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Abstract 

This study involved fabricating thermoplastic wheat starch–sugarcane bagasse biocomposites through melt mix-
ing method. The effect of sugarcane bagasse concentration at 3 levels of 0 wt.%, 7.5 wt.% and 15 wt.% of wheat 
starch and sorbitol:glycerol weight ratio at 4 levels of 0:4, 1:4, 2:4 and 4:4 on their physicomechanical properties 
was evaluated. The results indicated that increasing both of the weight ratio of sorbitol to glycerol and the concen-
tration of bagasse generally led to a significant increase in tensile strength and modulus, but a decrease in elonga-
tion at break and equilibrium moisture content. The biocomposite containing the weight ratio of sorbitol:glycerol 
of 0:4 and bagasse concentration of zero, had the lowest tensile strength (0.22 MPa) and tensile modulus (0.23 MPa), 
and the highest elongation at break (103.1%) and equilibrium moisture content (30.6%) and conversely The bio-
composite containing the weight ratio of sorbitol:glycerol of 4:4 and bagasse concentration of 15, had the highest 
tensile strength (5.3 MPa) and tensile modulus (371.5 MPa), and the lowest elongation at break (1.5%) and equilibrium 
moisture content (20.6%). Moisture absorption was also studied using the Peleg model, which showed that samples 
with lower weight ratios of sorbitol to glycerol and lower bagasse concentrations had higher initial moisture absorp-
tion rates and greater moisture absorption capacity. The investigation of thermal behavior of the biocomposites 
by TGA analysis showed improved thermal stability of the biocomposites by increasing both of the sorbitol:glycerol 
weight ratio and the bagasse concentration. Finally, the FTIR spectrum revealed an increase in hydrogen and polar 
bonds in the biocomposites compared to pure starch.
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Graphical Abstract

Introduction
Plastic waste, such as disposable packaging containers 
made of non-biodegradable plastics, is a significant con-
tributor to environmental pollution. As of 2015, approxi-
mately 6300 Mtons of plastic waste had been generated, 
around 9% of which had been recycled, 12% was inciner-
ated, and 79% was accumulated in landfills or the natural 
environment. If current production and waste manage-
ment trends continue, roughly 12,000 Mtons of plastic 
waste will be in landfills or in the natural environment 
by 2050 [1]. It is well-known that the improper disposal 
of non-biodegradable plastic waste has led to pollution 
of soil and groundwater [2]. On the other hand, the pri-
mary sources used to produce petroleum-based plastics 
are finite and non-renewable. Consequently, there is a 
growing public demand for the production of fully biode-
gradable or compostable disposable packaging contain-
ers, which can significantly diminish the burden on waste 
management system. To this end, a significant amount 
of research has been dedicated to discovering alterna-
tive solutions, such as the use of plastics derived from 
renewable, bio-based, and biodegradable resources [3, 4]. 
A viable solution to this problem is the use of films and 

containers that possess a high degree of biodegradability, 
which can be obtained from raw materials sourced from 
agricultural resources. This approach offers an additional 
benefit of reducing agricultural waste and providing a 
new application for such waste, thereby preventing the 
disposal of materials that could otherwise be recycled or 
composted.

Biodegradable polymers obtained from renewable nat-
ural sources, such as polysaccharides and proteins, are 
extensively researched due to their economic feasibil-
ity, availability, and shorter production process. Among 
these, starch is particularly attractive compared to other 
natural biopolymers, because it is readily available, rela-
tively inexpensive, and can be mass-produced easily [5]. 
Native starch has to be modified by plasticizers to be 
melt-processed as a thermoplastic material, because the 
melting temperature (Tm) of pure dry starch is close to 
220–240 °C, which is higher than its degradation temper-
ature (220 °C) [6, 7]. When subjected to the melt mixing 
process with non-volatile plasticizers and without water 
(or minimal amounts of water), native starch can be con-
verted into thermoplastic starch through mechanical and 
thermal processes in an equipment, such as an extruder 
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or an internal mixer. The resulting thermoplastic starch 
can be formed into films and sheets for a variety of pur-
poses, including the creation of packaging. These ther-
moplastic starch-based materials are among the most 
affordable thermoplastic materials available for dispos-
able applications, particularly in the production of dis-
posable food packaging containers [8] and plastic films 
used in agriculture [9]. While films and containers made 
from only various types of thermoplastic starch offer 
good oxygen and carbon dioxide barrier properties, they 
tend to have weak tensile strength and modulus, moder-
ate elongation at break, high water vapor permeability, 
and are sensitive to ambient humidity. This sensitivity 
to moisture can cause a loss of mechanical integrity and 
barrier properties of them in environments with moder-
ate to high humidity levels and make them unsuitable for 
packaging applications [10–13]. Various methods have 
been employed to address the aforementioned limita-
tions, such as chemically modifying starch, melt mixing 
of thermoplastic starch with non-biodegradable petro-
leum-based polymers or biodegradable polymers, blend-
ing it with fillers and reinforcing materials, and creating 
nanocomposites based on thermoplastic starch [14].

