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Abstract 

Many microbial exopolysaccharides (EPS) have been reported in the last decade, and their fermentation processes, 
functional properties and applications, structural characterization, and biological activities have been extensively 
studied. Despite the great diversity of biological activities already described for EPS, only a few have been exploited 
industrially. The main reason for this is that the structure–activity relationship of EPS has not been clearly defined. 
In this review, we collected EPS-related publications from two databases, the Web of Science and China National 
Knowledge Infrastructure, and reviewed the correlation between the structural characteristics of EPS and observed 
biological activity, as reported in studies over the last decade. This review focused on the antioxidant, antitumor, 
immunomodulatory, hypoglycemic, antibacterial, and gut microbial-modulating activities of EPS. This review aimed 
to lay a foundation for researching the structure–activity relationship of EPS and provide a theoretical basis for impor-
tant scientific studies and applications of EPS.
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Introduction
Microorganisms are the most abundant source of bio-
logical diversity on Earth. They exhibit novel functions 
and extensive biological characteristics, and are special 
sources of various metabolites [1, 2]. Exopolysaccharides 
(EPS) are extracellular carbohydrate polymers produced 
by microorganisms, including bacteria, fungi, and micro-
algae [3–5]. In the natural environment, EPS usually par-
ticipate in protecting microorganisms; they resist adverse 
conditions (e.g., desiccation, cold, and hypertonic condi-
tions), enhance resistance, and promote nutrient uptake 
[6–8].

EPS have anticancer [9], antitumor [10], anti-inflamma-
tory [11, 12], antidiabetic [13], antiviral [14], antioxidant 
[15], cholesterol-lowering [16], hypoglycemic/hypolipi-
demic [17, 18], immunomodulatory [19], and probiotic 
activities [20, 21]. Owing to their novel physiological 
functions and extensive biological activities [22], their 
formability is advantageous in terms of chemical com-
position and structure. EPS have been widely used in the 
fields of food, chemicals, and cosmetics [23, 24], and have 
also shown great potential for medical applications [25, 
26]. Currently, the applications of microbial EPS in medi-
cine include drug targeting [27], delivery [28, 29], vaccine 

preparation [30], tissue engineering [31], wound healing 
[32], anti-proliferation [33], cell carriers, and diagnostic 
tool manufacturing [3]. A number of carbohydrate-based 
drugs are also clinically used, including carragelose [34, 
35] (Fig.  1A), cethromycin [36] (Fig.  1B), sodium oli-
gomannate [37] (Fig. 1C), and lactitol [38] (Fig. 1D).

The biological activities of EPS are closely related to 
their structure [39], including monosaccharide com-
position, molecular weight, glycosidic linkage type and 
position, and chain conformation [40]. Therefore, in this 
review, we summarized the structural characteristics 
and biological activities of microbial EPS and explored 
their structure–activity relationship provide a reference 
and theoretical basis for the research and application of 
microbial EPS.

Research status of EPS
With the mining of EPS bioactivities and their wide 
range of applications in numerous research areas [41, 
42], EPS research is gradually becoming an interna-
tionally cutting-edge topic with a large number of lit-
erature reports [3, 43, 44]. The EPS-related publications 
from 2012 to 2022 were statistically analyzed using the 
Web of Science (WOS) and China National Knowledge 
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Infrastructure (CNKI) series databases with "exopoly-
saccharides" as the subject term (Fig.  2). The plot in 
Fig.  2 is similar to the global reasoning approach pro-
posed by Chen et al. [45]. We projected the data of the 

two databases from the coordinate space to the nodes 
in an interaction space graph, which allowed us to 
directly analyze the information of the two databases 
from a global perspective.

Fig. 1 Chemical structures of four carbohydrate-based drugs

Fig. 2 Statistics on the number of publications on EPS in WOS/CNKI per year from 2012 to 2022. EPS Exopolysaccharides, WOS Web of Science, CNKI 
China National Knowledge Infrastructure
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The number of EPS-related publications on the WOS 
has been increasing annually since the past decade; the 
number of EPS-related publications was 239 in 2012, 
increasing to 646 in 2022—an increase of 170%. Over the 
past five years, the number of publications on EPS has 
increased, with an average annual increase of approxi-
mately 70 articles. As of March 9, 2023, the total num-
ber of EPS research publications reached 4,522 in the 
last decade. An annual analysis of the CNKI database 
shows that the number of EPS-related publications has 
increased annually over the past decade. As of March 9, 
2023, the total number of EPS research papers published 
in the last decade was 3,885. An increase in the number 
of EPS-related studies in recent years has shown that EPS 
have gradually become a focus of attention and a research 
hotspot.

