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Abstract 

Background Plant parasitic nematodes (PPNs) cause serious harm to agricultural production. Nematode‑trapping 
fungi (NTF) can produce traps to capture nematodes and are the main resource for controlling nematodes. The 
number of traps determines the capturing ability of NTF.

Results Pseudomonas lurida is widely existed in different habitats, which produces active metabolites to induce trap 
formation of Arthrobotrys oligospora, a famous NTF. To further identify the active substances, metabolic regulation 
was carried out in the strain by molecular biological methods. A mutant strain P. lurida araC‑PoprL with abundant 
secondary metabolites was constructed, and 19 metabolites (1–19) including a new compound, 1,1‑dimethyl‑
1,3,4,9‑tetrahydropyrano[3,4‑b]indole‑3‑carboxylic acid (1), were isolated and identified. The activity assay showed 
that 1‑methylhydantoin (9) could effectively induce A. oligospora to produce traps.

Conclusions P. lurida and the metabolite 1‑methylhydantoin effectively induced trap formation in A. oligospora. Both 
provide sources for the screening of inducing active materials and show potential use in controlling plant parasitic 
nematodes.
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Graphical Abstract

Background
Nematodes are lower multicellular animals that are numer-
ous and widely distributed [1]. Among them, plant parasitic 
nematodes (PPNs) not only lead to damage to plant tis-
sues, but also promote the infection of plants by pathogenic 
microorganisms in soil, thus causing or exacerbating other 
diseases [2]. Almost all crops in the world are infected by 
PPNs, which is one of the reasons for the enormous eco-
nomic losses of crops. According to a literature, a global 
loss of 170 billion dollars annually is caused by PPNs [3].

At present, the main control methods for hazard 
caused by PPNs can be divided into chemical, physical, 
agricultural and biological control. The biocontrol of 
PPNs has been extensively researched because it has few 
negative environmental impacts [4]. Nematode-trapping 
fungi (NTF) form diverse special traps to capture nema-
todes through mycelium specialization, such as three-
dimensional networks, adhesive knobs, and constricting 
rings etc. [4]. It is one of the ideal materials for study-
ing the biocontrol of nematodes. It can kill nematodes 
directly depending on the number of traps. Many factors 
can induce the formation of traps, among which natural 
metabolite is an important factor. Many amino acids and 
small peptides have been reported to have induced activ-
ity [5]. Interestingly, nematodes themselves can induce 
fungi to produce traps, and their products ascarosides, 
can also induce traps formation [6, 7].

Recently, bacteria and their metabolites had been 
found to can induce trap formation in NTF. The research 
found that the coculture of Chryseobacterium sp. and 
Arthrobotrys  oligospora could induce traps production 
[8]. Dipiperazines (DKPs), the metabolites produced by 
Chryseobacterium sp., can enhance the activity of bac-
teria to promote the formation of traps [9]. Ammonia 
produced by bacteria can induce the production of traps 
[10]. The NTF Arthrobotrys  conoides and A. oligospora 
produced traps after coculture with several bacteria for 
48  h [11]. Bacteria and their secondary metabolites are 
factors that cannot be ignored in the study of trap forma-
tion in NTF.

The AraC family of transcriptional regulator is 
representative of globally regulated genes that have 
been studied early and are widely distributed in a 
variety of bacteria [12]. The members of this family 
can regulate the metabolism of bacteria, for example, 
the gapR gene could regulate glucose metabolism in 
Streptomyces aureofaciens by controlling the expression 
of glyceraldehyde-3-phosphate dehydrogenase [13]; 
transcriptional regulator GliR is related to the regulation 
of glycerolipid metabolism in Pseudomonas aeruginosa 
[14]; the global regulator SAV742 negatively regulates 
avermectin production in S. avermitilis [15]; the 
regulator MsmR1 is involved in production of polymyxin 
synthesis in Paenibacillus polymyxa SC2 [16]. Promoters 
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play an important role in gene transcription and 
expression [17]. In metabolic engineering, the selection 
of a stably expressed promoter has a great impact on 
metabolites generation. PoprL, a promoter found in 
Pseudomonas putida [18], has been shown to have a 
strong enhancement effect on P. aeruginosa to increase 
production of rhamnoolipids [19].

Pseudomonas lurida is a gram-negative bacterium that 
is widely distributed; it was first isolated from strawberry 
leaves [20], and then obtained from soil in cold regions 
[21], plant rhizospheres [22], nematode [23], and milk 
[24]. It has the characteristics of cold tolerance, phospho-
rus dissolution and plant growth promotion [25]. In the 
present study, P. lurida can induce the formation of traps 
in A. oligospora, but it is not clear which substance plays 
a role. Up to now, only the compound massetolide E has 
been reported from the species [26], and further study of 
its metabolites is needed. Therefore, the study on the sec-
ondary metabolites of P. lurida aims to tap the active sub-
stances and obtain more resources for nematode control.

Methods
Equipments
The optical rotation was analyzed by a Jasco DIP-370 
digital polarimeter (Tokyo, Japan). Ultraviolet (UV) spec-
trum was recorded on a Shimadzu UV-2401PC spectro-
photometer (Kyoto, Japan). Nuclear magnetic resonance 
(NMR) spectra were measured on an Avance III-600 
spectrometer (Bruker Biospin, Rheinstetten, Germany). 
Electrospray ionization mass spectrometry (ESI–MS) 
spectra were recorded on a Thermo high-resolution Q 
Exactive Focus mass spectrometer (Thermo, Bremen, 
Germany). Silica gel G (200–300 mesh, Qingdao Ocean 
Chemical Co., Ltd., Qingdao, China) and Sephadex 
LH-20 (Amersham Biosciences, Piscataway, NJ, USA) 
were used for column chromatography, and silica gel 
plate GF254 (Qingdao Ocean Chemical Company, Qing-
dao, China) was used for thin layer chromatography 
(TLC).