Incorporating bioresourced materials such as agro-
industrial wastes as fillers or reinforcements in the com-
posites formulation based on biodegradable polymers is a 
beneficial approach to decrease the cost of the final prod-
uct while maintaining or enhancing its eco-friendliness 
[3]. Previous research has demonstrated that adding lig-
nocellulosic fillers to the starch matrix has increased its 
tensile strength while simultaneously decreased its flex-
ibility, water vapor permeability, and sensitivity to mois-
ture [15–19].

Sugarcane bagasse, which is a type of lignocellulosic 
material, has been utilized as a reinforcing filler for creat-
ing composites based on both petroleum-based and bio-
degradable polymers [20–22].

One research project involved preparing biocomposites 
of thermoplastic starch and treated sugarcane bagasse 
fibers with soda, and their morphological properties, 
thermal stability, X-ray diffraction, and water absorption 
were analyzed [23]. In addition, another study aimed to 
create plastic film for food packaging using a potato peels 
starch–sugarcane bagasse biocomposite and examining 
its tensile properties, oxygen barrier, and procity [24]. 
The impact of gamma ray radiation on sugarcane bagasse 
fibers and how it affects the physical and mechanical 
properties of waste polypropylene-treated sugarcane 
bagasse composite were also evaluated [20]. Up until 
now, no studies have looked into how the weight ratio 
of sorbitol to glycerol as a plasticizer affects the physi-
cal and mechanical properties of thermoplastic starch–
sugarcane bagasse biocomposites. To address this, we 

conducted a study, where we prepared thermoplastic 
wheat starch–sugarcane bagasse biocomposites using a 
melt mixing method, and assessed how varying the con-
centration of sugarcane bagasse and the weight ratio of 
sorbitol to glycerol affected their physical and mechanical 
properties.

Materials and methods
Materials
Wheat starch was obtained from Toos Nemune Glucose 
Company (Mashhad, Iran). According to the company’s 
statement, It had 10.1 wt.% moisture, a trace amount 
of fat, and a maximum of 0.8 wt.% protein and 0.3 wt.% 
ash. Glycerol and sorbitol with laboratory purity were 
purchased from Dr. Mojallali Company (Tehran, Iran). 
Sugarcane bagasse was obtained from a commercial 
company located in Ahvaz (Iran) and according to the 
company’s statement, its composition by weight was cel-
lulose, 44.7%, hemicelluloses, 26.5%, lignin, 21.2%, ash, 
2.9%, moisture, 3.8% and wax, 0.9%. Commercial zinc 
stearate as an external lubricant was donated by Behzist 
Danesh Narvan Co. (North East Food Tech Park, Mash-
had, Iran). Magnesium Nitrate was supplied by Merck 
Company (Germany).

