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Abstract 

Background Plant-promoting bacteria are safer alternatives to pesticides and fertilizers, reduce environmen-
tal pollution, and increase crop yields. We isolated an Enterobacter cloacae strain DJ with plant-promoting effects 
from the rhizosphere soil of a plant (Leymus chinensis (Trin.) Tzvel) in the western region of Jilin Province of China 
and investigated the mechanisms underlying the adaptation of the DJ bacteria to salinity-alkalinity environments 
and the molecular mechanisms of the cross-talk between DJ bacteria and cucumber seedlings.

Results The average diameter of the colonies on the salinity-alkalinity medium after incubation for 24 h was 3.3 cm, 
and this was significantly higher than the 1.9 cm diameter in ADF medium (p < 0.01). Comparative proteomic analy-
sis revealed that 188 differentially expressed proteins, comprising 116 upregulated and 72 downregulated proteins, 
significantly changed in salinity-alkalinity groups compared to the control groups. The top one upregulated pathway 
of KEGG enrichment was bacterial chemotaxis, DJ bacteria adapted to salinity-alkalinity environments by upregu-
lating the genes associated with bacterial chemotaxis. The contents of putrescine in salinity-alkalinity and control 
groups were 4.73 μg/mL and 3.02 μg/mL, whereas the contents of spermidine were 46.18 ng/mL and 0.34 ng/
mL, respectively. Comparing to the control cohorts, the concentrations of both polyamines in the experimental 
cohorts exhibited statistically significant increases (p < 0.01). The expression of Pt gene encoding polyamine trans-
porter protein was sharply up-regulated in cucumber roots after treatment with DJ bacteria under salinity-alkalinity 
stress; the expression was more than tenfold higher than that in the control groups. The enzyme activities of POD, 
SOD, and CAT in cucumber seedlings were higher compared to those in the control groups (p < 0.01). The stem 
height, number of lateral roots, and fresh weight of cucumber seedlings in the DJ treatment groups were 6.0 cm, 17 
roots, and 0.42 g, respectively, whereas those of the control groups were 3.8 cm, 14 roots, and 0.28 g, respectively, 
with a notable difference between two cohorts (p < 0.01).

Conclusions DJ bacteria can live in salinity-alkalinity conditions by upregulating the expression of genes associated 
with chemotaxis. The resistance of cucumber seedlings under salinity-alkalinity conditions through the antioxidant 
pathway was increased by polyamines produced by DJ bacteria.
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Graphical Abstract

Introduction
Population growth and global environmental changes 
pose significant challenges to agriculture sustainabil-
ity. Plant growth-promoting rhizobacteria (PGPR) are 
safer alternatives to chemical fertilizers and pesticides, 
because they reduce environmental pollution and result 
in high crop yields [1–4].

Plant growth-promoting bacterial species are common 
in nature, and numerous species have been isolated and 
evaluated for their plant growth promoting properties. 
They can facilitate plant growth and development in dif-
ferent ways, compring nitrogen fixation within the rhizo-
sphere and phytohormones production such as auxins, 
cytokinins, and gibberellins, accelerating environment-
originated nutrients uptake [5–9]. Polyamine production 
is another strategy that some bacteria use to promote 
plant growth. Studies have demonstrated that Bacillus 
subtilis OKB105 can produce and secrete spermidine, 
which induces growth and reduces ethylene levels in 
tobacco seedlings [10, 11].

Several researches have demonstrated that polyam-
ine is an important compound found in fungi, bacteria 
[12, 13], mammals, and plants [14, 15]. Polyamines are 
involved in various processes such as gene expression 
[16], nucleic acid replication, protein synthesis, mem-
brane stability, cell division, and differentiation [17, 18]. 
Recent studies have shown that exogenous polyam-
ines have significant effects on plant abiotic stress. The 
exogenous application of polyamines helps to protect 
against damage induced by abiotic stresses. Exogenous 
spermidine (Spd) can induce Ca  (NO3)2 stress toler-
ance in cucumber [14] and enhance photosynthetic and 
antioxidant capacities of citrus seedlings under high 
temperature [19]. Exogenous Spd also decreases the 

 O2
− generation rate and malondialdehyde content in 

tomato seedlings and alleviates salinity-alkalinity stress 
damage using antioxidant enzymes and non-enzymatic 
systems in chloroplasts [20]. Putrescine (Put) is an 
important small molecule and help to regulate plant 
growth in response to various environmental stresses. 
Exogenous application of Put has been reported to 
increase root length in strawberry microcuttings [21] 
and significantly increase abscisic acid content and 
chilling tolerance in tomato seedlings [22]. Combined 
Put treatment and arbuscular mycorrhizal fungus 
(AMF) inoculation significantly increased trifoliate 
orange seedling surface area, root length, root volume, 
and projected area than AMF treatment alone [23].