Currently, research on EPS focuses on four aspects: 
preparation process, functional properties and applica-
tions, structural characterization, and biological activi-
ties. The classification results of the studies on EPS in the 
two databases over the past decade are shown in Fig. 3, 
which shows that the focus of EPS research on CNKI dif-
fers significantly from that on the WOS.

In recent years, many studies on the EPS preparation 
processes for CNKI have been reported and are increas-
ing annually. Research on the biological activity of EPS 
has been steadily increasing annually, with a slower 
increase than that of the preparation process studies. 
However, the number of studies on the structural char-
acterization of EPS is relatively small, with approximately 
20 papers published each year (Fig. 3A). In contrast, the 
number of research publications on the structural char-
acteristics of EPS in WOS remained above 60, but the 
overall number accounted for a small percentage of the 
publications (Fig.  3B). In summary, basic research on 
the structural characteristics of EPS is still very limited; 
therefore, conducting relevant research on these aspects 
is a key direction for researchers focusing on EPS.

Structural features of EPS
EPS have two different extracellular secretion states: cap-
sular polysaccharides that adhere to the microbial cell 
wall to form a capsule, or slime polysaccharides that are 
loosely attached or even completely released into the sur-
rounding environment to form slime [46, 47]. EPS can 
be homopolysaccharides composed of the same mono-
saccharide, such as curdlan, or heteropolysaccharides 
composed of different monosaccharides[48] (Fig.  4A). 
Heteropolysaccharides consist of different monosac-
charides, including not only commonly observed sug-
ars (such as glucose, galactose, and fructose), but also 
some rare monosaccharides (such as rhamnose, xylose, 
fucose, and mannose), uronic acids and amino sugars 

[20, 49] (such as xanthan) [50] (Fig. 4B). EPS with straight 
chains of monosaccharides, such as pullulan, are called 
linear polysaccharides [8, 51] (Fig.  4C). EPS with arms 
and bends, such as EPS-W1 extracted from Lactobacil-
lus plantarum W1, are called branched polysaccharides 
[52–54] (Fig. 4D).

The structural description of EPS usually includes 
monosaccharide composition and conformation, molec-
ular weight range, glycosidic bond conformation, repeat-
ing units, linkage sites, and spatial structures [55]. Table 1 
summarizes the various EPS obtained from different 
microorganisms from 2018 to 2022. According to Table 1, 
we can speculate that EPS with a porous structure is 
more likely to have antioxidant activity, and that EPS 
with immunomodulatory activity are all triple-helical 
structures. Analyses of the monosaccharide composition, 
molecular weight, conformation, and biological activity 

Fig. 3 Comparative statistical analysis of CNKI/WOS published 
literature from 2012 to 2022. Comparative general data 
of the number of CNKI/WOS published papers using different 
keywords/phrases to search: 1 fermentation and extraction; 2 
functional properties and applications; 3 structural characterization; 
and 4 biological activity. WOS Web of Science, CNKI China National 
Knowledge Infrastructure
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of these EPS can provide useful information about their 
structure–activity relationships.

Structure–activity relationship of EPS
The composition and structure of EPS determine their 
microstructure and surface morphology, which affect 
their biological activity [77]. In this section, we focus on 
the antioxidant, antitumor, immunomodulatory, hypo-
glycemic, antibacterial, and gut microbial-modulating 
activities of microbial EPS (Fig. 5).

Antioxidant activity
Studies have shown that EPS have significant antioxi-
dant activity. Similar to the mechanism of other sources 
of polysaccharides, the hydrogen-donating capacity of 
bacteria-derived EPS is considered the main property of 
its antioxidant function, but the underlying mechanism is 
not clear [80]. The antioxidant activity of EPS is affected 
by several factors, including monosaccharide composi-
tion, glycosidic bond type, and branching patterns.