Methods
Preparation of thermoplastic wheat starch–sugarcane 
bagasse biocomposite
Sugarcane bagasse fibers were washed well with luke-
warm water and after dewatering, they were dried in a 
vacuum oven at 80  °C for 5  h. Then, the dried bagasse 
fibers were ground and passed through a standard sieve 
with 60 mesh and the obtained powder was kept in poly-
ethylene bags until further process. To prepare biocom-
posite sheets, to investigate the effect of the weight ratio 
of sorbitol to glycerol and sugarcane bagasse concentra-
tion on their physicomechanical properties, wheat starch 
was first dried in a vacuum oven at 80  °C for 5 h. After 
cooling in a desiccator containing silica gel, it was mixed 
well with 2 phr zinc stearate and a mixture of glycerol 
and sorbitol plasticizers (40% by weight of thermoplas-
tic starch) with different weight ratios of sorbitol:glycerol 
(S:G) equal to 0:4, 1:4, 2:4 and 4:4 manually. The result-
ing mixture was kept in aluminum bags for 24 h to pen-
etrate the glycerol into the starch granules. The mixture 
obtained was mixed well with different levels of bagasse 
powder (0%, 7.5% and 15% by weight of starch) manu-
ally and then melt mixed by an internal mixer (Iranian 
Polymer and Petrochemical Research Institute, Tehran) 
with the blades speed of 60 rpm at 130 °C for 10 min. The 
obtained biocomposite was cooled and then milled. A 
certain amount of the obtained biocomposite powder was 
placed in a steel mold with dimensions of 1 × 200 × 200 
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 mm3, and then it was preheated with a 30-ton manual 
hot press machine (SPH-300, Santam Company, Tehran, 
Iran), for 3 min at 140 °C. Then, it was pressed at 35 MPa 
and 140 °C for 7 min. After that, it was cooled to ambi-
ent temperature by the same device for 3  min at the 
same pressure. The obtained sheet was separated from 
the mold by a cutter. The resulting sheet was placed in a 
desiccator containing a saturated solution of Magnesium 
Nitrate for 7 days to be conditioned in 53% RH at 25 °C. 
The samples were punched from the mentioned sheets 
by a 2-ton manual press machine (SPH-20, Santam Com-
pany, Tehran, Iran) to perform tensile tests. The formu-
lation of thermoplastic wheat starch–sugarcane bagasse 
biocomposites is tabulated in Table 1.

Tensile properties
The tensile properties of the samples, including the ten-
sile strength and elongation at break, were measured 
using an Universal Test Machine (STM-5, Santam Com-
pany, Tehran, Iran) and according to the ASTM D638-
02a (2002) standard [25]. A load cell of 200 N was used, 
and the distance between the two jaws was 115 mm and 
the upper jaw movement speed was set at 10  mm/min. 
The slope of the linear region of the stress–strain curve 
was calculated as the tensile modulus and the average 
values of the obtained tensile properties were reported. 
The test was performed in 5 repetitions.

Moisture absorption
The equilibrium moisture content of the samples was 
measured according to the method of Angles and 
Dufresne (2000) with some modifications [26]. A sample 
with dimensions of 10 × 40  mm2 was separated from a 

biocomposite sheet with a thickness of 1 mm and dried 
in an oven with an air circulation system at a temperature 
of 105  °C for 5  h and its weight was measured with an 
accuracy of 0.0001 g  (W0). Then, the sample was condi-
tioned in a desiccator containing a saturated solution of 
NaCl with a RH 75% at 25 °C for 9 days. The weight of the 
sample was measured every day until it reached a con-
stant weight (W). The test was done with 4 repetitions. 
The equilibrium moisture content of the samples was cal-
culated from the following equation:

In addition, to predict the moisture absorption behav-
ior of biocomposites, the moisture absorption values at 
different times were fitted by Peleg’s mathematical model 
[42] (Eq. 2):

where M(t) is the moisture content at time t  (gwater/gsolids), 
M(0) is the initial moisture, and  k1 and  k2 are Peleg rate 
constant and Peleg capacity constant, respectively.

Fourier transform infrared spectroscopy (FTIR spectroscopy)
Starch, sugarcane bagasse, 4g-1s and 4g-1s-150B samples 
were properly blended with potassium bromide (KBr) 
powder and the resulted mixture was pressed into a small 
tablet. FTIR spectra was recorded using a FTIR spec-
trometer Paragon 1000 (Perkin Elmer, Akron, OH, USA) 
in the transmittance mode, with the resolution of 4  cm−1 
in the range of 4000–400  cm−1 wavenumber.