We isolated the polyamine-producing bacterial strain 
DJ from the rhizosphere soil of a plant (Leymus chinen-
sis (Trin.) Tzvel) in the western region of Jilin Province, 
and 16S rDNA sequence analysis indicated that the 
bacterium was Enterobacter cloacae. Previous studies 
have shown that DJ bacteria could promote the growth 
of cucumber seedlings under salinity-alkalinity stress, 
and high-performance liquid chromatography analysis 
showed that putrescine and spermidine content in the 
supernatant of the bacterium was elevated under salin-
ity-alkalinity conditions. Hence, we hypothesized that 
DJ bacteria can adapt to salinity-alkaline conditions and 
that the elevated levels of putrescine and spermidine in 
the bacterial supernatant under salinity-alkaline condi-
tions may be related to their growth-promoting effects. 
The objective of this study was to elucidate the adap-
tive mechanism of DJ bacteria under salinity-alkalinity 
conditions and the underlying mechanism by which DJ 
bacteria improve the resistance of cucumber seedlings 
to salinity-alkalinity stress.
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Experimental
Chemical and reagents
Acquisition of various research materials was as follows: 
Thermo Fisher Scientific (Waltham, MA, USA) provided 
putrescine, spermidine, acetonitrile, the BCA assay kit, 
and SYBR Green PCR Real Master Mix. Tiangen Bio-
tech Co. Ltd. (Beijing, China) provided the RNA extrac-
tion kit, the Nanjing Jiancheng Bioengineering Institute 
(Nanjing, China) supplied the superoxide dismutase 
(SOD) Assay Kit, catalase (CAT) Assay Kit, and peroxi-
dase (POD) Assay Kit. All other chemicals, reagents were 
from Sangon Biotech Co., Ltd. (Shanghai, China).

Bacterial strains
Plant growth-promoting bacteria strain DJ (E. cloacae), 
isolated from the rhizosphere of L. chinensis, were stored 
at – 70 ℃. The ADF medium for DJ cultivation were DF 
(Dworkin and Faster) [24] medium contain 2 g arginine 
as the solo nitrogen source. Salinity-alkaline Medium: 
ADF medium with 1.755 g NaCl, (pH9).

The bacteria were kept at 28  ℃ on rotary shaker 
(150 rpm), and the biomass was monitored with a micro-
plate reader (Flex Station 3, Molecular Devices) using a 
spectrophotometer 600 nm.

Growth of DJ bacteria in media of different pH conditions
The DJ bacteria were cultured with ADF medium at dif-
ferent pH values of 4, 5, 7, 8, and 9 at 28℃, respectively 
on a rotary shaker (150  rpm). The biomass of the DJ 
bacteria was measured at 2 h, 4 h, 8 h, 12 h, and 24 h of 
incubation, and the pH changes in the DJ bacteria during 
incubation were monitored at 2 h, 4 h, 8 h, 12 h, 24 h, and 
48 h via microplate reader  (OD600).

Swimming motility of DJ bacteria in salinity‑alkalinity 
conditions
An agar powder of 0.28% was added to media and steri-
lized at 121 ℃ for 30 min. While the semi-solid medium 
was being cooled, 0.5  μL of DJ solution was inoculated 
in the center of the culture and then incubated at 28 ℃; 
the diameter of the colonies was measured after 24 h of 
incubation.

Comparative proteomic analysis
Protein sample preparation
The microorganisms were cultured using ADF and saline-
alkaline growth media at 28 ℃, agitating at 150 rpm for 
12 h separately. Following this, the microbial samples got 
snap-frozen within liquid nitrogen, pulverized, and sub-
sequently transferred into receptacles. The samples were 
subjected to lysis, utilizing 300 µL of lysis solution with 
the addition of 1 mM phenylmethanesulfonyl fluoride. To 
facilitate lysis, the samples were treated with sonication, 

after which they were sent for centrifugation at 15,000 g 
for 15  min to eliminate any insoluble components. We 
also measured protein concentration by bicinchoninic 
acid (BCA) assay, samples were then portioned and pre-
served at – 80 ℃.

