, we aimed to investigate the application of Lactobacillus 
plantarum (LP) and wheat bran (WB) on the fermentation characteristics, chemical composition and microbial com-
munity of paper mulberry silage.

Results  The objective of this study was to evaluate the effects of Lactobacillus plantarum and wheat bran alone 
or combination (LP + WB) addition on the fermentation quality and bacterial community of paper mulberry silage. 
After 60 days of ensiling, the employed three treatments had higher crude protein contents compared with control 
(P < 0.05). More importantly, WB and LP + WB treatments significantly reduced the pH value and NH3-N concentra-
tion, and increased lactic acid content (P < 0.05). Microbial analysis indicated that the bacterial community in WB 
and LP + WB treatments showed distinct difference with LP and control. Lactobacillus was the dominant genera in all 
treatments. However, at the species level, Lactobacillus farciminis became the most dominant bacteria in control 
and LP treatments while the dominant bacteria in WB and LP + WB were Lactobacillus brevis and Lactobacillus farci-
minis. In addition, Lactobacillus brevis was positively correlated to crude protein and lactic acid and negatively cor-
related to pH and NH3-N. Overall, this study revealed that ensiling paper mulberry with WB or combination LP could 
improve silage quality through altering microbial community, which provided a practical approach for enhancing 
paper mulberry silage quality.

Conclusion  Wheat bran and combinations of Lactobacillus plantarum and wheat bran additions could reduce pH, 
NH3-N and increase LA content. The application of WB and LP + WB shifted the dominant bacteria species to Lacto-
bacillus brevis. In summary, the addition of wheat bran and combinations of lactic acid bacteria and wheat bran were 
effective ways to enhance paper mulberry silage fermentation.
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Introduction
Paper mulberry (Broussonetia papyrifera) has been con-
sidered as a pioneer source to cope with the shortage 
of feed and the development of livestock [1]. The crude 
protein content of whole-plant paper mulberry could be 
equivalent to alfalfa [2]. Besides, paper mulberry contains 
abundant biologically active compounds, amino acids, 
vitamins, digestible crude fiber and mineral elements 
[3, 4]. Due to these excellent features, paper mulberry 
can be a new type of high-quality protein feedstuff for 
ruminants.

Paper mulberry usually grows in the high humidity and 
rainy area in south of China, which is not conducive to 
production and storage of hay. Ensiling is a reliable way 
to effectively preserve fresh forage due to its good pal-
atability and low nutrient loss [5, 6]. Ensiling has been 
proved to be an efficient method for preserving paper 
mulberry [7]. However, it has been found that high tem-
perature and humidity conditions lead to the propagation 
of harmful microorganisms, which subsequently leads 
to the deterioration of silage. In addition, the features 
of high moisture and low water-soluble carbohydrate 
(WSC) concentration in fresh paper mulberry make it 
difficult to ensile, revealed by unpleasant smelling and 
low fermentation quality [8–11]. Therefore, it is critical 
to find the optimal way to improve the paper mulberry 
silage quality.

In China, more than 20 million tons of wheat bran 
(WB) are produced annually [12]. As a traditional animal 
feed, WB has a high dry matter content, rich in carbohy-
drates and other nutrients [13]. Adding WB is an effec-
tive method to reduce feed moisture content. During 
ensiling, WB could provide fermentation substrate for 
the growth of lactic acid bacteria (LAB) and accelerate 

the succession process to become dominant bacteria. The 
exogenous LAB has the characteristics of high utilization 
rate of sugar, fast acid production and pH reduction [14], 
which can speed up the ensiling process and inhibit the 
growth of harmful microorganisms [15]. In this regard, 
adding LAB inoculant and/or WSC substrates might be 
critical for enhancing paper mulberry silage quality.

The purpose of our research was to evaluate the appli-
cation of LAB and WB on the fermentation quality of 
paper mulberry silage. We investigated the fermenta-
tion characteristics, chemical composition and microbial 
community of paper mulberry silage.