Thermogravimetric analysis (TGA)
The thermal stability of thermoplastic wheat starch 
samples without sugarcane bagasse fiber and glycerol 
plasticized wheat starch filled with different amounts of 
sugarcane bagasse fiber was assessed using a thermo-
gravimetric analyzer (TGA/DSC1, Mettler Toledo, Swit-
zerland). TGA was performed at a temperature rate of 
10 °C/min from 23 °C to 600 °C under  N2 atmosphere.

Preparation of food packaging container 
from biocomposite sheet
Using the sample sheet 4g-2s-150B, a food packaging 
container in the form of a plate was prepared by a labora-
tory vacuum thermoforming device (Adrina model, Sizan 
Smart Machines, Kashhan, Iran).

Statistical analysis
Minitab software version 18 was used for statistical analy-
sis of data. The effect of sugarcane bagasse concentration 

(1)EMC =

(

W −W0

W0

)

× 100

(2)M(t) = M(0)+

(

t

k1+ (k2× t)

)

Table 1 Formulation of thermoplastic wheat starch–sugarcane 
bagasse biocomposites

Sample Code S:G weight 
ratios

Sugarcane 
bagasse 
concentration (%)

1 4g-0B 0:4 0

2 4g-1s-0B 1:4 0

3 4g-2s-0B 2:4 0

4 4g-4s-0B 4:4 0

5 4g-75B 0:4 7.5

6 4g-150B 0:4 15

7 4g-1s-75B 1:4 7.5

8 4g-1s-150B 1:4 15

9 4g-2s-75B 2:4 7.5

10 4g-2s-150B 2:4 15

11 4g-4s-75B 4:4 7.5

12 4g-4s-150B 4:4 15
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and weight ratio of sorbitol to glycerol on the physicom-
echanical properties of biocomposites was investigated 
with a factorial test in a completely randomized design. 
Means were compared with Tukey’s method and at the 
5% probability level (P < 0.05). Each measurement was 
replicated at least 3 times.

Results and discussion
Tensile properties
The changes in tensile strength, tensile modulus and 
elongation at break of biocomposites by changing the 
weight ratio of sorbitol to glycerol and the concentra-
tion of sugarcane bagasse are shown in Fig. 1. As can be 
seen, for each concentration of sugarcane bagasse, with 
an increase in the weight ratio of sorbitol to glycerol, the 
tensile strength and tensile modulus of the biocomposite 
increased (with the exception of the tensile strength of 
the biocomposite with bagasse concentration of 7.5) and 
its elongation at break was accompanied by a decrease. 
These changes were significant in most cases (P < 0.05). 
For example, the biocomposite containing the weight 
ratio of sorbitol:glycerol of 0:4 and bagasse concentration 
of 15, had a tensile strength of 1.4 MPa, tensile modulus 
of 12.6  MPa, and elongation at break of 13.5%, and the 
sample containing sorbitol:glycerol weight ratio of 4:4 
and bagasse concentration of 15 had tensile strength, 
tensile modulus and elongation at break of 5.3  MPa, 
371.5  MPa, and 1.5%, respectively. Sorbitol, having a 
larger molecular length and a higher molecular weight 
than glycerol, and having more structural similarity to 
the glucose unit of starch than glycerol, is able to cre-
ate more entanglement with starch chains, which results 
in more interactions with starch chains than glycerol. It 
causes less mobility and flexibility and more stiffness of 
the starch chains, which is associated with an increase in 
the tensile strength and tensile modulus and a decrease 
in the elongation at break of the biocomposite [27]. In 
similar studies, thermoplastic corn starches containing 
42 wt.% of plasticizer were prepared and investigated 
the effect of different weight ratios of sorbitol:glycerol 
(0:42, 14:28, 28:14, and 42:0) on their tensile proper-
ties. The obtained results showed that with the increase 
in the weight ratio of sorbitol to glycerol, the tensile 
strength and tensile modulus increased and the elonga-
tion at break was accompanied by a decrease [28]. Similar 
results have been reported by other researchers for being 
more rigid and less flexible of thermoplastic films based 
on various types of starch and hydrocolloids plasticized 
with sorbitol compared to glycerol [29–32].