SDS‑PAGE electrophoresis
10  µg proteins from each sample got obtained and sent 
for electrophoresis using a 12% sodium dodecyl sulfate–
polyacrylamide gel (SDS-PAGE). The gel for separation 
was treated with crystal violet staining, incubated for 2 h, 
and then submerged for 12  h. Subsequent to staining, 
the gels were rinsed with distilled water until the bands 
became discernible. The stained gels were captured with 
an automated digital gel imaging system (Tanon 1600).

Digestion
Based on the protein concentration, 50  µg of proteins 
were obtained from each sample, and various sets of 
specimens were homogenized with lysis buffer to achieve 
uniform concentration. An appropriate volume of Dithi-
othreitol (DTT) got introduced into solution, resulting 
in final DTT 5 mM concentration, followed by a 30 min 
incubation at 55  ℃. Iodoacetamide of corresponding 
volume got suppled into the final 10 mM concentration, 
this mixture got kept within darkness for 15 min at room 
temperature. Subsequently, it was subjected to a sixfold 
dilution with pre-chilled acetone to promote protein pre-
cipitation. Samples got centrifuged at 8000 g for 10 min 
at 4 ℃ and reconstituted with triethylammonium bicar-
bonate (TEAB) 100  µL at a concentration of 200  mM. 
Trypsin was introduced according to a 1:50 mass ratio 
(trypsin: protein), and the solutions underwent a 12  h 
digestion at 37 ℃.

TMT labelling
The desiccated specimens were reconstituted in 100 mM 
TEBA 50 μL, and 88 μL of acetonitrile were introduced 
into a tandem mass tag (TMT) reagent vessel under room 
temperature conditions. We put centrifuged reagents to 
dissolve for 5  min, then mixed before a centrifugation 
step, which was repeated once more. Subsequently, TMT 
tag reagent 41  μL got combined with each sample for 
thorough blending. We incubated tubes at room temper-
ature for 1 h. In order to halt reaction, 5% hydroxylamine 
8 μL got suppled to each sample, and left to incubate for 
15 min. The labeled peptide solutions got dehydrated and 
preserved at – 80 ℃.

HPLC analysis
Chromatographic separation was carried out via high-
performance liquid chromatography (HPLC) utilizing 
an Agilent 1100 HPLC System equipped with an Agilent 
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Zorbax Extend RP column (5  μm, 150  mm × 2.1  mm). 
Two mobile phases, A (comprising 2% acetonitrile in 
HPLC-grade water) and B (consisting of 90% acetonitrile 
in HPLC-grade water), got employed for RP gradient. The 
tryptic peptides got isolated for 300 μL/min, their detec-
tion was performed at 210 and 280 nm. Eluted peptides 
were subjected to lyophilization to prepare them for sub-
sequent mass spectrometric analysis.

Mass spectrometry analysis
Mass spectrometric analyses got conducted utilizing 
a Triple TOF 5600 mass spectrometer (SCIEX, USA), 
which featured a Nanospray III source (SCIEX, USA). 
For sample introduction, a capillary C18 trap column 
(3  cm × 100  µm) was employed, followed by separation 
on a C18 column (15  cm × 75  µm) utilizing an Eksigent 
nanoLC-1D plus system (SCIEX, USA). 300 nL/min flow 
rate was maintained. Buffer A contained 2% acetonitrile 
and 0.1% formic acid, meanwhile for buffer B it’s 95% ace-
tonitrile, 0.1% formic acid. Mass spectrometry scans got 
performed over a range from 375 to 1500, 250 ms accu-
mulation time. The acquisition included MS peaks with 
intensities exceeding 260 and charge states spanning 
from 2 to 5. Collision-induced dissociation fragmentation 
for MS/MS spectral acquisition employed a rolling colli-
sion energy voltage. Masses were dynamically excluded 
for a 30 s interval to prevent reanalysis.