Materials and methods
Silage preparation
The experiment was conducted on 16 September, 2020 
at Shandong hengda coal industry co. LTD (E116.87°, 
N35.88°) in Taian, Shandong, China. The industry is 
located in a monsoon climate of medium latitudes, with a 
mean annual temperature of 15.5 °C, relative humidity of 
81% and annual rainfall of 1250–1440 mm.

Paper mulberry (Broussonetia papyrifera L.-Zhongke 
No.1), cultivated at the experimental station, was approx-
imately 1.2 m in height and harvested from May to Octo-
ber in a year. Paper mulberry was harvested in the third 
cutting and grew approximately 4  months. The whole 
paper mulberry was obtained at the second round of cut-
ting, leaving stubble of 15  cm. Before ensiling, the har-
vested paper mulberry was directly chopped into 1–2 cm 
pieces and then mixed manually.

The L. plantarum strain was isolated from paper mul-
berry silage in our laboratory, named of Forage Produc-
tion and Processing Lab. The bacterial inoculants were 
added at a level of 106  cfu  g−1 of fresh material (FM). 
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Wheat bran (WB, applied at 30% rate of FM) was pur-
chased from China Oil and Foodstuffs Corporation 
Organization, Zhengzhou Haijia Food Co. Ltd.

A single factor completely randomized design was 
used in this experiment. The silage treatments were 
as followed: (i) no additives (control group, CK); (ii) 
application of L. plantarum (LP silage); (iii) applica-
tion of wheat bran additives (WB silage); (iv) combina-
tion of L. plantarum and wheat bran (LP + WB silage). 
Then, 500  g of materials with different additives were 
mixed homogenously and packed into polyethylene bags 
(30 cm × 20 cm). The silage bags were vacuum-sealed and 
stored at room temperature (20–30 °C) for 60d. After 60d 
of ensiling, three bags for each treatment were opened to 
analyze the fermentation characteristics, chemical com-
position and bacterial communities [16].

Fermentation quality, microbial population and chemical 
composition analysis
Twenty grams of samples were homogenized in 180 mL 
distilled water and stored at 4 °C for at least 4 h and then 
filtered by qualitative filter paper [17]. The pH, lactic acid 
(LA), acetic acid (AA), propionic acid (PA), butyric acid 
(BA) and NH3-N were immediately measured with fil-
trate. The pH was measured with a glass pH meter (PHS-
3C, INESA Scientific Instrument, Shanghai, China). The 
NH3-N content was accessed by the phenol–sodium 
hypochlorite method, as described by Guan et  al. [18]. 
The contents of organic acid (LA, AA, PA and BA) were 
measured by high-performance liquid chromatography 
method (column: Shodex RS Pak KC-811; detector: DAD, 
210  nm, SPD-20A; Shimadzu Co., Ltd., Kyoto, Japan; 
3 mmol L−1 HClO4) [19]. The microbial count of all sam-
ples was determined by the plate culture method. The 
filtrate was serially diluted from 10–1 to 10–6 and each 
diluted suspension was spread. The populations of LAB, 
coliform bacteria, yeasts and molds were determined on 
de Man Rogosa Sharpe (MRS) agar (AOBOX Biotech-
nology Co. Ltd., Beijing China), Blue Light (BL) agar and 
Rose Bengal (RB) agar, respectively, after incubation at 
30 °C for 48–72 h [20].

On days 0 and 60, a total of 42 fresh and silage of paper 
mulberry samples were dried to determine the DM con-
centration in an air oven at 65  °C for at least 48  h. All 
samples were milled to pass through a 1.0 mm size of the 
sieve for chemical composition analysis. Ether extract 
(EE) were estimate by AOAC [21]. The content of total 
nitrogen (TN) was determined by the Kjeldahl proce-
dure and the crude protein (CP) content was calculated 
by multiplying TN by 6.25 [21]. Neutral detergent fiber 
(NDF) and acid detergent fiber (ADF) were measured by 
the method of Van Soest et al. [22]. The content of WSC 
was analyzed by the methodology of Murphy et al.[23].