In addition, as shown in Fig. 1, for each weight ratio of 
sorbitol to glycerol, with the increase in bagasse concen-
tration, the tensile strength and tensile modulus of the 
biocomposite increased, and the elongation at break was 

accompanied by a decrease. These changes were signifi-
cant in most cases (P < 0.05). As an example, the biocom-
posite with the weight ratio of sorbitol:glycerol of 1:4 and 
bagasse concentration of 7.5, had tensile strength, tensile 
modulus and elongation at break of 1.7  MPa, 7.1  MPa 
and 28.7%, respectively, and the sample with the weight 
ratio of sorbitol:glycerol of 1:4 and bagasse concentration 
of 15 had tensile strength, tensile modulus and elonga-
tion at break of 2.4 MPa, 27.6 MPa and 9.6%, respectively.

Adding hard bagasse fibers (having 44.7 wt.% cellu-
lose, 26.5 wt.% hemicellulose and 21.2 wt.% lignin) to the 
semi-flexible matrix of thermoplastic starch increases 
the rigidity and reduces the flexibility of the biocom-
posite [33]. In previous studies, biocomposites based 
on thermoplastic corn starch reinforced with bagasse 
fibers treated with water–ethanol solution were pre-
pared. According to the results with the increase of 
bagasse concentration up to 15 wt.% of starch, the tensile 
strength and tensile modulus increased and the elonga-
tion at break of the biocomposite decreased [34]. Other 
researchers have also reported similar results regarding 
the changes in tensile properties of biocomposites based 
on different types of thermoplastic starch filled with 
bagasse or other lignocellulosic fillers with increasing 
filler concentration [33, 35, 36].

Equilibrium moisture content and kinetics of moisture 
absorption
Changes in the equilibrium moisture content of bio-
composites according to the weight ratio of sorbitol to 
glycerol and the concentration of bagasse are shown in 
Fig. 2. For each weight ratio of sorbitol to glycerol, with 
increasing bagasse concentration, the equilibrium mois-
ture content of biocomposite decreased. For example, the 
biocomposite with the weight ratio of sorbitol:glycerol of 
1:4 and the bagasse concentration of 7.5 had an equilib-
rium moisture content of 24.5%, and the biocomposite 
with the weight ratio of sorbitol:glycerol of 1:4 and the 
bagasse concentration of 15 had the equilibrium mois-
ture content of 22.5%. The reason for the decrease in 
the equilibrium moisture content of the biocomposite 
with the increase in bagasse concentration can be attrib-
uted to the lower hygroscopicity of bagasse compared to 
starch due to the presence of waxy materials and lignin 
on the surface of bagasse fibers [37]. In addition, the 
strong hydrogen interactions between bagasse and starch 
reduce the capacity of the starch matrix to interact with 
water and absorb moisture [38, 39]. It has been reported 
previously that the water absorption of biocomposite 
based on thermoplastic potato starch reinforced with 
bagasse decreased steadily with the increase of bagasse 
concentration up to 15 wt.% of starch, so that thermo-
plastic potato starch had water absorption of 20.3% and 
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biocomposite with 15 wt.% bagasse had water absorption 
of 9.1% [37]. Other similar results regarding the reduc-
tion of water absorption or the equilibrium moisture 
content of biocomposites based on various types of ther-
moplastic starch filled with bagasse or other lignocellu-
losic fillers by increasing the concentration of fillers have 
been reported by other researchers [40–44].

In addition, as shown in Fig. 2, the equilibrium mois-
ture content of the biocomposite decreased with the 
increase in the weight ratio of sorbitol to glycerol in 
each bagasse concentration (P > 0.05). It was observed 
that the biocomposite sample with the weight ratio of 
sorbitol:glycerol 0:4 and the bagasse concentration of 7.5 
had an equilibrium moisture content of 27.8% and the 
biocomposite with the weight ratio of sorbitol:glycerol 4:4 
and the bagasse concentration of 7.5 had an equilibrium 
moisture content of 21%. The reason for the decrease in 
the equilibrium moisture content of thermoplastic starch 
with the increase in the weight ratio of sorbitol to glyc-
erol is due to the greater structural similarity of sorbitol 
to the glucose unit of starch compared to glycerol and the 
greater number of hydroxyl groups of sorbitol compared 
to glycerol (6 vs. 3). This leads to the increase of inter-
actions and intermolecular forces between starch and 
sorbitol compared to glycerol in thermoplastic starch, 
which in turn reduces the capacity of starch and sorbi-
tol to absorb water and hence reduces the hydrophilicity 
of thermoplastic starch plasticized with sorbitol [27, 44]. 
In another study, the effect of different weight ratios of 