Database search
For comprehensive data analysis, the ProteinPilot soft-
ware (v.5.0) was employed to conduct an extensive 
search of all unprocessed MS/MS data acquired from 
the TripleTOF 5600 instrument against reference pro-
tein database. The search criteria included trypsin diges-
tion specificity and cysteine alkylation as a database 
parameter. To ensure data quality, a global false discovery 
rate below 1% was set, and quantifying peptide cohorts 
needed to comprise a minimum of two peptides.

Chemotactic gene expression analyses
The extraction of total RNA was executed utilizing the 
RNAprep Pure Bacteria Total RNA Extraction Kit (Tian-
gen Biotech Co., Ltd., Beijing, China). To proceed, RNA 
samples underwent reverse transcription into comple-
mentary DNAs (cDNAs) as per the manufacturer’s pro-
tocols (Tiangen Biotech Co., Ltd., Beijing, China). The 
synthesized cDNAs were harnessed as templates for pol-
ymerase chain reaction (PCR) amplification. Real-time 
quantitative PCR (qPCR) was carried out employing the 
ABI 7500 instrument (Applied Biosystems, USA) and the 
SYBR Green PCR Real Master Mix (Applied Biosystems, 
Thermo Fisher Scientific, USA), following the manufac-
turer’s instructions. 16S rDNA served as internal control, 

relative bacteria DJ gene expression was analyzed by  2−
ΔΔCT method. The primer sequences employed for PCR 
got showed as Table 1.

Detection of polyamines using HPLC
The supernatant of the bacterium was harvested, cul-
tivated with ADF and Salinity-alkaline Medium as 
described in the experimental methods section, and then 
dried under a freeze-vacuum dryer. The resulting resi-
due underwent dissolution in 5  mL of ultrapure water, 
and resultant sample 2  mL got added to 10  mL centri-
fuge tube. To this, 1 mL of NaOH (2 mol/L) and 20 μL of 
benzoyl chloride were added, followed by vortexing and 
thorough mixing for 30 s. Subsequently, the mixture was 
incubated in a water bath at 37 ℃ for 20 min, while inter-
mittent shaking at 5 min intervals.

After the derivatization step, 1  g of NaCl and 2  mL 
of ether were subjected to vortexing and mixing for 
30  s. The upper ether layer was carefully transferred to 
a 5  mL centrifuge tube and then dried under nitrogen 
stream. Resulting sample was reconstituted in methanol 
1 mL and filtered by nylon membrane (0.22 μm) using a 
vacuum setup subsequently. The prepared samples were 
subjected to analysis employing a Delta Pak C18 column 
(300 Å, 5 μm, 3.9 × 150 mm, Waters) joined with a high-
performance liquid chromatograph (HPLC). In brief, 
within each sample 10  μL were extracted and injected 
into the column at 21.1  kg/cm2 (300 psi), with mobile 
phases A (acetonitrile) and B (0.02  mol/L ammonium 
acetate) employed in the analysis.

Plant material and growth conditions
The bacterium DJ were cultivated with salinity-alkaline 
medium at 28 ℃ on a rotary shaker (150 rpm) for 12 h, 
and 20 cucumber (Cucumis sativus L.) seeds were soaked 

Table 1 Primer sequences for quantitative PCR assay

Name Primer sequence(5ʹ—3ʹ)

16S rDNA-F GCA CAA TAT TGC CCC CAT CG

16S rDNA-R GGC GTT GTA GTC ACT GCT CT

MCP-F CCA TTG ATG TTC CCA CCC GT

MCP-R CCT CAC CTG TTC GCC AAT CT

CheY-F AGC AGA AGA CGG CGT GGA T

CheY-R GCA GCG GCA ATG ATG TTC TC

CheZ-F AAA CGC TGG GAT GAG TGG TT

CheZ-R GCA ACT GAG CGT TGG TGA AG

GAPDH-F TGC CGG AGA TGA AGC CAT TT

GAPDH-R TAG CTC CAG CCT CAA TGT GC

Pt-F AAA CCG TCC ATC GTT TCC G

Pt-R TTC CTC CTT GGC ACC GTT AC
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with the bacterial suspensions for 12  h. Uninoculated 
ADF medium was used as the negative control. Cucum-
ber seeds were sterilized with 5% Nalco for 7–10  min, 
placed in 1/2 MS (Murashige-Skoog) medium after wash-
ing three times with distilled water, and 50 μL of filtered 
 Na2CO3/NaHCO3 (1:1, 10 mM each) mixed salt solution 
was added around the seeds. The plant seedlings were 
cultivated in a controlled plant growth chamber with 
a temperature set at 25 ℃, and they were subjected to a 
photoperiod of 16 h of cool fluorescent light followed by 
8 h of darkness. After 7–10 days, the fresh weight, lateral 
roots, and stem height of the cucumber seedlings were 
measured, and each treatment was replicated three times.