Microbial diversity analysis
The method of DNA extraction of each sample was 
according to Liu et  al. [24] with slight modifications. 
After monitored the quality and concentration of DNA, 
the full-length 16S ribosomal RNA (rRNA) gene was 
amplified with the polymerase chain reaction (PCR), with 
the primer 27F (5′-AGR​GTT​TGATYNTGG​CTC​AG-3′) 
and the reverse primer 1492R (5′-TASGGHTAC​CTT​
GTTASGACTT-3′). The PCRs program was: 95  °C for 
2 min, 25 cycles at 98 °C for 10 s, 55 °C for 30 s, 72 °C for 
90 s and a final extension at 72 °C for 2 min [25].

After extraction, purification and qualification, the 
PCR products were sequenced on PacBio Sequel plat-
form (Biomarker Technologies, Beijing, China). The 
raw sequences were selected by Single Molecule Real 
Time (SMRT) according to Li et  al. [26]. We clustered 
the unique sequence set into operational taxonomic 
units (OTUs) based on a 0.97 threshold identity using 
UCLUST [27]. The high-quality sequences were anno-
tated based on Silva132 database [28].

Statistical analysis
Analysis of variance (ANOVA) was performed using gen-
eralized linear modeling in the Statistical Package for the 
Social Sciences (SPSS version 21.0, SPSS Inc., Chicago, 
IL, USA) to examine the chemical composition, fermen-
tation quality and microbial counts data among samples. 
Duncan’s multiple range methods were used to deter-
mine the significant difference between means with three 
replicates per treatment. The significance was declared at 
P < 0.05.

After the OTUs analysis, QIIME software (version 2) 
[29] was operate to calculated alpha diversity indices. 
Principal component analysis (PCA) was performed to 
access the differences in community composition and 
structure of microbiota, basing on the beta-diversity 
analysis. Heatmap analysis was operated to analysis the 
relationship between pH, AA, NH3-N, CP, WSC, LA. LA/
AA and microbial community of paper mulberry silage 
using R-based statistics tool. Linear discriminant analysis 
effect size (LEfSe) analyses were conducted using a free 
online platform [30].

Accession number
The raw sequencing data including all samples have been 
deposited into the NCBI Sequence Read Archive (SRA) 
database under the Accession Number of PRJNA972621.

Results
Chemical and microbial composition of raw materials
The chemical characteristics and microbial composi-
tion of fresh paper mulberry and wheat bran are listed 
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in Table  1. The DM contents of paper mulberry and 
wheat bran were 259.29 and 917.70  g  kg−1 FM, respec-
tively. In addition, the CP, NDF and ADF of raw paper 
mulberry were 183.84 g kg−1 DM, 442.52 g kg−1 DM and 
251.03 g kg−1 DM, respectively. Paper mulberry had low 
WSC (25.79 g kg−1 DM) and LAB (5.09 log10 cfu g−1 FM).

Chemical composition of paper mulberry silage
The chemical composition of paper mulberry silage is 
shown in Table 2. There was no difference in NDF con-
tents between control and treatments (P > 0.05). The WB 
and LP + WB treatments significantly increased (P < 0.05) 
DM and WSC contents and decreased (P < 0.05) ADF and 
EE contents compared with control and LP treatments. 
The CP content of treatments was significantly higher 
than control while the CP in LP and WB treatments was 
highest (Table 2).

Dynamic changes of before and after ensiling
The dynamic change of chemical composition paper 
mulberry silage at the before and after ensiling process is 
shown in Table  3. The dynamic change of ADF content 
before and after ensiling in WB and LP + WB treatments 
was significantly higher (P < 0.05) than control and LP 
treatments. The WB and LP + WB treatments had lower 
(P < 0.05) DM, CP and WSC losses compared with con-
trol. No difference in NDF content was observed among 
treatments (P > 0.05).