The monosaccharide composition and composi-
tion ratio of EPS significantly a effected the antioxi-
dant activity of EPS. As an example, EPS consisting of 

glucose-repeating units exhibit strong superoxide and 
2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scaveng-
ing activities and low hydroxyl radical scavenging activ-
ity, similar to that of the ascorbic acid standard [81]. The 
EPS obtained from Weissella cibaria SJ14, purified with a 
mannose content of 75.9%, exhibited excellent hydroxyl 
radical scavenging activity. This may be due to the higher 
mannose content [82]. In addition, high galactose-con-
taining heteropolysaccharides obtained from W. confusa 
show strong scavenging ability and effective reduction 
of DPPH and hydrogen peroxide radicals [83]. Similarly, 
the two EPS components produced by Lactobacillus del-
brueckii ssp. bulgaricus SRFM-1, r-EPS1 and r-EPS2, had 
higher proportions of galactose and exhibited stronger 
antioxidant activities [84]. Moreover, EPS, which consist 
of galactose, glucose, and rhamnose as the main mono-
saccharides exhibit antioxidant activity. This has been 
verified in EPS studies on Porphyridium cruentum and 
Bacillus sp. S-1, and Enterobacter ludwigeii [85, 86].

These results suggest that the glycosidic bond type and 
branching pattern can affect the antioxidant activity of 
EPS [84]. It has been suggested that α-1,2 and 1,6 glyco-
sidic bonds are more flexible than β-1,3 and 1,4 glycosidic 

Fig. 4 Structural formulae of EPS, including homopolysaccharides [e.g., curdlan (A)]; heteropolysaccharides [e.g., xanthan (B)]; linear 
polysaccharides [e.g., pullulan (C)]; and branched polysaccharides [e.g., EPS-W1 (D)]. EPS Exopolysaccharides
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Table 1 Monosaccharide compositions and conformational of selected microbial EPS and their related biological activities

EPS Producing 
Microorganisms

Monosaccharide 
composition

Molecular weight conformation Biological activities Refs.

Aureobasidium pullulans 
CGMCC 23063

Beta-glucan 2.949 ×  105 Da Composed spheres joined 
by triple-helix conformation 
into chains and circles

Immunomodulatory [56]

Panteoa alhagi NX-11 Glucose
Galactose
Mannose

1.326 ×  106 Da Flaky structure Antioxidant [57]

Morchella esculenta Glucose
Mannose

1.392 ×  106 Da Fragmental and rod-like 
structure

Immunomodulatory [58]

Lysinibacillus fusiformis 
KMNTT-10

Xylose
Rhamnose
Arabinose
Galactose
Glucose

— A highly porous web-like 
structure with an irregular 
surface

Flocculation
Emulsification
Antioxidant

[59]

Alteromonas infernus Glucose
Rhamnose
Galactose

1.0 ×  103 Da Random-coiled conforma-
tion

Anti-metastatic [60, 61]

Potential Probiotic Leuconos-
toc mesenteroides LM187

Arabinose
Galactose
Rhamnose

7.757 ×  107 Da A large number of scat-
tered, fluffy, porous cellular 
network flake structures

Antioxidant [62]

Weissella confusa XG-3 Glucose 3.19 ×  106 Da A smooth, porous, 
and branched structure; 
round lumps and chains 
on irregular surfaces

Antioxidant [63]

Cordyceps militaris Galactose
Mannose

1.56 ×  106 Da Helix structure when dis-
solved in weakly alka-
line solution; branched 
and intertwined form 
on the surface

Hypoglycemic [17]

Weissella cibaria MED17 Glucose – Compact sheet-like mor-
phology

Antioxidant [64]

Pleurotus citrinopileatus Galactose
Glucose

1.062 ×  106 Da Triple-helix conformation Hypoglycemic [65]

Antrodia cinnamomea Galactose 1.18 ×  105 Da Spherical and flexible chain 
morphologies

Food /drug delivery [66]

Lactobacillus plantarum HY Mannose
Galactose
Glucose

9.549 ×  104 Da A highly porous structure, 
the presence of spherical 
lumps

Antioxidant
Alpha-amylase inhibitory 
activity

[67]

Abortiporus biennis Glucose
Mannose
Galactose

2.207 ×  104 Da A random coil conforma-
tion

Antioxidant
Antitumor

[68]

Lactobacillus plantarum 
JLAU103

Arabinose
Rhamnose
Fucose
Xylose
Mannose
Fructose
Galactose
Glucose

1.24 ×  104KDa A smooth and glitter-
ing cube structure, 
and the presence of many 
homogeneous rod-shaped 
lumps