Pt gene expression and antioxidant enzymes analysis
Total RNA was isolated from cucumber roots employing 
an RNA Isolation Kit (Tiangen Biotech Co. Ltd., Beijing, 
China). Subsequently, the RNA extracts were subjected 
to reverse transcription to synthesize cDNA following 
the manufacturer’s recommended protocols (Tiangen 
Biotech Co. Ltd., Beijing, China), Real-time quantitative 
PCR assays were conducted as previously described. To 
normalize gene expression, the housekeeping gene glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) was 
utilized as a control. The relative expression of polyam-
ine transporter gene (ID: 101217286) in cucumber roots 
was figured out by  2−ΔΔCT method. Primer sequences are 
available in Table 1.

To analyze cucumber seedlings (7–10 dpi), samples got 
cryogenically frozen within liquid nitrogen, subsequently 
pulverized into fine powder. The proteins from the 
cucumber seedlings were extracted utilizing the buffer 
with 20  mM potassium phosphate (pH7.4) equipped. 
Antioxidant enzymes activities, inclusive of superoxide 
dismutase (SOD), peroxidase (POD), as well as catalase 

(CAT) were quantified using commercial assay kits 
referred from professional guidelines.

Data analysis
All conducted tests on DJ bacteria and cucumber 
seedlings were performed in triplicate. To test of the 
growth-promoting effect of DJ bacteria on cucumber, 
20 cucumber seeds were treated in each replication. The 
results are expressed as means ± standard deviation (SD), 
and the means were considered significant when the 
p-values were < 0.05.

Results and discussion
Adaptation of DJ bacteria to alkaline conditions
The bacterial strain DJ was isolated from the rhizosphere 
soil of a plant (Leymus chinensis (Trin.) Tzvel) in the 
western region of Jilin Province, where the soils are saline 
and alkaline, such that we hypothesized that the DJ strain 
must be tolerant to alkaline environments. To test our 
hypothesis, the biomass of DJ bacteria under different pH 
conditions was examined at different incubation periods. 
Results (Fig. 1A) showed that the biomass growth trend 
of DJ bacteria was basically the same under neutral and 
alkaline culture conditions and was significantly higher 
than that under acidic culture conditions. Several studies 
have demonstrated that the range of pH changes affects 
the activity of bacteria, so that the absorption of elements 
is affected by the pH of the growth environment [25, 26]. 
Usually, in acidic pH, the solubility of toxic elements 
increases and has a negative effect on the growth of bac-
teria [27].

The changes in pH of the bacterial cultures of pH7 and 
pH9 were also monitored during the incubation process. 
Figure 1 B indicated that the potential of hydrogen in the 
DJ bacteria culture tended to decrease from 2 to 24 h and 

Fig. 1 Growth of bacterial strain DJ in media with different pH A. Bacterial biomass in media with different pH. B. Changes in the pH of bacterial 
cultures of pH7 and pH9 during the incubation process
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gradually increase from 24 to 48  h, approaching pH9. 
These findings suggest that DJ bacteria can suitably live 
in alkaline environments.

Swimming motility of DJ bacteria under salinity‑alkalinity 
conditions
As bacterium DJ grows well under alkaline conditions, 
we speculated that it may show some form of salinity-
alkalinity. To address this issue, we used the swimming 
plate assay, which can measure the chemotactic response 
of bacteria to analyze the chemotaxis of DJ bacteria 
under salinity–alkalinity conditions [28]. DJ bacteria 
were inoculated in ADF and salinity–alkalinity medium, 
respectively. The average diameter of the colonies on 
the salinity–alkalinity medium was 3.3 cm, and this was 
significantly different (p < 0.01) from that (1.9 cm) of the 
control group (Fig. 2). Different soil types can influence 
the effectiveness of PGPR, and bacteria can sense envi-
ronmental changes and move toward niches that are opti-
mal for their survival and growth [29, 30]. The swimming 
motility of DJ bacteria in salinity–alkalinity medium was 
greater than that in ADF medium, indicating that DJ bac-
teria adapted to grow in salinity–alkalinity conditions.