Fermentation characteristics and microbial population 
of silage
As shown in Table  4, the treatments had a significant 
influence on pH, NH3-N, LA, AA, PA, BA contents 
and LAB counts (P < 0.05). The WB and LP + WB treat-
ments significantly increased (P < 0.05) LA content and 
decreased pH, the contents of NH3-N, AA, BA and the 
amount of LAB compared with control and LP treat-
ments. There was no difference in yeast, molds and coli-
form between control and treatments (P > 0.05).

Bacterial community indices of paper mulberry silage
The coverage values of all samples were beyond 0.995, 
indicating the credible analysis for sequencing depth 
of the microbial composition of paper mulberry silage. 
A total of 155 OTUs were clustered at 97% sequenced 
similarity. Shannon index ranged from 1.11 to 2.43. Com-
pared with control, inoculations with treatments signifi-
cantly increased (P < 0.05) Shannon, while the highest 
was 2.43 of LP + WB treatment (Fig.1).

As shown in Fig. 2, the variance of bacterial community 
was observed by principal component analysis (PCA) 
on the OTUs levels. The bacterial community in control 
were clearly separated from the other groups, which sug-
gested that bacterial community changed significantly 

Table 1  Chemical composition and microbial population of raw 
materials prior to ensiling

1 DM, dry matter; FM, fresh matter; NDF, neutral detergent fiber; ADF, 
acid detergent fiber; CP, crude protein; EE, ether extract; WSC, water-
soluble carbohydrate; LAB, lactic acid bacteria; ND, not detected. Data are 
mean ± standard deviations of triplicate determinations

Items1 Paper mulberry Wheat bran

DM (g kg−1 FM) 259.29 ± 11.05 917.70 ± 3.92

pH 6.93 ± 0.07 6.18 ± 0.02

NDF (g kg−1 DM) 442.52 ± 19.80 458.02 ± 38.54

ADF (g kg−1 DM) 251.03 ± 16.51 143.69 ± 24.53

Hemicellulose (g kg−1 DM) 191.49 ± 12.15 314.33 ± 14.04

CP (g kg−1 DM) 183.84 ± 2.10 217.88 ± 1.07

EE (g kg−1 DM) 84.60 ± 4.47 155.66 ± 11.98

WSC (g kg−1 DM) 25.79 ± 0.20 31.83 ± 0.55

LAB (log10 cfu·g−1 FM) 5.09 ± 0.13 5.43 ± 0.05

Table 2  Chemical composition of paper mulberry silage

1  DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; WSC, water-soluble carbohydrate; EE, ether extract
2  CK, no additives; LP, Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum additives plus 30% wheat bran. Data 
represent the means of three replicates (n = 3)
3  a−d Means different in the same column with different superscripts letters (P < 0.05). SEM, standard error of means

Treatment1 DM (g kg−1 FM) Chemical composition (g kg−1 DM)

CP NDF ADF WSC EE

CK2 233.53 b 163.34 c 359.90 a 245.74 a 9.24 b 79.59 a

LP2 227.78 c 181.20 a 318.56 a 221.17 a 8.23 b 77.22 b

WB2 440.34 a 184.88 a 374.68 a 162.89 b 11.82 a 69.25 c

LP + WB2 437.71 a 176.41 b 362.91 a 131.23 b 12.93 a 66.34 d

SEM3 31.426 2.510 11.159 14.353 0.638 1.665

P-value < 0.0001 < 0.0001 0.339 < 0.0001 0.003 < 0.0001
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after the addition of LP and WB and combinations of LP 
and WB.

The bacterial community at genus (A) and species (B) 
levels are shown in Fig. 3, using a threshold of > 0.1% of 
total. At the genus levels, Lactobacillus was the dominant 
genus in all silages, and the proportion of Lactobacillus in 
LP, WB and LP + WB were 84.45%, 89.27% and 86.10%, 

respectively, which were lower than control (P < 0.05). In 
addition, the proportion of Weissella in LP was higher 
than other treatments.