Antioxidant [69]

Lactococcus lactis F-mou Galactose
Glucose

– A porous structure 
characterized by a flake-
like basic configuration 
with an extremely dense 
assembly

Antioxidant
Anticoagulant

[70]

Alteromonas sp. PRIM-28 Glucose
Mannose

7.80 ×  105 Da Exists as a triple helical 
structure in an aqueous 
solution

Promote wound healing [71]

Lactobacillus fermentum S1 Mannose
Rhamnose
Glucose
Galactose

7.19 ×  105 Da A hollow porous structure Antioxidant [72]
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bonds [87–89]. The EPS produced by B. amylolique-
faciens is an α-glucan composed of glucose with two 
α-(1 → 3) and one α-(1 → 6) glycosidic bonds, which has 
a superoxide anion-scavenging ability [75]. However, the 
role of glycosidic bonds in antioxidant activity remains 
unclear and requires further investigation. It has been 
found that EPS with a high degree of branching also has 
good antioxidant activity. Yang et al. isolated and purified 
two fractions, THPS-1 and THPS-2, from the Tetrageno-
coccus halophilus SNTH-8, both of which were highly 
branched polysaccharides with high antioxidant and 
emulsifying abilities [90].

Furthermore, changes in bacterial fermentation con-
ditions (e.g., pH) can alter the structure of EPS, thereby 
affecting its antioxidant activity. For example, the EPS 
produced by Alteromonas australica QD under dif-
ferent pH conditions. The results revealed that acidic 
pH EPS (AC-EPS) and alkaline pH EPS (AL-EPS) con-
tained similar types of monosaccharides with different 
proportions of Man, Gal, and GlcA. AL-EPS has been 
found to have high antioxidant activity [91]. Similar 
results have been reported by Ju [92].

EPS Exopolysaccharides

Table 1 (continued)

EPS Producing 
Microorganisms

Monosaccharide 
composition

Molecular weight conformation Biological activities Refs.

Lactobacillus plantarum 
KX041

Arabinose
Mannose
Glucose
Galactose

2.638 ~ 7.073 ×  104 Da A triple helical struc-
ture; flake shapes piling 
up into compact structures 
with a rough surface

Immunomodulatory
Antioxidant
Anti-inflammatory

[73]

Rigidoporus microporus 
(Agaricomycetes)

Beta- glucopyranose;
Mannose

34.1 ×  104 Da A flexible, linear random 
coil chain structure

Antioxidant [74]

Bacillus amyloliquefaciens 
GSBa-1

Glucose 5.4 ×  104 Da Appeared as ellipsoid 
or globose with a smooth 
surface

Antioxidant [75]

Streptococcus thermophilus 
AR333

Galactose
Glucose

3.137 ×  105 Da As compact and semi-stiff 
or stiff chains in an aqueous 
solution

Emulsification [76]

Fig. 5 Main biological activities of microbial EPS, including antioxidant (A), antitumor (B), immunomodulatory (C), hypolipidemic (D), antibacterial 
(E), and regulation of gut microbiota (F). Figure modified according to [78, 79]. EPS Exopolysaccharides, TG Triglycerides, TC Total cholesterol
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Antitumor activity
According to a study on EPS antitumor activity regard-
ing its structure, the high-order structure of EPS is more 
important than the primary structure for EPS antitumor 
activity [93, 94]. It includes the main chain composi-
tion, flexibility, molecular chain conformation, degree of 
branching, helical conformation, and spatial structure.

Antitumor EPS structural studies have shown that β-1,3 
glycosidic bonds on glucose chains and β-1,6 glycosidic 
bonds on branched chains are required for their activities 
[95]. For instance, a variety of polysaccharide were iso-
lated from Porphyra mushroom, whose antitumor active 
fraction is β-(1,3)-D-glucan with (1 → 6) branched chains 
[96]; the antitumor polysaccharide extracted from Auric-
ularia auricula-judae was also composed of β-1,3-bound 
straight-chain glucan [97].