Strains and nematode cultivation
Stock cultures of P. lurida YMF 3.02383, C. elegans, 
Escherichia coli DH5α and A. oligospora YMF1.01883 
were preserved in Microbial Library of the Germplasm 
Bank of Wild Species from Southwest China. P. lurida 
was cultivated in liquid media [LB (10 g/L tryptone, 5 g/L 
yeast extract, 10 g/L NaCl), NB (3 g/L beef extract, 10 g/L 
peptone, 5 g/L NaCl) or KB (20 g/L tryptone, 0.685 g/L 
 K2HPO4·3H2O, 1.5 g/L  MgSO4·7H2O, 15 mL glycerol)] at 
28  °C at 180 rpm for 2 days to prepare prepagula. 1 mL 
of the prepagula was then inoculated into medium and 
cultured for 4 days at the above conditions. The fermen-
tation broth was filtered and the broth was collected. The 

cultured bacterial liquid was used for activity experi-
ments. A. oligospora was activated on PDA medium 
(200  g/L potato, 20  g/L glucose, 15  g/L agar) and inoc-
ulated on CMY solid medium (20  g/L corn, 5  g/L yeast 
extract, 15  g/L agar), and cultured at 28 ℃ for 8–12 d. 
The proper amount of sterile water and glass beads were 
added to the triangular flask, shaken to wash all hyphae, 
and filtered with six layers of Lens paper to obtain a spore 
suspension. C. elegans was cultured with Escherichia coli 
OP50 on NGM (3 g/L NaCl, 2.5 g/L peptone, 1 mL 5 mg/
mL cholesterol ethanol solution, 1 mL 1 M  MgSO4, 1 mL 
1 M  CaCl2, 25 mL 1 M  K2HPO4·3H2O, 15 g/L agar) plates 
at 20 ℃.

Determination of induced activity of fermentation broth 
and extract
Spore suspensions of A. oligospora at approximately 3000 
spores and 100 μL fermentation broth were thoroughly 
mixed in a 1.5 mL centrifuge tube. The control was 100 
μL of culture medium mixing with spore suspensions. 
The broth was extracted by n-butanol and dissolved in 
methanol to prepare a 30 mg/mL mother liquor. Then, 97 
μL of spore liquid and 3 μL of mother liquor were fully 
mixed in a 1.5 mL centrifuge tube. The mixed solutions 
(broth and spores, extracts and spores) were coated on a 
1.5% water agar plate, and three parallel plates were set 
up in each experiment. The mixture was cultured at 28 ℃ 
for 2–3 d. After 24 h of culture, the traps were observed 
under a microscope. The experiment was repeated three 
times.

Overexpression of the araC gene in P. lurida
The araC gene in P. lurida was overexpressed in our 
experiment. The upstream and downstream homolo-
gous arm primers of araC gene were designed, and the 
fragments between homologous arms were replaced by 
strong promoters. The suicide plasmid pK18 mobsacB 
was used as the carrier, and the plasmid was linearized 
by enzyme digestion. Four fragments of the upstream 
homologous arm, PoprL, screening marker fragment 
gmR and the downstream homologous arm were sequen-
tially connected by overlapping PCR. The fragment was 
connected to the pK18 mobsacB vector by In-Fusion 
ligase, transformed into E. coli competent DH5α cells and 
screened to obtain the recombinant plasmid pYUZ180. 
The recombinant plasmid pYUZ180 was transformed 
into P. lurida for homologous recombination screening 
to obtain the transformant P. lurida araC-PoprL.

Weight and LC‒MS detection of metabolites from P. lurida 
and P. lurida araC‑PoprL
Two culture media, NB and KB were selected to culture 
WT and P. lurida araC-PoprL. Then, the cultured 
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fermentation broth was extracted with the same volume 
of n-butanol three times. The solvent was evaporated 
with a rotary evaporator and the amount of the extract 
was weighed. The concentration of sample was prepared 
as 10 mg/mL with chromatography-grade methanol. The 
sample was filtered and put into a bottle, left overnight 
at 4 ℃ to ensure that there was no precipitation, and 
detected by LC‒MS. LC‒MS was performed on a Dionex 
UltiMate 3000 LC system coupled with a Q-Exactive 
Orbitrap mass spectrometer. Mobile phase A was 0.1% 
formic acid in water, and mobile phase B was 0.1% 
formic acid in methanol. The 30 min gradient for positive 
ESI mode was set as follows: 0–3  min, 5% solvent B; 
3–22  min, 5–95% solvent B; 22–25  min, 95% solvent B; 
and 25–30 min, 5% solvent B.

Extraction and isolation of secondary metabolites from P. 
lurida araC‑PoprL
P. lurida araC-PoprL was fermented in KB medium and 
cultured in a shake flask at 28 ℃ and 180 rpm for 4 d, with 
a total fermentation of 100 L. The fermentation broth was 
concentrated under reduced pressure and extracted with 
ethyl acetate to obtain 108.49 g of extract.