At the species levels, L. farciminis and L. ginsenosi-
dimutans were the dominant species in control. In LP 
treatment, L. farciminis, and W. cibaria were the repre-
sentative bacterium. Interestingly, treatments with wheat 

Fig. 1  The OTU information and Shannon index of paper mulberry added with lactic acid bacteria and wheat bran after 60 days of ensiling. a OTU; 
b Shannon index. CK, no additives; LP, Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum additives 
plus 30% wheat bran; p < 0.01 means obviously difference significant, 0.01 < p < 0.05 means difference significant; p > 0.05 means no significance

Table 3  Dynamic changes (%) of chemical composition of paper mulberry silage at the before and after ensiling processes

1  DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; WSC, water-soluble carbohydrate; EE, ether extract
2  CK, no additives; LP, Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum additives plus 30% wheat bran. Data 
represent the means of three replicates (n = 3)
3  a−d Means different in the same column with different superscripts letters (P < 0.05). SEM, standard error of means

Treatments DM CP NDF ADF WSC EE

CK2 17.01 a 18.25 a 25.21 a 9.89 c 67.07 a 13.28 b

LP2 19.07 a 9.31 c 33.69 a 18.73 bc 70.65 a 15.93 b

WB2 7.44 b 8.54 c 19.34 a 28.07 ab 58.90 b 37.11 a

LP + WB2 7.99 b 12.73 b 22.01 a 42.57 a 55.02 b 39.72 a

SEM3 1.771 1.220 2.644 4.142 2.130 3.735

P-value 0.005 < 0.0001 0.259 0.006 0.005 < 0.0001
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bran shifted the dominant bacteria to L. brevis and L. 
farciminis. The relative abundance of L. brevis and L. 
farciminis in WB treatment were 57.55% and 30.03%, 
while the relative abundance in LP + WB treatment were 
47.75% and 36.97%, respectively. L. brevis can be used 
as a biomarker in WB treatment by the LEfSe algorithm 
(Fig.  4). These findings clearly indicated lactic acid bac-
teria and wheat bran influenced bacterial community 
significantly.

Correlation between bacterial community 
and fermentation products
Lactobacillus brevis was negatively correlated to 
pH (r = −  0.91), AA content (r = −  0.86) and NH3-N 
(r = −  0.69) (P < 0.05), but positively correlated to CP 

content (r = 0.68), LA content (r = 0.89), WSC content 
(r = 0.64) and ratio of LA and AA (r = 0.86), respectively 
(P < 0.05). In contract, L. farciminis, L. ginsenosidimutans, 
L. maninotivorans, and L. dextrinicus were positively cor-
related to pH, AA content and AN/TN, but were nega-
tively correlated to LA, WSC content and ratio of LA and 
AA (P < 0.05).

Discussion
Previous studies have confirmed that paper mulberry 
is difficult to be well ensiled due to its low WSC and 
high moisture content [31]. Additives, such as LAB and 
bran, are often widely utilized to effectively improve the 
silage fermentation quality [32–35]. WB and LP + WB 
treatments contained lower AA and NH3-N contents 
(P < 0.05), indicating less protein degradation in silage 
with WB and LP + WB. In addition, L. brevis, with high 
acid production capacity, is the dominant in WB and 
LP + WB treatment. Therefore, these results verified that 
ensiling with WB and LP + WB could enhance paper 
mulberry silage quality (Table 4, Fig. 3B and Fig. 5).