The flexibility of the polysaccharide backbone deter-
mines the antitumor activity of EPS to a certain extent 
[98]. Flexibility consists of a combination of hydro-
gen bonding and electrostatic repulsion of substituents 
within the polysaccharide molecule. High flexibility facil-
itates the interaction between the polysaccharide and the 
immune system, thus enhancing the antitumor activity of 
EPS [41, 99]. It has also been reported that polysaccha-
ride branches can weaken intramolecular interactions 
and disrupt intermolecular binding, thus affecting anti-
tumor activity [100, 101]. Bohn suggested that EPS with 
branching degrees of 0.2–0.33 have higher antitumor 
activity [102].

Morphological characteristics and chain conformation 
may also influence EPS antitumor activity [103]. Polysac-
charides with a triple-helical conformation exhibit anti-
tumor activity [104]. For instance, Misaki et al. found that 
lentinan and Auricularia auricula-judae polysaccharides 
with antitumor activity have β-triple helix conformation 
[97]. It has been found that chain conformation facilitates 
the interaction of polysaccharides with the immune sys-
tem and enhances the antitumor activity of EPS [105]. 
The in vivo antitumor activity of different chain confor-
mations of lentinan showed that the triple-helix confor-
mation plays an important role in the antitumor activity 
of lentinan. Once the helical chain is disrupted, the anti-
tumor activity decreases significantly or even disappears 
[106]. Poria polysaccharide is similar to lentinan; both 
have β-1,6 side chain glucan and no tumor activity, but 
through the oxidation of periodate and by Smith degra-
dation after the removal of β-1,6 chain, the antitumor 
activity of polysaccharides was observed. X-ray diffrac-
tion analysis revealed that the polysaccharides formed a 
triple helical configuration [107]. Similarly, several other 
polysaccharides with antitumor activity extracted from 
mushrooms exhibit a triple-helical conformation in solu-
tion [108, 109]. Furthermore, characteristic viscosity is a 

key factor. An appropriate characteristic viscosity is con-
ducive to the adhesion of polysaccharides to tumor cells 
[110].

The antitumor activity of sulfated polysaccharides 
was higher than that of non-sulfated polysaccharides. 
EPS from Lactobacillus plantarum 70810 (e.g., r-EPS1 
and r-EPS2) inhibited tumor cell growth at a higher rate 
than the inhibition associated with r-EPS1; the authors 
hypothesized that the significant antitumor activity of 
r-EPS2 may be closely related to the composition of the 
sulfate group and β-glycosidic bond in r-EPS2 [111]. Sul-
fated galactans isolated from Halomonas aquamarina 
EG27S8QL also exhibit antitumor activity [112, 113]. 
However, EPSR3 from Bacillus cereus is a sulfate-free 
EPS, and its main component is uronic acid (28.7%). The 
results of this study showed that EPSR3 exhibited antitu-
mor activity. The authors suggested that the antitumor 
activity of EPSR3 may be due to its uronic acid content 
[114]. Therefore, the relationship between acidic polysac-
charides and their antitumor activities requires further 
investigation.

Immunomodulatory activity
Many studies have reported that EPS with certain com-
positions and molecular weights may be involved in 
immune responses [39, 115]. Results based on the struc-
tural features and immunomodulatory activity revealed 
that the presence of galactose is closely related to the 
immunomodulatory activity of EPS [115]. Reactions 
between polysaccharide antigens and antibodies pro-
duced in rabbits for galactose were reported as early 
as 1988 [116]. EPS from probiotic Enterococcus hirae 
WEHI01 are composed only of galactose, with a molec-
ular weight of 2.59 ×  103 Da, and it effectively improves 
macrophage-mediated immune responses [117].

Structure–activity relationship analysis showed that 
the molecular weight was significantly correlated with 
the immunomodulatory activity of EPS. EPS with higher 
molecular weights may inhibit immune responses [118]. 
In general, the degradation of higher-to lower-molec-
ular-weight EPS significantly improves their biologi-
cal activity [119]. Surayot et  al. investigated the effect 
of EPS produced by Lactobacillus confusus TISTR 1498 
on immunomodulatory activity, which consisted only of 
glucose with a high molecular weight of 65 000–506 000 
kDa and was unable to stimulate the production of the 
pro-inflammatory factors nitric oxide and cytokines by 
RAW264.7 cells. After partial acid hydrolysis, its molecu-
lar weight was less than 70 kDa, and it was able to signifi-
cantly stimulate macrophages and induce the production 
of nitric oxide as well as cytokines such as TNF-α, IL-1β, 
IL-6, and IL-10 [120]. The mechanism may be that lower-
molecular-weight EPS and cell receptors bind more 
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strongly and are more conducive to stimulating the pro-
duction of pro-inflammatory factors in RAW264.7 cells. 
However, another study purified two homogeneous EPS, 
EPS53 (high molecular weight) and EPS53d (low molecu-
lar weight), from skimmed milk fermented by S. thermo-
philus XJ53; EPS53 showed stronger immune activity by 
promoting phagocytic ability and NO release from mac-
rophages [121]. Therefore, the relationship between the 
molecular weight and immune activity of EPS needs to be 
further studied.