The extract was subjected to silica gel G column chro-
matography (CC) and eluted with petroleum ether/
ethyl acetate (100:1, 80:1, 60:1, 40:1, 20:1, 10:1, 5:1, 
0:1, v/v), ethyl acetate/methanol (60:1, 40:1, 20:1, 10:1, 
4:1, 1:1, 0:1, v/v) and pure methanol in turn to obtain 
21 components, E1-E21. Fraction E2 was subjected to 
Sephadex LH-20 CC with acetone to obtain three frac-
tions, E2-1- to E2-3. Fraction E2-3 was subjected to 
silica gel G CC eluted with petroleum ether/acetone/
formic acid (1000:10:1, 800:10:0.8, v/v) to obtain com-
pound 2 (4.7 mg). Fraction E4 was subjected to Sepha-
dex LH-20 CC with methanol gel to obtain fractions 
E4-1- to E4-7. Fraction E4-5 was isolated through silica 
gel G CC eluted with petroleum ether/acetone (100:1, 
80:1, v/v) to obtain compound 3 (4.2 mg). Fraction E6 
was separated by Sephadex LH-20 CC with methanol 
to obtain fractions E6-1- to E6-3, and fraction E6-2 
was subjected to silica gel G CC eluted with petroleum 
ether/ethyl acetate (100:1, 90:1, 80:1, 70:1, 60:1, v/v) to 
afford compound 4 (3.3 mg). Fraction E8 was separated 
by preparative liquid chromatography [Hypersil BDS 
C18 (250  mm × 10  mm) semipreparative column was 
used, mobile phase A was water 5‰ formic acid, and 
liquid B was methanol containing 5‰ formic acid, and 
gradient elution (A:B from 90:10 to 0:100) was carried 
out. The column temperature was normal, the flow rate 
was 3 mL/min, the injection volume was 0.1 mL], and 
the detection wavelength was 365  nm to obtain frac-
tions E8-2-1–E8-2-5. Fraction E8-2-4 was subjected to 
Sephadex LH-20 CC with methanol to obtain fractions 

E8-2-4-1–E8-2-4-3, among them, E8-2-4-3 was puri-
fied by silica gel G CC and eluted with petroleum ether/
ethyl acetate/formic acid (80:1:0.08, 60:1:0.06, v/v) to 
provide compound 5 (7.1  mg). Fraction E9 was sepa-
rated by Sephadex LH-20 CC with methanol to produce 
fractions E9-1- to E9-3, and fraction E9-3 was purified 
by silica gel G CC eluting with petroleum ether/ace-
tone/formic acid (60:1:0.05, 40:1:0.04, 30:1:0.03, v/v) to 
obtain compound 6 (4.1 mg). Fraction E9-3-2 was sub-
jected to silica gel G CC eluting with petroleum ether/
acetone/formic acid (50:1:0.05, 40:1:0.04, 30:1:0.03, 
20:1:0.02, 10:1:0.01, v/v) to obtain fractions E9-3-2-1–
E9-3-2-3, among them, E9-3-2-2 was separated by pre-
parative liquid chromatography to obtain compound 1 
(1.2 mg). Fraction E9-2 was purified by preparative liq-
uid chromatography to obtain compounds 7 (136.0 mg) 
and 8 (5.5 mg). Fraction E10 was isolated by Sephadex 
LH-20 CC with methanol to obtain fractions E10-1- to 
E10-5, in which fraction E10-5 was further purified by 
silica gel G CC and eluted with chloroform/acetone 
(80:1, 60:1, 50:1, v/v) to provide compound 9 (16.1 mg). 
Fraction E11 was subjected to Sephadex LH-20 CC 
with methanol to obtain fractions E11-1–E11-4. Frac-
tion E11-1 was isolated by silica gel G CC eluting with 
petroleum ether/acetone (70:1, 60:1, 50:1, 40:1, 30:1, 
20:1, 10:1, 5:1, 0:1, v/v) to obtain fractions E11-1-1- to 
E11-1-7. Fraction E11-1-5 was subjected to Sepha-
dex LH-20 CC with methanol to obtain compound 11 
(15.4 mg). Fraction E11-1-6 was separated by prepara-
tive liquid chromatography to produce compound 12 
(2.0  mg). Fraction E11-1-7 was subjected to Sephadex 
LH-20 CC with methanol twice to obtain compound 13 
(1.5 mg). Fractions E11-3 and E11-4 were further sepa-
rated with preparative liquid chromatography to afford 
compounds 10 (2.0  mg) and 14 (6.6  mg), respectively. 
Fraction E13 was separated by a Sephadex LH-20 CC 
with methanol to obtain fractions E13-1–E13-10, in 
which component E13-1 was purified on a silica gel 
G CC and eluted with chloroform/methanol (100:1, 
80:1, 75:1, 70:1, 65:1, 60:1, 56:1, 52:1, 50:1, v/v) to pro-
duce compound 15 (3.0  mg). Fraction E13-6 was sub-
jected to silica gel G CC and eluted with chloroform/
acetone (25:1, 20:1, 18:1, 16:1, 14:1, v/v) to obtain com-
pound 16 (53.1  mg). Fraction E13-7 was subjected to 
Sephadex LH-20 CC with methanol and then purified 
by silica gel G CC eluting with chloroform/acetone 
(40:1, v/v) to produce compound 17 (1.8 mg). Fraction 
E15 was subjected to silica gel G CC and eluted with 
petroleum ether/acetone (70:1, 60:1, 50:1, 45:1, 40:1, 
30:1, 20:1, 10:1, 5:1, v/v) to obtain fractions E15-1- to 
E15-4, and fraction E15-4 was subjected to Sepha-
dex LH-20 CC with methanol to provide compound 
18 (12.8  mg). Fraction E16 was purified by silica gel 
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G CC eluting with chloroform/methanol (60:1, 50:1, 
40:1, 30:1, 20:1,10:1, 8:1, 6:1, 4:1, 2:1,  v/v) to produce 
fractions E16-1—E16-2, and E16-1 was sliced by thin-
layer chromatography, and then subjected to Sephadex 
LH-20 CC with methanol gel to obtain compound 19 
(13.4 mg).

Compound 1: Colorless solid; ESI–MS m/z: 244 
[M–H]−, 268 [M +  Na]+; HR–ESI–MS: 244.0969 ([M–
H]−, calc. 244.0968); [α] = −  75.4 (c = 0.25, MeOH); UV 
(MeOH) λmax (log ε) nm: 205 (4.20), 224 (4.44), 278 (3.73); 
1H- and 13C- NMR  (CD3OD) data are shown in Table 1.