Comparative proteomic analysis
Proteomic analysis was performed to elucidate the 
mechanism involved in the chemotaxis shown by the 
DJ bacterial strain towards salinity–alkalinity condi-
tions. Comparative proteomic analysis revealed a total 
of 188 differentially expressed (116 up-regulated and 72 
down-regulated) proteins in salinity-alkalinity relative to 
control groups (Fig. 3A, B). To gain a deeper understand-
ing of the molecular and operational characteristics of 

these biomolecules, we conducted GO (Gene Ontology) 
enrichment and KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathway analysis on cohorts represent-
ing both the control and salinity-alkalinity experimental 
sets. The ascertained proteins were subsequently catego-
rized into distinct groups according to their functional 
annotations (Fig.  3C, D). The top 20 of the up–regu-
lated pathways of KEGG enrichment included bacterial 
chemotaxis, two-component system, flagellar assembly, 
butanoate metabolism, and quorum sensing. This study 
focused on the signaling pathways associated with bac-
terial chemotaxis. The signaling pathway consists of the 
transmembrane chemotactic receptor protein MCP, 
which senses chemical concentrations in the environ-
ment, and six regulatory proteins in the cytoplasm, 
connected by the key node CheY protein. MCP senses 
chemical stimuli and amplifies signals. Regulatory pro-
teins receive chemical signals and transmit them to fla-
gellar motors via CheY. CheZ is a phosphodiesterase that 
accelerates the dephosphorylation of CheY-P, decreases 
its binding to FliM, and shifts the flagellum from clock-
wise to counter-clockwise, allowing the bacteria to swim 
toward a favorable environment [31–33]. Comparative 
proteomic analysis showed that the expression of bacte-
rial chemotaxis-related proteins was significantly upreg-
ulated under salinity-alkalinity conditions.

Validation of bacterial chemotaxis‑related gene expression 
at the transcriptional level
According to proteomics analysis, the expression of pro-
teins in signaling pathways associated with DJ bacterial 
chemotaxis was up-regulated, and the genes encoding 
for MCP, CheY, and CheZ in this signaling pathway were 

Fig. 2 Chemotactic responses of DJ to salinity-alkalinity conditions in swim plate assays. A. Colonies of DJ bacteria in ADF medium, B. Colonies 
of DJ bacteria in salinity-alkalinity conditions. C. Comparative results for the size of bacteria colonies in different conditions. Means ± SDs (n = 3). 
**p < 0.01 vs control group
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selected for further validation at the transcriptional level. 
The findings indicated an elevation in gene transcriptions 
under salinity-alkalinity conditions in comparison to the 
control group (Fig. 4), corroborating the outcomes of the 
proteomic analysis.

Swimming motility assay indicated that DJ bacteria 
adapted to grow in salinity-alkalinity conditions, and 

the results of proteomic analysis and validation experi-
ments in the aspect of transcription indicated that 
genes expressions associated with bacterial chemotaxis 
was upregulated under salinity-alkalinity conditions. 
These findings imply that DJ bacteria increased swim-
ming motility by regulating gene expressions related 
to chemotaxis and thus adapting to salinity-alkalinity 
environments.

Fig. 3 Comparative proteomic analysis A. Volcano Plot of control groups versus salinity-alkalinity groups: red nodes indicate up-regulation; blue 
nodes indicate down-regulation. B. Up- and down–regulated proteins. C. GO enrichment in control groups versus group salinity-alkalinity groups. 
D. Top 20 up–regulated pathways of KEGG enrichment. E. Bacteria chemotaxis pathway. F. KEGG enrichment and related pathway analysis of ADC, 
ODC and SAMDC proteins. Differentially expressed proteins criteria: |log2(fold change) |> 1.5, p < 0.05