In this experiment, the CP content of fresh paper mul-
berry was much lower than that determined by Dong 
et  al. [36], but much higher than that in our previous 
study [37]. ADF and NDF contents of fresh paper mul-
berry were lower than that reported by Li et al. [38], but 
comparable to those reported by Li et al. [19]. These dis-
crepancies might be due to the factors such as growth 
period, harvest time, fertilization and climate condi-
tions [39, 40]. The DM content of paper mulberry was 
259.29 g kg−1 FM, which was not conducive to well-qual-
ity fermentation [41]. Higher WSC (> 50 g kg−1 DM) and 
LAB (> 5 log10 cfu g−1 FM) of raw materials are necessary 
to obtain well-preserved silage [42]. In this study, WSC 
content and LAB number of fresh paper mulberry were 
below the minimal requirement, which was not condu-
cive to silage fermentation [10].

Table 4  Fermentation quality and microbial population of paper mulberry silage

1  LA, lactic acid; AA, acetic acid; PA, propionic acid; BA, butyric acid; LAB, lactic acid bacteria; NH3-N, ammonia nitrogen
2  CK, no additives; LP, Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum additives plus 30% wheat bran. Data 
represent the means of three replicates (n = 3)
3  a−d Means different in the same column with different superscripts letters (P < 0.05). ND, not detected, dilution number was 10; SEM, standard error of means

Treatment1 pH NH3-N (% TN) Organic acid (g kg−1 DM) Microbial population (log10 cfu·g−1 FM)

LA AA PA BA LAB Yeast Molds Coliform

CK2 5.07 a 11.08 a 27.99 c 116.91 a 1.93 b 263.11 b 6.05 a ND ND ND

LP2 4.93 b 9.56 b 67.22 b 76.02 b 21.91 a 354.86 a 6.07 a ND ND ND

WB2 4.12 d 2.82 c 106.46 a 30.14 c 20.28 a ND 5.60 b ND ND ND

LP + WB2 4.24 c 2.52 c 102.77 a 31.34 c 2.73 b ND 5.65 b ND ND ND

SEM3 0.126 1.166 9.669 11.045 2.854 47.967 0.069 – – –

P-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 – – –

Fig. 2  The principal component analysis (PCA) by operational 
taxonomic units (OTUs) for paper mulberry silage with different 
inoculant treatments. CK, no additives; LP, Lactobacillus plantarum 
additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus 
plantarum additives plus 30% wheat bran
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All treatments showed higher CP content and lower CP 
loss compared with control, which could be due to LAB 
and WB limiting the growth of undesirable microbes 
[43]. The WB and LP + WB treatments had higher ADF 

content changes rate than control and LP treatment, 
which could be due to acidolysis during ensiling process 
[44]. The WB and LP + WB treatments showed lower 
ADF content than control and LP treatments, which was 

Fig. 3  Bacterial community and relative abundances by genus (a) and species (b) for paper mulberry silage after ensiling. CK, no additives; LP, 
Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum additives plus 30% wheat bran
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due to lower ADF in wheat bran. After 60 days of ensil-
ing, the WSC contents in silages were lower than that 
in fresh paper mulberry, which was possible due to LAB 
converting WSC into organic acids and ethanol during 
ensiling process. The lower WSC content changes in WB 
and LP + WB treatment than that control and LP treat-
ment could be due to the different fermentation pattern, 
but the exact reason needs to be further classified in the 
future [45].

The low pH value around 4.2, a critical criterion for 
well-preserved silage, was important to inhibit harmful 
Clostridia [46]. In this experiment, the pH of WB and 
LP + WB treatment was around 4.2 while the pH of LP 
treatment was beyond 4.2, indicating that the effect of 
wheat bran was better than L. plantarum in regulating 
fermentation quality of paper mulberry silage. This might 
be because high moisture and low WSC are not condu-
cive to propagation and role of LAB [47]. Generally, lactic 
acid bacteria are often employed to convert WSC into LA 
to reduce pH and inhibit harmful microorganisms [48]. 
In our study, silage treated with LP showed lower LA 
content and higher NH3-N, AA and BA content, indicat-
ing that low WSC in paper mulberry cannot provide a 
good growth environment for LAB. As a typical indicator 
of proteolysis [49], silage treated with WB and LP + WB 
contained lower NH3-N content than LP treatment, indi-
cating less proteolysis occurred with WB and LP + WB. 
The above results indicated that it is important to regu-
late the moisture content promote fermentation quality 
of paper mulberry.