Compound 2: White solid; the molecular formula is 
 C7H6O2; ESI–MS: 121 [M—H]−; 1H-NMR (600  MHz, 
 CDCl3) δ: 8.14 (2H, d, J = 7.7  Hz, H-6/2), 7.64 (1H, t, 
J = 7.4 Hz, H-4), 7.51 (2H, t, J = 7.7 Hz, H-3/5); 13C-NMR 
(150  MHz,  CDCl3) δ: 172.0 (C-7), 133.8 (C-4), 130.2 
(C-6/2), 129.3 (C-1), 128.5 (C-3/5).

Compound 3: White solid; the molecular formula is 
 C14H11NO; ESI–MS: 210 [M +  H]+; 1H-NMR (600 MHz, 
 CDCl3) δ: 10.3 (1H, brs), 8.55 (1H, d, J = 4.9 Hz), 8.16 (2H, 
d, J = 5.1 Hz), 7.62 (2H, m), 7.34 (1H, m) 2.89 (3H, s); 13C-
NMR (150 MHz,  CDCl3) δ: 203.3 (s), 141.1 (s), 138.1 (d), 
136.0 (s), 135.4 (s), 131.5 (s), 129.3 (d), 129.0 (d), 121.8 
(d), 120.7 (d), 120.6 (d), 119.1 (d), 112.0 (d), 25.9 (q).

Compound 4: Pale yellow oil; the molecular formula is 
 C9H10O3; ESI–MS: 165 [M—H]−; 1H-NMR (600  MHz, 
 CD3OD) δ: 7.14 (2H, d, J = 8.5  Hz, H-2/6), 6.78 (2H, d, 
J = 8.5  Hz, H-3/5), 3.72 (3H, s, OMe), 3.51 (2H, s, H-7); 
13C-NMR (150 MHz,  CD3OD) δ: 174.6 (C-8), 157.6 (C-4), 
131.3 (C-2/6), 126.3 (C-1), 115.5 (C-3/5), 52.3 (OMe), 
40.9 (C-7).

Compound 5: White solid; the molecular formula is 
 C9H9NO3; ESI–MS: 180 [M +  H]+; 1H-NMR (600  MHz, 
 CD3OD) δ: 8.65 (1H, d, J = 8.0 Hz), 8.08 (1H, d, J = 8.0 Hz), 
7.56 (1H, t, J = 8.0 Hz), 7.15 (1H, t, J = 8.0 Hz), 2.15 (3H, 
s); 13C-NMR (150  MHz,  CD3OD) δ: 23.6 (q), 116.4 (s), 
119.9 (d), 122.6 (d), 131.1 (d), 133.6 (d), 140.9 (s), 170.0 
(s), 170.1 (s).

Compound 6: Yellow powder; the molecular formula is 
 C9H7NO2; ESI–MS: 162 [M +  H]+; 1H-NMR (600  MHz, 
 CD3OD) δ: 8.07 (1H,  d, J = 8.0  Hz, H-4), 7.94 (1H, s, 
H-2), 7.43 (1H, dd, J = 8.0 Hz, H-7), 7.18 (1H, dd, J = 8.0, 
8.0 Hz, H-6), 7.17 (1H, dd, J = 8.0, 8.0 Hz, H-5); 13C-NMR 
(150 MHz,  CD3OD) δ: 169.5 (s, COOH), 138.2 (d, C-8), 
133.4 (d, C-2), 127.6 (s, C-9), 123.6 (d, C-6), 122.4 (d, 
C-5), 122.0 (d, C-4), 112.9 (d, C-7), 108.9 (s, C-3).

Compound 7: White solid; the molecular formula 
is  C14H16N2O2; ESI–MS: 245 [M +  H]+; 1H-NMR 
(600  MHz,  CD3OD) δ: 1.25 (1H, m), 1.75 (1H, m), 2.08 
(1H, m), 3.18 (1H, m), 3.35 (1H, m), 3.52 (1H, m), 4.03 
(1H, m), 4.40 (1H, m), 7.21 (5H, m); 13C-NMR (150 MHz, 
 CD3OD) δ: 166.8 (s, C-1), 45.9 (t, C-3), 22.7 (t, C-4), 29.2 
(t, C-5), 60.0 (d, C-6), 170.9 (s, C-7), 57.5 (d, C-9), 38.0 
(t, C-10), 137.4 (s, C-1`), 131.0 (d, C-2`), 130.9 (d, C-3`), 
127.9 (d, C-4`).

Compound 8: Yellow solid; the molecular formula is 
 C9H8O3; ESI–MS m/z: 187 [M +  Na]+; 165 [M +  H]+; 
1H-NMR (600 MHz,  CD3OD) δ: 7.44 (2H, d, J = 8.7 Hz, 
H-2/6), 6.73 (2H, d, J = 8.7  Hz, H-3/5), 6.28 (1H, d, 
J = 15.9 Hz, H-7), 5.77 (1H, d, J = 15.9 Hz, H-8); 13C-NMR 
(150 MHz,  CD3OD) δ: 127.8 (C-1), 133.3 (C-2/6), 115.8 

Table 1 The NMR data of compound 1 and tryptophan in  CD3OD

a The data were cited from reference [28]

Compound 1 Tryptophana

1H 13C HMBC COSY 1H 13C

1 – 140.1, s – – 7.21 (1H, s) 128.4, d

2 – 105.5, s – – – 108.2, s

3 – 127.9, s – – – 125.6, s

4 7.40 (1H, d, J = 7.8 Hz) 118.9, d C‑2, C‑3, C‑6, C‑8 H‑5 7.62 (1H, d, J = 7.5 Hz) 112.7, d

5 6.97 (1H, t, J = 7.5 Hz) 119.9, d C‑3, C‑5 H‑4/H‑6 7.06 (1H, td, J = 7.5, 2.5 Hz) 120.4, d