Fig. 4 Relative transcriptions level of genes Tsr (encoding for MCP), CheZ and CheY A. Relative transcriptions of Tsr. B. Relative transcriptions of CheZ. 
C. Relative transcriptions of CheY. Control groups: DJ bacteria were cultivated with ADF medium, experimental groups. DJ bacteria were cultivated 
with salinity-alkalinity medium. Means ± SDs (n = 3). *p < 0.05, **p < 0.01 vs control group
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Elevated levels of putrescine and spermidine in DJ 
bacterial supernatant under salinity‑alkalinity stress
Arginine decarboxylase (ADC), Ornithine decarboxy-
lase (ODC) and SAM decarboxylase (SAMDC) are key 

enzymes of polyamine biosynthesis in bacterial. KEGG 
enrichment and related pathway analysis of ADC, 
ODC and SAMDC proteins showed that these pro-
teins all respond to the arginine and proline metabolism 

Fig. 5 Determination of putrescine and spermidine in supernatants of DJ using HPLC A. Putrescine standard. B. Spermidine standard. C. 
Putrescine and spermidine in supernatants of DJ cultivated with ADF medium; peaks: 1, putrescine, 2, spermidine. D. Putrescine and spermidine 
in supernatants of DJ cultivated with salinity-alkalinity medium; peaks: 3, putrescine, 4, spermidine. E. Comparative changes in putrescine contents 
under salinity-alkalinity conditions. F. Comparative changes in spermidine contents under salinity-alkalinity conditions. Means ± SDs (n = 3), 
**P < 0.01 vs control group
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pathway (Fig. 3F), which is the upstream pathway of the 
butanoate metabolism pathway. Because D5066_12500, 
DFS27_2442 and ssdA proteins in butanoate metabo-
lism pathway were up-regulated, we speculated that the 
up-regulation of ODC, ADC, and SAMDC caused the 
up-regulation of the arginine and proline metabolism 
pathway, then affected butanoate metabolism, which 
resulted in a significant up-regulation of D5066_12500, 

DFS27_2442, and ssdA proteins in the butanoate metab-
olism pathway, ultimately resulting in changse in polyam-
ine contents, which were obtained in the supernatant of 
the bacterium for detection by HPLC.

Analysis of polyamine content revealed significant dif-
ferences under different conditions (Fig.  5, **p < 0.01). 
The content of putrescine and spermidine (4.73  μg/mL 
and 46.18  ng/mL) in the supernatant were significantly 
different in salinity-alkalinity medium; however, in the 
ADF medium, they were 3.02  μg/mL and 0.34  ng/mL, 
respectively. Put and Spd are the most common polyam-
ine species found in bacteria [13]. Research has demon-
strated that in some group of bacteria, Put is produced in 
response to acid stress [23] and can promote the growth 
of some bacteria [12]. DJ bacteria were cultured in dif-
ferent media, and the concentration of the bacteria was 
monitored via absorbance  (OD600) after 12  h: the result 
showed that the concentration was basically the same in 
ADF and salinity-alkaline media (Fig. 1), indicating that 
DJ bacteria responded to salinity-alkaline conditions and 

Table 2 Growth promotion of cucumber seedlings by DJ 
bacteria under salinity-alkalinity stress

Means ± SDs (n = 20)

**p < 0.01 vs control group

Mean value

Control Experimental group

Fresh weight (g) 0.28 ± 0.01825 0.42 ± 0.0241

Lateral root (n) 14 ± 3.84 17 ± 4.0258

Stem length (cm) 3.81 ± 0.7930 6 ± 0.6664

Fig. 6 Elevated expression of Pt gene in roots of cucumber seedlings after treatment with DJ bacteria A. Cucumis seedlings. B. Pt gene expression 
is elevated after treatment with DJ bacteria under salinity-alkalinity conditions. Means ± SDs (n = 3). **p < 0.01 vs control group

Fig. 7 Detection of antioxidant enzyme activities in cucumber seedlings under salinity-alkalinity conditions A. SOD. B. POD. C. CAT. Means ± SDs 
(n = 3). **p < 0.01 vs control group
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resulted in elevated levels of putrescine and spermidine, 
which may have promoted the growth of DJ bacteria.