Lactobacillus and Weissella are beneficial to improve 
silage quality [50]. The dominant genus involved in all 
treatments were Lactobacillus and Weissella. Lactoba-
cillus is known as a predominant microbial species in 
high-quality silage [51], which is consistent with our 
experimental results. LAB plays an important role in 

producing LA and reducing pH to inhibit harmful bac-
teria, while as a hetero-fermentative bacteria with weak 
acid-producing ability [52], Weissella is difficult to 
become the dominant genus in silage. Interestingly, there 
was a sharp increase in the relative abundance of Weis-
sella species only in LP treatment. Similar result was also 
reported by Guo et al. [30]. The high abundance of Weis-
sella in LP treatment would explain its relatively poor 
fermentation quality compared with WB and LP + WB 
treatments.

At species level, the addition of L. plantarum did not 
significantly increase the relative abundance of L. plan-
tarum but increased the relative abundance of L. far-
ciminis and W. cibaria in LP treatment, which might 
be due to incompatibility between the inoculants and 
plant materials [53]. L. brevis and L. farciminis were the 
dominant species in WB and LP + WB treatments while 
L. farciminis was the dominant species in control and 
LP treatment. In addition, L. ginsenosidimutans and W. 
cibaria were the secondary dominant species in con-
trol and LP treatment, respectively. Generally, desirable 
LAB, such as L. plantarum, L. farciminis, L. buchneri and 
L. brevis, play an essential role in increasing LA content 
and reducing pH value [54]. In addition, the homo-fer-
mentative L. plantarum and L. farciminis were overtaken 
by hetero-fermentative L. buchneri and L. brevis in later 
stage of high-quality silage [55, 56]. At the later of stage 
of fermentation, lower WSC content was insufficient to 
support the fermentation of homo-fermentative LAB 
while hetero-fermentative LAB use lactic acid for growth, 
resulting in fermentation mode changes [57]. In addition, 
the anaerobic conditions promoted the growth of LAB 
that produced organic acids inhibiting other bacteria [58, 
59]. However, the role of L. farciminis in silage fermen-
tation remains unclear. In this study, L. brevis was posi-
tively relative to LA and negatively to pH, indicating that 

Fig. 4  Linear discriminant analysis effect analysis of bacterial community (LDA > 3.0) at species level in paper mulberry silages compared 
by different additives. CK, no additives; LP, Lactobacillus plantarum additives; WB, 30% wheat bran additives; LP + WB: Lactobacillus plantarum 
additives plus 30% wheat bran
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the production of LA was largely attributable to L. brevis. 
Similar results have been reported by a previous study 
[60]. In this study, L. ginsenosidimutans in control could 
be isolated from fermented foods, such as Korean fer-
mented pickle, and used as probiotic strains to biotrans-
form ginsenosides and improve the taste of functional 
foods [61]. However, the role of L. ginsenosidimutans in 
silage needs further study.

Conclusion
Paper mulberry silages with the addition of inoculant 
had lower NDF, ADF and WSC content than fresh paper 
mulberry. The addition of LP had no impact in improving 

the fermentation quality of paper mulberry silage. How-
ever, wheat bran (WB) and its combination with L. plan-
tarum (LP + WB) additions could reduce pH, NH3-N and 
increase LA content. The application of WB and LP + WB 
shifted the dominant bacteria species to L. brevis. Thus, 
the addition of wheat bran or combined with lactic acid 
bacteria were effective ways to enhance paper mulberry 
silage fermentation.

Abbreviations
AA	� Acetic acid
ADF	� Acid detergent fiber
ANOVA	� Analysis of variance
BA	� Butyric acid
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