6 7.05 (1H, t, J = 7.5 Hz) 122.2, d C‑4, C‑8 H‑5/H‑7 7.14 (1H, td, J = 7.5, 2.5 Hz) 123.1, d

7 7.28 (1H, d, J = 8.1 Hz) 111.9, d C‑3, C‑5 H‑6 7.39 (1H, brd, J = 7.5 Hz) 119.1, d

8 – 137.9, s – – – 138.5, s

9 2.82 (1H, dd, J = 15.0, 11.2 Hz) 26.9, t C‑1, C‑2, C‑10, C‑11 H‑10 3.32 (1H, m) 27.9, t

3.08 (1H, dd, J = 15.0, 3.5 Hz) C‑1, C‑2 H‑10 3.51 (1H, dd, J = 5.0, 4.5 Hz)

10 4.52 (1H, dd, J = 11.2, 3.5 Hz) 70.7, d C‑9, C‑11, C‑12 H‑9 4.21 (1H, dd, J = 5.0, 4.5 Hz) 54.9, d

11 – 176.3, s – – – 172.1, s

12 – 75.0, s – – – –

13 1.58 (3H, s) 26.6, q C‑1, C‑12, C‑14 – – –

14 1.61 (3H, s) 29.3, q C‑1, C‑12, C‑13 – – –
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(C-3/5), 159.8 (C-4), 146.5 (C-7), 116.89 (C-8), 170.8 
(C-9).

Compound 9: White solid; the molecular formula is 
 C6H6N2O2; ESI–MS: 115 [M +  H]+; 1 H-NMR (600 MHz, 
 CD3OD) δ: 2.90 (3H, s), 3.95 (2H, s); 13C-NMR (150 MHz, 
 CD3OD) δ: 173.8 (C-4), 159.3 (C-2), 53.9 (C-5), 29.2 
(1-CH3).

Compound 10: White solid; the molecular formula is 
 C5H6N2O2; ESI–MS: 127 [M +  H]+; 1H-NMR (600 MHz, 
 CD3OD) δ: 7.21 (1H, s, H-6), 1.84 (3H, s, H-7); 13C-NMR 
(150  MHz,  CD3OD) δ: 167.5 (C-4), 153.7 (C-2), 139.1 
(C-6), 110.4 (C-5), 12.1 (C-7).

Compound 11: White solid; the molecular for-
mula is  C11H18N2O2; ESI–MS: 211 [M +  H]+; 1H-NMR 
(600  MHz,  CDCl3) δ: 3.59 (2H, m, H-3), 2.03 (1H, m, 
H-4a), 1.91 (1H, m, H-4b), 2.32 (1H, m, H-5a), 2.10–2.25 
(1H, m, H-5b), 4.12 (1H, t, J = 7.5 Hz, H-6), 4.00 (1H, t, 
J = 7.0 Hz), 2.35 (1H, m, H-10), 1.54 (1H, m, H-11), 0.95 
(3H, d, J = 6.5  Hz, H-12), 1.00 (3H, d, J = 6.6  Hz, H-13); 
13C-NMR (150  MHz,  CDCl3) δ: 170.3 (C-1), 45.5 (C-3), 
22.7 (C-4), 28.1 (C-5), 59.0 (C-6), 166.2 (C-7), 53.4 (C-9), 
38.5 (C-10), 24.6 (C-11), 22.7 (C-12), 21.2 (C-13).

Compound 12: White solid; the molecular formula is 
 C4H4N2O2; ESI–MS: 113 [M +  H]+; 1H-NMR (600 MHz, 
 CD3OD) δ: 7.39 (1H, d, J = 7.7  Hz, H-6), 5.60 (1H, d, 
J = 7.3  Hz, H-5); 13C-NMR (150  MHz,  CD3OD): 167.4 
(C-4), 151.5 (C-2), 143.5 (C-6), 101.7 (C-5).

Compound 13: White solid; the molecular for-
mula is  C10H16N2O2; ESI–MS: 197 [M +  H]+;  1H-NMR 
(600  MHz,  CD3OD) δ: 4.24 (1H, m, H-6), 3.59 (2H, m, 
H-3), 3.50 (1H, m, H-9), 2.34 (1H, m, H-10), 2.13 (1H, m, 
H-5a), 2.00 (1H, m, H-5b), 1.84 (2H, m, H-4), 1.02 (3H, 
d, J = 6.8  Hz, H-11), 0.99 (3H, d, J = 6.8  Hz, H-12); 13C-
NMR (150  MHz,  CD3OD) δ: 171.6 (C-7), 168.0 (C-1), 
64.4 (C-9), 59.7 (C-6), 46.7 (C-3), 34.6 (C-10), 30.3 (C-5), 
22.9 (C-4), 19.4 (C-11), 18.4 (C-12).

Compound 14: White solid; the molecular formula is 
 C6H5N5O; ESI–MS: 164 [M +  H]+; 1H-NMR (600  MHz, 
 CD3OD) δ: 8.13 (1H,  s), 8.10 (1H, s), 7.10 (1H, s); 13C-
NMR (150  MHz,  CD3OD) δ: 163.1 (d, CHO), 155.3 (s), 
152.4 (d), 151.2 (s), 139.4 (d), 118.5 (s).

Compound 15: White solid; the molecular formula is 
 C6H5NO2; ESI–MS: 122 [M—H]−; 1H-NMR (600  MHz, 
 CDCl3) δ: 9.02 (1H, d, J = 1.6  Hz, H-2), 8.18 (1H, dd, 
J = 1.6, 8.0  Hz, H-4), 7.43 (1H, dd, J = 4.8, 7.8  Hz, H-5), 
8.71 (1H, dd, J = 1.6, 4.6 Hz, H-6); 13C-NMR (150 MHz, 
 CDCl3) δ: 148.2 (C-2), 128.5 (C-3), 135.5 (C-4), 129.1 
(C-3), 152.6 (C-6), 167.4 (C-7).