sorbitol:glycerol (0:30, 10:20, 20:10 and 30:0) on the equi-
librium moisture content of thermoplastic corn starches 
containing 30 wt.% plasticizer was investigated. Similar 
to the present study, they also reported that the equilib-
rium moisture content of thermoplastic starch decreased 
with the increase in the weight ratio of sorbitol to glyc-
erol [27]. Other similar results have been reported by 
other researchers for the lower equilibrium moisture 
content or water absorption of thermoplastic films based 
on starch and other hydrocolloids plasticized with sorbi-
tol compared to glycerol [30, 31, 45, 46].

The moisture absorption curves of biocomposites 
are shown in Fig. 3. As can be seen, for all samples, the 
rate of moisture absorption was higher at the beginning 
of the test, and with the passage of time, less water was 
absorbed, and finally the moisture content reached its 
equilibrium and constant value. This behavior may be 
attributed to more hydroxyl groups present on starch 
and plasticisers molecules at the beginning of the test 
for interacting with water molecules. The parameters 
of the Peleg model  (k1 and  k2) as well as coefficient of 
determination (R2) and Root mean square error (RMSE) 
for the samples are tabulated in Table 2. The values of R2 
and RMSE indicate that the Peleg model describes well 
the behavior of moisture absorption with time for all 
samples. The constant  k1 is related to mass transfer and 
a lower  k1 indicates a higher initial moisture absorption 
rate. Constant  k2 corresponds to the maximum moisture 
absorption capacity and lower  k2 indicates more moisture 
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absorption capacity. As can be seen in Table 2, biocom-
posites with a lower weight ratio of sorbitol to glycerol 
had lower  k1 and  k2 values. This shows that these biocom-
posites had a higher initial moisture absorption rate and 
a higher moisture absorption capacity, so that 4g-0B had 
 k1 and  k2 of 1.652  h/(gwater/gsolid) and 0.024  gsolid/gwater, 

respectively, and 4g-4s-0B had  k1 and  k2 of 3.721 h/(gwa-

ter/gsolid) and 0.028  gsolid/gwater, respectively. In addition, 
4g-150B had  k1 and  k2 of 2.004 h/(gwater/gsolid) and 0.028 
 gsolid/gwater, respectively, and 4g-4s-150B had  k1 and  k2 of 
5.768 h/(gwater/gsolid) and 0.034  gsolid/gwater, respectively.

Other scientists have investigated the effect of replac-
ing glycerol with sorbitol on the moisture absorp-
tion behavior of agar-based films at a RH of 53%. They 
reported that the film plasticized by glycerol, plasticizer 
mixture with the weight ratio of glycerol:sorbitol 4:1, and 
sorbitol had  k1 and  k2 (0.07 and 0.06), (0.09 and 0.06) and 
(0.83 and 0.1), respectively [47].

It can also be seen in Table  2 that the biocomposites 
with lower bagasse concentration had lower k1 and k2 
values, which indicates that these biocomposites had 
higher initial moisture absorption rate and higher mois-
ture absorption capacity. In such a way that 4g-0B had  k1 
and  k2 1.652 and 0.024, and 4g-150B had  k1 and  k2 2.104 
and 0.028, respectively. In addition, 4g-2s-0B sample had 
 k1 and  k2 of 3.056 and 0.026, respectively, and 4g-2s-75B 
sample had  k1 and  k2 of 3.124 and 0.030, respectively. 
According to the results obtained for composite films 
based on thermoplastic cassava starch containing cassava 
fibers, it was reported that the film without cassava fibers 
had  k1 and  k2 of 17.7 and 2.83, respectively. The film with 
the content of cassava fibers of 10 wt.% of starch also had 
 k1 and  k2 of 25.10 and 4.45, respectively. The film with the 
cassava fibers content of 20 wt.% of starch had  k1 and  k2 
of 39.80 and 4.92, respectively [48].