Acidic heteropolysaccharides are better at inducing 
immune responses [118]. For example, high-molecular-
weight sulfated heteropolysaccharides from Lactobacil-
lus paracasei VL8 are mainly composed of glucose and 
galactose, which have strong immunomodulatory activi-
ties [122]. Nishimura-Uemura studied a heteropolysac-
charide produced by Lactobacillus delbrueckii subsp. 
Bulgaricus OLL1073R-1, consisting of both neutral 
and acidic polysaccharides in a 3:2 ratio of glucose to 
galactose. The acidic polysaccharides contained a small 
amount (0.1%) of phosphate, which was able to strongly 
induce the proliferation of various types of macrophages, 
whereas the neutral polysaccharides were unable to func-
tion, and dephosphorylation of this heteropolysaccharide 
caused a significant reduction in the stimulatory effect 
[123].

Furthermore, EPS with a triple-helical conformation 
may have immunomodulatory activity. For instance, 
EPS have been isolated from Aureobasidium pullulans 
CGMCC 23063, which has a triple-helical conformation 
linked to chains and round spheres. In an in vitro cellular 
assay, EPS showed immunoreactivity in RAW264.7 cells 
[56]. A novel crude EPS with a triple helical structure 
produced by Lactobacillus plantarum KX041 possesses 
prominent immune activity, promoting the proliferation 
and phagocytosis of Raw264.7 [73].

Hypoglycemic activity
Current studies on the hypoglycemic mechanism of EPS 
mainly focus on the regulation of related enzyme activi-
ties [124] and the improvement of insulin sensitivity 
[125]. EPS can reduce blood sugar by inhibiting diges-
tive enzymes [126]. The hypoglycemic activity of EPS is 
closely related to its molecular weight, branched struc-
ture, and high-order structure [127, 128].

The hypoglycemic activity of EPS is closely related to 
its molecular weight [129–131]. The optimal activity 
of EPS can only be achieved at the appropriate molecu-
lar weight. Generally, EPS with low molecular weights 
exhibit better hypoglycemic activity [128]. A novel Cod-
yceps polysaccharide with low molecular weight of 28 
kDa was obtained by acid hydrolysis, and its inhibition 
rate on α-d-glucosidase was calculated as 40.01% [132]. 

Wang et  al. used birch mushroom polysaccharides to 
simulate digestion in the intestine; the digested polysac-
charide (UIOPS-1I) had a reduced molecular mass and 
significantly higher inhibitory activity against glucosidase 
[127].

Glycosidic bonds play an important role in the hypo-
glycemic activity of EPS [133]. It was found that most 
of the EPS with hypoglycemic activity have 1 → 3, 1 → 4, 
and 1 → 6 glycosidic bonds [128]. For example, the EPS 
backbone of Cordyceps militaris is dominated by a galac-
tose 1 → 4 linkage, which effectively inhibits-glucosidase 
activity and restores glucose tolerance in mice [134].

It has also been suggested that EPS with a helical struc-
ture are more likely to have hypoglycemic activity, which 
has been verified in studies on Cordyceps militaris and 
Pleurotus citrinopileatus [17, 65]. Furthermore, sulfated 
EPS exhibited better hypoglycemic ability than that of 
natural EPS. For example, the EPS isolated from the fer-
mentation broth of Lachnum sp. YM240 is sulfated, and 
sulfated EPS have a higher ability to inhibit glucosidase 
and amylase activities than that of unsulfated EPS [135].