Compound 16: Colorless crystal; the molecular for-
mula is  C11H18N2O3; ESI–MS: 227 [M +  H]+; 1H-NMR 
(600 MHz,  CD3OD) δ: 0.96 (3H, d, J = 6.4 Hz, H-12), 0.96 
(3H, d, J = 6.4 Hz, H-13), 1.52 (1H, m, H-10), 1.91 (2H, m, 
H-11/10), 2.10 (1H, ddd, J = 4.3, 11.1, 13.3 Hz, H-7), 2.28 

(1H, dd, J = 6.5, 13.3  Hz, H-7), 3.44 (1H, d, J = 12.5  Hz, 
H-9), 3.66 (1H, dd, J = 4.3, 12.5  Hz, H-9), 4.17 (1H, m, 
H-3), 4.45 (1H, m, H-8), 4.53 (1H, m, H-6); 13C-NMR 
(150  MHz,  CD3OD) δ: 169.0 (C-2), 55.2 (C-3), 173.1 
(C-5), 58.7 (C-6), 38.1 (C-7), 69.1 (C-8), 54.6 (C-9), 39.4 
(C-l0), 25.8 (C-11), 22.2 (C-12), 23.3 (C-13).

Compound 17: White solid; the molecular formula is 
 C11H14O3; ESI–MS: 217 [M +  Na]+; 1H-NMR (600 MHz, 
 CD3OD) δ: 1.00 (6H, d, J = 6.7 Hz), 2.16 (1H, m), 2.53 (2H, 
m), 6.23 (1H, s), 7.07 (1H, dd, J = 6.5, 13.3 Hz, H-7), 3.44 
(1H, d, J = 12.5  Hz, H-9), 3.66 (1H, dd, J = 4.3, 12.5  Hz, 
H-9), 4.17 (1H, m, H-3), 4.45 (1H, m, H-8), 4.53 (1H, m, 
H-6); 13C-NMR (150  MHz,  CD3OD) δ: 176.0 (s), 160.8 
(s), 144.5 (s), 126.3 (d), 125.9 (s), 115.5 (d), 111.0 (d), 47.0 
(t), 30.8 (d), 26.7 (q), 22.8 (q).

Compound 18: White solid; the molecular formula is 
 C11H18N2O3; ESI–MS: 227 [M +  H]+; 1H-NMR (600 MHz, 
 CD3OD) δ: 3.72 (1H, dd, J = 12.9, 4.6 Hz), 3.44 (1H, m), 
4.47 (1H, m), 2.29 (1H, m), 2.04 (1H, ddd, J = 13.3, 11.7, 
4.3  Hz), 4.48 (1H, m), 4.13 (1H, m), 2.18 (1H, m), 1.51 
(1H, m), 1.33 (1H, m), 0.94 (3H, t, J = 7.4 Hz), 1.08 (3H, d, 
J = 7.3 Hz); 13C-NMR (150 MHz,  CD3OD) δ: 169.0 (C-1), 
55.1 (C-3), 69.1 (C-4), 39.4 (C-5), 58.3 (C-6), 173.1 (C-7), 
61.2 (C-9), 36.9 (C-10), 25.7 (C-11), 12.6 (C-12), 15.5 
(C-13).

Compound 19: White solid; the molecular formula is 
 C7H10N2O2; ESI–MS: 155 [M +  H]+; 1H-NMR (600 MHz, 
 CD3OD) δ: 3.54 (2H, m, H-3), 2.31 (1H, m, H-5a), 2.01 
(3H, m, H-5b/H-4), 4.21 (1H, m, H-6), 4.56 (1H, brs, H-8), 
4.08 (1H, d, J = 16.8  Hz, H-9a), 3.77 (1H, d, J = 16.8  Hz, 
H-9b); 13C-NMR (150 MHz,  CD3OD) δ: 166.5 (C-1), 46.3 
(C-3), 23.3 (C-4), 29.3 (C-5), 59.8 (C-6), 172.0 (C-7), 46.9 
(C-9).

Determination of induced activity of isolated metabolites
The isolated compounds were dissolved in methanol and 
diluted with sterile water to different concentrations. The 
sample solution was mixed with A. oligospora spore solu-
tion. After fully mixing, it was evenly coated on a 60 mm 
WA (water agar, 15  g/L agar) plate, and cultured at 28 
℃. Methanol with the same concentration was used as a 
control. After 24 h, it was observed under a microscope 
and then observed every 12 h, and the number of traps 
was counted. The experiment was set up in three parallels 
and repeated three times. The differences of traps num-
bers among the different concentrations were compared 
in order to find statistically significant correlations by 
using the F (ANOVA) test (significance p < 0.05).

Results
Inducement trap formation in A. oligospora by P. lurida
The bacterial broth was mixed with spores of A. 
oligospora, and the traps were observed. The result 
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showed that the fermentation broth of P. lurida had a 
good induction effect, traps began to form at 48  h, a 
large number of traps formed at 60  h (Fig.  1A, B), and 
the control group treated with medium had no traps 
(Fig. 1C). To further verify whether the active substances 
that can induce A. oligospora to produce traps are 
secondary metabolites, the organic compounds in the 
fermentation broth were extracted with n-butanol, 
and the induced activity of the extracts was also tested. 
The results showed that the n-butanol extract from the 
fermentation broth of P. lurida still had obvious induction 
activity, and when the concentration was 0.9  mg/mL, it 
could induce A. oligospora to produce a large number of 
traps (Fig.  1D, E), but the methanol treatment control 
group had no activity (Fig. 1F).