Mechanisms underlying the promotion effects of DJ 
bacteria on cucumber seedling in salinity‑alkalinity 
conditions
Some researchers have confirmed that exogenous poly-
amines have positive effects on plant development [34, 
35]. The application of Put and Spd at different concen-
trations increased the root fresh weight, dry weight of 
roses plants (Rosa hybrida L. ‘Herbert Stevens’) [36]. Put 
application also improved rooting frequency and pro-
moted root elongation in Arabidopsis thaliana L. [37]. 
In addition, exogenous Put modulates shoot growth, and 
several studies have provided evidences that foliar appli-
cation of Put significantly improved the plant height and 
number of leaves per plant [38, 39].

Several experiments in recent years have demonstrated 
that plant-promoting bacteria increase plant resistance to 
abiotic stress in various ways [40, 41]. This study assumed 
that DJ bacteria enhanced the resistance of cucumber 
seedlings to salinity-alkalinity conditions via polyamines 
in the supernatant. In this assay, the stem height, num-
ber of lateral roots, fresh weight of cucumber seedlings 
was examined, and the mean value of these indicators in 
DJ treatment groups were 6.0  cm, 17 roots, and 0.42  g, 
respectively, whereas in the control groups, they were 
3.8 cm, 14 roots, and 0.28 21 g, respectively, indicating a 
notable difference between the DJ treatment and control 
cohorts (Table 2. p < 0.01).

To further determine how exogenous polyamines act in 
plants, the transcriptional level of the Pt gene (polyamine 
transporter protein, a protein that recognizes polyamines 
and specifically mediates the transport of polyamines 
across membranes) in seedling roots was examined using 
quantitative PCR. The control for standardization in this 
analysis was the GAPDH gene, and the findings unveiled 
a substantial upsurge in Pt gene expression within the 
cucumber seedlings’ roots (Fig.  6B, p < 0.01). Polyamine 
substances in the bacterial supernatant interacted with 
polyamine transporter protein and facilitated the devel-
opment of cucumber seedlings. To further explore rele-
vant mechanisms, antioxidant enzymes were determined 
in cucumber seedlings.

Different abiotic stress factors increased ROS produc-
tion and caused ROS-associated injury [42]. Polyamines 
have been established as advantageous agents in the ame-
lioration of reactive oxygen species (ROS) and initiation 
of antioxidant machinery during challenging circum-
stances, consequently bestowing an extensive array of 
resilience against diverse stresses [14]. The plant’s anti-
oxidant system predominantly comprises SOD, POD, 
and CAT enzymes, with their functional levels serving 

as barometers of the plant’s vulnerability to external 
adversities. These three enzymes work synergistically to 
maintain the free radical content in plants at a homeo-
static level and prevent physiological and biochemical 
changes caused by free radicals [14, 20, 42]. This inves-
tigation entailed the evaluation of SOD, POD, and CAT 
activities within cucumber seedlings through specialized 
Assay Kits. Intriguingly, the outcomes unveiled signifi-
cantly augmented antioxidant enzyme activities within 
the cucumber seedlings subjected to salinity-alkalinity 
stress and treated with DJ bacteria when juxtaposed with 
the control group (Fig. 7, p < 0.01).

Conclusions
We isolated the plant growth-promoting bacterium DJ 
(E. cloacae) from a salinity-alkalinity environment. The 
bacterial strain DJ showed a clear chemotactic response 
towards the salinity–alkalinity medium. This finding was 
further confirmed by comparative proteomic analysis, 
which revealed 188 differentially expressed proteins (116 
upregulated and 72 downregulated) in the salinity-alka-
linity groups compared to the control groups. Moreover, 
signaling pathway analysis showed that the expression of 
bacterial chemotaxis-related proteins was significantly 
upregulated under salinity-alkalinity conditions. Tran-
script analysis of DJ bacterial chemotaxis-related genes 
corroborated these findings. Increased levels of putres-
cine and spermidine in the supernatant of DJ bacteria 
were detected under salinity-alkalinity conditions. The 
expression of Pt gene encoding the polyamine trans-
porter protein was sharply up-regulated in cucumber 
roots after treatment with DJ bacteria under salinity-
alkalinity stress, and the enzyme activities of POD, SOD, 
and CAT were higher compared to those in the control 
groups. These results suggest that putrescine and sper-
midine in the supernatant of DJ bacteria acted as exoge-
nous polyamines and interacted with polyamine receptor 
proteins in the cucumber roots, thereby leading to the 
increase in the activity of antioxidant enzymes, which in 
turn increased the resistance of the cucumber seedlings 
to salinity-alkalinity stress.
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