FTIR spectroscopy
The FTIR spectroscopy diagram of starch, bagasse, 
thermoplastic starch (4g-1s-0B), and biocomposite 
(4g-1s-150B) samples is shown in Fig. 4. FTIR spectrum 
for thermoplastic starch has been reported by many 
researchers [49, 50]. The diagrams show the type of bond-
ing of the materials in the composite. Since the chemical 
structure of the major part of starch and bagasse fiber is 
similar and consists of glucose, the observed peaks are 
very similar and no new peak was observed. The observed 
peaks in the range of 1020–1040  cm−1 are related to the 
C–O bonds of the C–O–C group in the anhydroglucose 
ring, and the peaks in the range of 1075–1155   cm−1 are 
related to the C–O bonds of the C–O–H group of glu-
cose. In addition, the range of wavenumbers 1400–
1450   cm−1 is related to O–H bonds. The peak around 
1650  cm−1 is related to water bonds in starch. In addition, 
a small peak at 1720   cm−1 has appeared in the biocom-
posite spectrum, which may be due to the stretching of 
C=O acetate groups in hemicellulose and cellulose fiber 
[51, 52]. Wavenumbers in the range of 2840–3000   cm−1 
indicate C–H bonds. The broad peak observed in the 
wavenumbers 3200–3500  cm−1 is related to the hydrogen 
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Fig. 3 Moisture absorption curves of biocomposites

Table 2 Peleg model parameters for biocomposites with different 
formulations

Formulations Parameters

k1 k2 R2 RMSE

4g-0B 1.652 0.024 0.99 0.884

4g-1s-0B 2.165 0.025 0.99 0.642

4g-2s-0B 3.056 0.026 0.99 0.237

4g-4s-0B 3.721 0.028 0.99 0.764

4g-75B 2.080 0.026 0.99 0.702

4g-1s-75B 2.617 0.027 0.99 0.595

4g-2s-75B 3.124 0.030 0.99 0.230

4g-4s-75B 5.383 0.031 0.99 0.667

4g-150B 2.104 0.028 0.99 0.662

4g-1s-150B 2.977 0.029 0.99 0.351

4g-2s-150B 3.239 0.032 0.99 0.330

4g-4s-150B 5.768 0.034 0.99 0.917
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bonds of the hydroxyl group. These hydroxyl groups 
have the ability to create intramolecular and intermo-
lecular hydrogen and polar bonds. When the amount of 
these types of polar and hydrogen bonds in a substance 
increases, the wavenumbers related to these bonds tend 
slightly towards lower wavenumbers. These types of 
bonds can affect the physical, thermal, and mechanical 
properties of biocomposites [35, 53]. These wavenumbers 
can be seen in Fig.  4. As can be seen, the wavenumber 
of the hydroxyl group has decreased from 3355   cm−1 
for native starch to 3349   cm−1 for thermoplastic starch, 
and then to 3343   cm−1 for biocomposite. This indicates 
the increase of hydrogen and polar bonds between 
bagasse, wheat starch and plasticizers in biocompos-
ite. In addition, by comparing native and thermoplastic 
starch, it shows that there are more hydrogen bonds in 
thermoplastic starch, which indicates the improvement 
of mechanical and thermal properties in thermoplastic 
starch compared to native starch. Similar results have 
been reported by some other researchers [41, 54].