Antibacterial activity
EPS contain various functional groups, such as carbonyl, 
phosphate, and hydroxyl groups. To some extent, these 
functional groups interact with bacterial cell membranes 
to exert antimicrobial activity [136, 137]. Novel Aspergil-
lus spp. DHE6 produces EPS with the main functional 
groups -OH,–CH,–C = C, and C–O–C, which exhibit 
strong antibacterial activity against harmful human path-
ogens (Staphylococcus aureus, Bacillus subtilis, Bacillus 
pertussis, and Pseudomonas aeruginosa) [138].

EPS composed of glucose and rhamnose are more 
likely to exhibit antimicrobial activity, as verified in stud-
ies on EPS obtained from Lactobacillus gasseri FR4, 
Streptococcus thermophilus GST-6, and Lactococcus 
garvieae C47 [139–141]. Similarly, EPS are produced by 
Pediococcus pentosaceus SSC-12, with monosaccharide 
fractions of mainly glucose and rhamnose; they exhibit a 
strong antibacterial capacity [142]. However, an EPS with 
a molecular weight of 53,887 Da is produced by Lacto-
bacillus crispatus, consisting mainly of mannose and glu-
cose. It also has excellent antibacterial activity, which can 
effectively limit bacterial translocation and increase the 
abundance of Lactobacillus and Bifidobacterium [143]. 
Enterobacter sp. ACD2 EPS, with monosaccharide frac-
tions of glucose, galactose, and fucose, containing 10% 
uronic acid and a small amount of fructose, showed high 
antibacterial activity against S. aureus and Eschericia coli 
[144]. In another study, dextran formed by Lactobacillus 
inhibited biofilm formation by C. albicans [145]. More-
over, negatively-charged EPS can interact better with 
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pathogens through their sulfate groups, exhibiting anti-
fungal activity [70].

Regulation of gut microbiota
EPS can also regulate the composition and function of 
the gut microbiota [20, 146]. Cordyceps sinensis poly-
saccharides (CSPs) are composed mainly of glucose, 
galactose, mannose, galacturonic acid, arabinose, trace 
proteins, and phenolic compounds. The backbone of 
CSPs consist of 1,4-glucose and 1,4-galactose, with a 
molecular weight of approximately 28 kDa [147]. CSPs 
increase the abundance of probiotics (Lactobacillus, Bifi-
dobacterium, Bacteroides) and decrease that of patho-
genic bacteria (Clostridium and Flexispira) [148]. E. coli 
EPS (EPS-m2) are composed of glucuronic acid, glu-
cose, fucose, galactose/N-acetyl glucosamine, arabinose, 
xylose, and ribose in a molar ratio of approximately 
77:44:29:28:2:1:1. EPS-m2 increases the abundance of 
Alistipes, Acinetobacter, Alloprevotella, Howardella, 
and Oxalobacter, and GC detection illustrates that EPS-
m2 enhances the production of SCFAs [149]. The dex-
tran (LM742) produced by Leuconostoc mesenteroides 
SPCL742, with a molecular weight of 1.3 ×  106 Da, con-
tains α-1,6 and α-1,3 glycosidic bonds in a ratio of 26.11:1. 
The LM742 glucan is resistant to digestive enzymes in the 
human gastrointestinal conditions [150]. Additionally, 
EPS from Paecilomyces cicadae TJJ1213 regulates the gut 
microbiota and metabolism and increases the abundance 
of probiotics [151].

However, few studies have reported on the role of EPS 
in the regulation of gut microbiota, and current studies 
have some shortcomings; thus, the mechanism of how 
EPS regulate gut microbiota is yet to be further eluci-
dated. Therefore, researchers should strengthen the study 
of EPS structure and its relationship with the regulation 
of gut microbiota in the future, and reveal the intrinsic 
mechanism of EPS regulation of the gut microbiota.

Other biological activities
In addition to the aforementioned biological activities, 
EPS exhibit other biological activities. These include 
emulsifying, anti-inflammatory, and antimetastatic prop-
erties. EPS containing galactose generally have emulsify-
ing properties, as demonstrated by the EPS generated by 
Lysinibacillus fusiformis and Streptococcus thermophilus 
[59, 76]. Sulfated heteropolysaccharides with branched 
and multichain structures may exhibit anti-inflammatory 
activities [152, 153]. Similarly, EPS isolated from Lacto-
bacillus crispatus with a molecular weight of 53,887 Da, 
consisting mainly of mannose and glucose, possesses 
excellent anti-inflammatory activity [143]. Acidic EPS 
can degrade cholesterol more effectively than neutral pol-
ysaccharides can [154]. Moreover, EPS with irregularly 

curled conformations may have antimetastatic properties 
[61].