Overexpression of the araC gene in P. lurida and 
comparison of metabolites of P. lurida araC‑PoprL with WT
The araC gene is a conserved regulatory gene in 
bacteria [27]. A strong promoter, PoprL, was inserted 
to overexpress the araC gene and the transformant P. 
lurida araC-PoprL was obtained. WT and P. lurida 
araC-PoprL were cultured in 100  mL of NB and KB 
media, and extracted with n-butanol, and the extracts 
of the two strains were weighed. In the two media, the 
amount of extracts cultured in KB (141.6 and 236.4  mg 
for WT and P. lurida araC-PoprL) was much higher 

than that cultured in NB (39.1 and 66.1 mg for WT and 
P. lurida araC-PoprL). Compared with WT, the weight 
of extract from P. lurida araC-PoprL was increased 
by nearly 2 times, so the transformant was selected for 
subsequent amplification fermentation and fermented 
on KB medium. In addition, by analyzing the detection 
results of P. lurida araC-PoprL and WT using LC–MS, 
metabolites of transformant P. lurida araC-PoprL were 
more abundant. Some distinct peaks were found in the 
chromatogram of Base Peak, and their retention times 
were 3.81, 7.36, 12.54, 12.83, 13.07 and 14.95 min (Fig. 2). 
Therefore, the yield and types of metabolites of P. lurida 
araC-PoprL are more abundant than those of WT.

Structural identification of compounds
Nineteen metabolites (1–19) were purified from the 
extract of P. lurida araC-PoprL fermentation broth, and 
their structures were determined according to NMR and 
MS data (Fig.  3). Among them, compound 1 is a new 
metabolite.

Compound 1 was obtained as a colorless solid. 
According to high-resolution mass spectrometry 
HR-ESI–MS, its molecular formula is  C14H15O3N (m/z 
244.0969 [M-H]−, the calculated value is 244.0968), and 
there are 8 degrees of unsaturation. The NMR spectrum 
data of compound 1 (Table 1) show that the compound 
has 14 carbon signals, including 2 methyl groups, 1 

Fig. 1 Induction activity of fermentation broth and extract of P. lurida to A. oligospora. A and B Fermentation broth treatment; C Medium control; D 
and E Extract treatment; F Methanol control
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Fig. 2 LC‒MS results of P. lurida araC‑PoprL and WT

Fig. 3 Chemical structure of secondary metabolites (1–19) from P. lurida araC-PoprL
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methylene group, 5 methylene groups and 6 quaternary 
carbons. The NMR data of compound 1 is similar to 
that of tryptophan (Table  1) [28], and there are three 
more carbon signals, namely quaternary carbon δC 75.0 
and two methyl δC 26.6 and 29.3. In the 1H-1H COSY 
spectrum, the correlations of H-4/H-5/H-6/H-7 and H-9/
H-10 provided two structural fragments I and II, which 
are illustrated in Fig.  4. In the HMBC spectrum, H-4 is 
correlated with C-2 (δC 105.5), C-3 (δC 127.9), C-6 (δC 
122.2) and C-8 (δC 137.9); H-7 is related to C-5 (δC 119.9) 
and C-3 (δC 127.9); H-9 is related to C-1 (δC 140.1) and 
C-2 (δC 105.5); H-10 is related to C-12 (δC 75.0) and C-11 
(δC 176.3). H-13 and H-14 are related to C-1 (δC 140.1) 
and C-12 (δC 75.0), respectively. The plane structure of 1 
was identified as shown in the figure (Fig. 3). In addition, 
the relative configuration of compound 1 was determined 
by the NOE effect between H-10 and H-14 (Fig. 4). The 
CD curves of compound 1 (Additional file  1: Fig. S1) 
showed very similar with L-tryptophan positive CE 
around 216 and 232 nm and negative CE around 202 nm 
[29, 30], indicating the same absolute configuration as 
shown in Fig.  4. It is named as 1,1-dimethyl-1,3,4,9-
tetrahydropyrano[3,4-b]indole-3-carboxylic acid.

Compounds 2–19 were identified as benzoic acid (2) 
[31], acetyl-9H-carbazole (3) [32], 4-methoxyphenylacetic 
acid (4) [33], 2-(acetylamino)-benzoic acid (5) [34], 
indole-3-carboxylic acid (6) [35], cyclo-(L-phenylalanyl-
4R-hydroxy-L-proline) (7) [36], trans-4-hydroxycinnamic 
acid (8) [37], 1-methylhydantoin (9) [38], 5-methyluracil 
(10) [39], cyclo-(Pro-Leu) (11) [40], uracil (12) 
[39], cyclo-(L-Pro-L-Val) (13) [41], N-9H-purin-6-
ylformamide (14) [42], 3-pyridinecarboxylic acid (15) 
[43], cyclo[L-(4-hydroxyprolinyl)-L-leucine] (16) [44], 
4-hydroxy-2-(2-methylpropyl)-benzoic acid (17), 
cyclo(L-Hyp-L-Ile) (18) [45] and cyclo-(Pro-Gly) (19) 
[41].

Determination of induced activity of isolated metabolites
All isolated compounds were tested their inducing 
activity for trap formation in A. oligospora. The results 
showed that compound 1-methylhydantoin (9) had good 
induction activity, but other metabolites had no obvious 
activity. In a further assay, 1-methylhydantoin (9) showed 
induction activity in a concentration-dependent manner, 
and the induction effect was the best at 0.1  mg/mL 
(Fig. 5).