Thermal stability
Some thermogravimetric parameters of 4g-0B, 4g-1s-0B, 
4g-2s-0B and 4g-4s-0B samples are shown in Table  3. 
T10% is defined as the temperature for 10% weight loss 
and is utilized as onset temperature of thermal degra-
dation. As can be seen 4g-0B, 4g-1s-0B, 4g-2s-0B and 
4g-4s-0B samples had T10% of 190.6 °C, 207.4 °C, 235.6 °C 
and 242.2  °C, respectively. In addition T50%,the tempera-
ture for 50% weight loss, for 4g-0B, 4g-1s-0B, 4g-2s-0B 
and 4g-4s-0B samples was 312.8  °C, 319.4  °C, 325.6  °C 

and 328.2  °C, respectively. In addition, the sample 4g-0B 
with higher glycerol content and absorbed moisture than 
other samples had a greater weight loss at the same tem-
perature than other samples, so that weight loss for 4g-0B, 
4g-1s-0B, 4g-2s-0B and 4g-4s-0B samples at 290  °C (the 
boiling point of glycerol) was 41.2%, 35.3%, 24.1% and 
22.7%, respectively. The weight loss of thermoplastic 
starch below 100 °C is related to the evaporation of water 
[27, 55, 56]. Weight loss at temperatures between 100  °C 
and starch degradation temperature (about 330  °C), is 
related to weight loss of water and plasticizers [29]. Due 
to the stronger interactions of sorbitol with starch com-
pared to glycerol and also the lower volatility of sorbitol 
than glycerol, increasing the weight ratio of sorbitol to 
glycerol in thermoplastic starch increases thermal stabil-
ity and thus T10% and T50% [29]. Other researchers have 
reported similar results for increasing the thermal stability 
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Table 3 Thermogravimetric parameters of 4g-0B, 4g-1s-0B, 4g-2s-0B, 
4g-4s-0B, 4g-75B and 4g-150B samples

Sample code T10% (°C) T50% (°C) Residual 
wt.% at 600 
°C

4g-0B 190.6 312.8 9.14

4g-1s-0B 207.4 319.4 8.87

4g-2s-0B 235.6 325.6 8.11

4g-4s-0B 242.2 328.2 7.63

4g-75B 197.1 324.4 9.50

4g-150B 212.2 328.3 10.04
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of thermoplastic starches by increasing the weight ratio of 
sorbitol to glycerol [27, 30].

Also some thermogravimetric parameters of 4g-0B, 
4g-75B and 4g-150B samples are shown in Table  3. As 
can be seen 4g-0B, 4g-75B and 4  g-150B samples had 
T10% of 190.6  °C, 197.1  °C and 212.2  °C, respectively. In 
addition T50% for 4g-0B, 4g-75B and 4g-150B samples 
was 312.8 °C, 324.4 °C and 328.3 °C, respectively. Increas-
ing sugarcane bagasse concentration, led to an increase 
in T10% and T50% and thus thermal stability of the bio-
composites due to the greater thermal stability of cellu-
losic substances than starch and more probable number 
of created hydrogen bonds between molecular chains 
of starch and sugarcane bagasse [57–59]. Similar results 
have been reported by other researchers for the improve-
ment of thermal stability of thermoplastic starch-based 
composites by increasing the lignocellulosic filler content 
[40, 60, 61].

The food packaging container made 
from the biocomposite
Schematic of a food packaging container in the form of a 
plate prepared from sample sheet 4g-1s-150B is shown in 
Fig. 5.

Conclusion
Increasing the concentration of sugarcane bagasse and 
the weight ratio of sorbitol to glycerol increased the 
stiffness and decreased the moisture absorption of the 
biocomposite based on thermoplastic wheat starch. The 
biocomposite with sugarcane bagasse concentration of 
15 wt.% of wheat starch and sorbitol:glycerol weight 
ratio of 2:4 had balanced stiffness and flexibility so 
making a packaging container from it by vacuum ther-
moforming method was possible. The results of FTIR 
analysis showed that there was no considerable inter-
action between sugarcane bagasse and wheat starch or 
plasticizers. Therefore, by physical or chemical treating 
of sugarcane bagasse and de-ligninizing it, it is possible 

to use higher concentrations of bagasse in the prepa-
ration of biocomposite, which in turn will reduce the 
price of containers made from the biocomposite. In the 
end, it was observed that the combination of bagasse, as 
agricultural waste and filler in the thermoplastic starch-
based biocomposite formula, led to the production of 
biocomposite with the ability to produce containers by 
vacuum thermoforming method, which can be a ben-
eficial approach to reduce the cost of the final product 
while maintaining or enhancing its eco-friendliness.
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