Chemical modification of EPS
The modification of EPS by group substitution to alter 
the structure of polysaccharides and enhance targeted 
biological activity has been reported as an emerging 
trend [138, 155, 156]. Current polysaccharide modifica-
tion methods include carboxymethylation, acetylation, 
phosphorylation, and sulfonation. Lasiodiplodan, an exo-
cellular fungal (1 → 6)-β-D-glucan, was used to illustrate 
the linkage of functional group to the glucan chain [157, 
158] (Fig. 6).

Carboxymethylation modifications
Carboxymethylation involves the introduction of carbox-
ymethyl groups to polysaccharide chains via etherifica-
tion reactions of polysaccharides with acids or carboxylic 
acid derivatives to achieve changes in the spatial structure 
and water solubility of the polysaccharides; thus, affect-
ing their biological activities [13, 159]. This modification 
has been shown to have a significant role in enhancing 
EPS bioactivity [160, 161]. For example, polysaccharides 
obtained from Lachnum YM240 fermentation broth 
were carboxymethyl-modified, and the results showed 
that diabetic mice fed carboxymethylated Lachnum pol-
ysaccharides had significantly lower fasting glucose and 
serum triglyceride levels and significantly higher insulin 
sensitivity [162]. Similarly, the EPS extracted from Lach-
num YM281 were modified by carboxymethylation and 
exhibited enhanced biological activity [163].

Acetylation modifications
Acetylation alters the spatial structure of polysaccharides, 
thereby affecting their biological activities [159, 164]. EPS 
derived from Paenibacillus polymyxa EJS-3 have a higher 
reducing power than that of native EPS after various 
chemical modifications, including acetylation and phos-
phorylation [165]. Similarly, the EPS produced by Lacto-
bacillus plantarum 70810 exhibited antioxidant activity 
after the introduction of a new acetylation moiety [166].

Phosphorylation modifications
Phosphorylation is a reliable method for enhancing the 
bioactivity of EPS [167]. EPS obtained from Lactococ-
cus lactis subsp. lactis were phosphorylated and showed 
antioxidant effects in  vivo and in  vitro [168]. Similarly, 
EPS produced by Lachnum YM405 were subjected to 
sulfonation and phosphorylation treatments. The antioxi-
dant activity of the modified derivatives was significantly 
enhanced [169].
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Sulfonation modifications
EPS are sulfonated to achieve the desired chain length 
and water solubility of the polysaccharide, which affects 
its biological activity. The sulfonation EPS extracted from 
Enterobacter cloacae Z0206 protected RAW264.7 mouse 
macrophages from  H2O2-induced oxidative damage and 
inhibited DNA breakage. These results suggest that sul-
fonation enhances antioxidant activity by modulating 
water solubility and chain length and protects cells by 
exchanging more hydrogen atoms [170]. Similarly, sul-
fonated EPS produced by Streptococcus thermophilus 
GST-6 and S. thermophilus ASCC1275 showed stronger 
antimicrobial efficacy against various Gram-positive and 
harmful pathogens than the efficacy of non-sulfonated 
EPS [141, 171].

Conclusion and future perspectives
EPS produced by microorganisms have attracted atten-
tion worldwide owing to their safety, diverse potent bio-
logical activities, and favorable advantages over other 
natural agents for industrial and therapeutic applica-
tions. However, the structure of EPS is complex and 
difficult to analyze, resulting in difficulties in investi-
gating their structure–activity relationship, and its spe-
cific mechanism of action has not yet been revealed. In 
this review, we suggest that the structural characteris-
tics of EPS, such as molecular weight, monosaccharide 

composition, glycosidic bond type, branching pattern, 
spatial structure, and chemical modifications may affect 
their biological activity. We believe that more advanced 
technology should to be used to analyze the structure 
of EPS. On this basis, the mechanism of action of the 
structure–activity relationship should be revealed from 
a new perspective to lay the foundation for the targeted 
synthesis and design of glycans. Moreover, many stud-
ies have shown that incubation conditions (e.g., time, 
temperature, and pH) can also affect the structure and 
biological activity of EPS. Therefore, changing the com-
position and structure of EPS through the influence of 
external factors can broaden its applications to some 
extent.
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