Discussion
NTF, as natural enemies of nematodes, are ideal materi-
als for controlling of nematodes. Many researchers have 
focused on inducing NTF to produce traps through 
external factors, thus enhancing their ability to capture 
nematodes. Most NTF need to be induced by specific 
external signals to form traps [7, 46, 47]; among them, Fig. 4 The key remote correlations of compound 1 

Fig. 5 Formation of traps induced by compound 9 at different concentrations. A The number of traps at different concentrations; B Traps induced 
at different concentrations. **** mean p < 0.0001, ***mean p < 0.001, ** mean p < 0.01
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bacteria and their metabolites are one of the potential 
resources to induce the production of traps. Our previ-
ous research reported a new mechanism by which bac-
teria resist nematodes. Bacteria are food for nematodes, 
and when facing nematodes, they mobilize the nema-
tode’s natural enemies, NTF, to prey on nematodes. That 
is, bacterium induced NTF produce traps to kill nema-
todes to maintain their own population [48].

The fermentation broth and its organic extracts of P. 
lurida can effectively induce A. oligospora to produce 
traps. To further explore active substances, we studied 
the secondary metabolites of P. lurida. First, we used 
molecular biology methods to regulate the metabolism 
of the bacterium, overexpressed the gene of araC global 
regulation, and obtained P. lurida araC-PoprL. The 
metabolite amount of P. lurida araC-PoprL was much 
higher than that of the WT strain. LC‒MS detection 
showed that the metabolites of P. lurida araC-PoprL were 
significantly abundant compared with those of WT. This 
result shows that the strong promoter PoprL can enhance 
the synthesis of secondary metabolites in P. lurida, whose 
araC expression is positively regulated. Next, nineteen 
compounds were identified from the extract of P. lurida 
araC-PoprL, among which, 1,1-dimethyl-1,3,4,9-tetrahy-
dropyrano [3,4-b] indole-3-carboxylic acid (1) was a new 
compound.

Benzoic acid (2) and its derivatives have biological 
activities of killing Meloidogyne incognita and inhibiting 
egg hatching [49, 50]. Acetyl-9H-carbazole (3) was also 
isolated from sponge Tedania ignis [32], and no biologi-
cal activity has been reported yet. 4-methoxyphenylacetic 
acid (4) was isolated from the fungi Leptographium 
qinlingensis [33] and Marasmius berteroi [51], and had 
nematicidal activity [48]. 2-(Acetylamino)-benzoic acid 
(5) was reported from Aconitum spp. [34, 52] and halo-
philic actinomycetes [53], and has antibacterial activ-
ity against plant pathogens [53]. Indole-3-carboxylic 
acid (6) is an indole derivative, that is reported to regu-
late the chemotaxis, oviposition behavior and survival 
of C. elegans [54], and it is also a precursor compound 
for the synthesis of nematode glycosides [55]. Six known 
diketopyrazine compounds cyclo-(L-phenylalanyl-4R-hy-
droxy-L-proline) (7), cyclo-(Pro-Leu) (11), cyclo-(L-Pro-
L-Val) (13), cyclo[L-(4-hydroxyprolinyl)-L-leucine] (16), 
cyclo(L-Hyp-L-Ile) (18) and cyclo-(Pro-Gly) (19), were 
obtained from fungi, bacteria and animals many times 
[56–59]. Compounds 7, 11 and 19 were reported to have 
cytotoxicity and antibacterial activity [60, 61], and they 
can be used as signal molecules to inhibit quorum sens-
ing [62–64]. Cyclo-(Pro-Leu) (11) has the activity of kill-
ing M. incognita [65]. Cyclo-(L-Pro-L-Val) (13) produced 
by Pseudomonas fluorescens carried by Bursaphelenchus 
xylophilus is cytotoxic and leads to the withering and 

death of Pinus thunbergii seedlings [66]. Compound 16 
can promote the adhesion of bacteria to the mycelium 
surface of nematode-trapping fungi, thus enhancing the 
production of traps [9]. Trans-4-hydroxycinnamic acid 
(8) has nematicidal and ovicidal activities against animal 
parasitic nematodes [67]. 1-methylhydantoin (9) was iso-
lated from microorganisms for the first time. It has anti-
inflammatory activity and is an intermediate product of 
many drug syntheses [38]. 3-pyridinecarboxylic acid (15), 
has been obtained from a variety of biological resources, 
such as potato leaves, tomatoes and actinomycetes [68, 
69], and exhibits antifungal activity [70]. This compound 
can be used as a pharmaceutical intermediate, which 
dilates blood vessels and has been widely studied in the 
medical field [71, 72]. These researches indicated that 
metabolites from P. lurida have diverse bioactivities, and 
these activities of nematicidal, inhibiting egg hatching of 
knot-root nematodes, chemotactic activity toward nema-
tode, and inducing trap formation of NTF give the strain 
the potential to control nematodes.

Soil is a complex ecological environment, and metabo-
lites are important communication tools among organ-
isms living in soil. NTF, as aboriginal organisms in soil, 
play a significant ecological role in regulating nematode 
dynamics in soils. With the in-depth research on control 
of nematodes, integrated control of nematodes is receiv-
ing increasing attention. In addition to searching for 
metabolites that are directly active against nematodes, 
the factors that can mobilize other organisms in the soil 
to control nematodes are also worth paying attention to. 
Therefore, the bacteria and their metabolites with induc-
ing activity in traps formation of NTF provide resources 
for the development of new biocontrol agents.

Conclusions
In the present study, P. lurida can induce A. oligospora 
to produce traps. The transformant P. lurida araC-PoprL 
was constructed. Nineteen metabolites, including one 
new compound, were identified from P. lurida araC-
PoprL. Compound 1-methylhydantoin (9) exhibited 
obvious inducement activity of trap formation in A. oli-
gospora. Bacteria-nematodes-fungi share living spaces in 
the natural environment, and the mutual cooperation and 
restriction among them is the result of long-term nutri-
tion competition and selection pressure. It was found 
that P. lurida plays an important role between nematodes 
and nematode-trapping fungi. The study of the interac-
tion among bacteria, nematodes and fungi is beneficial to 
better control the diseases caused by nematodes.
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