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Abstract 

Background The new trend demanding for “natural” agri-food products has encouraged the application of more 
sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach 
is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products 
are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Mag-
netic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, 
from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected 
in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of compre-
hensively researching the possible influences on metabolites due to the use of diverse agricultural practices.

Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, 
organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised 
analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed 
that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating 
effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids 
(as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results 
from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones 
as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated 
samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability 
parameters of the corresponding pairwise OPLS-DA models.

Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected 
by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). 
Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers 
powerful tools to elucidate the metabolic differences among classes of samples.
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Biodynamic, Organic, Integrated, Vintages

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Chemical and Biological 
Technologies in Agriculture

*Correspondence:
Francesco Paolo Fanizzi
fp.fanizzi@unisalento.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40538-024-00553-5&domain=pdf


Page 2 of 17Colì et al. Chem. Biol. Technol. Agric.           (2024) 11:35 

Background
Grapes are considerably appreciated from their con-
sumption as table fresh fruit to the production of wines, 
juices and jams. Thanks to its interesting versatility, this 
agri-food product is one of the most widely cultivated 
crops in the world. Its success is also due to vine’s ability 
to adapt to very different pedoclimatic conditions, allow-
ing it to conquer large areas of cultivation [1]. In 2022, 
the Italian land intended just for the production of table 
grapes amounted to 47 583 hectares and the total har-
vest was of 9 662 593 quintals [2]. Grapes have a great 
nutritional value thanks to their content in soluble sug-
ars, minerals, nutraceutical and bioactive compounds [1, 
3]. Moreover, the specific chemical composition can be 
influenced by various factors, including the cultivar, the 
farming method, the local climate [4], the microclimate 
in the vineyard [5, 6] and the soil features [7–10].

Regarding to farming method, a renewed awareness 
in consuming quality foods, in preserving both agro-
ecosystems health and a good harvest yield, as well as 
in promoting a sustainable use of soils and resources, 
encourages study and adoption of environmentally 
friendly agronomic strategies [11, 12]. This is also a key 
issue to support the needs of a fast-growing human 
population [13]. Some of the contemporary regenera-
tive farming methods are biodynamic and organic, which 
offer more sustainable food production systems in com-
parison to the industrial model. Industrialized produc-
tion may obtain high yields over the short term through, 
for example, soil maximization and the help of chemical 
compounds. Nevertheless, over the long term, this may 
occur with high costs associated with losses of soil fertil-
ity, biodiversity and crop nutritional quality [14, 15]. The 
diffusion of more sustainable agricultural practices is a 
remarkable trend in viticulture [16–18]. These are usually 

accompanied by other management techniques in the 
vineyard aimed at improving production (e.g., trunk gir-
dling or thinning of leaves, bunches and berries). Apart 
from the considered eco-friendlier agricultural meth-
ods, including biodynamic and organic, where the use of 
chemical compounds is strictly limited or banned, other 
methods seek to use strategies that are as sustainable as 
possible. One of them is the integrated treatment, which 
employs a low-pesticide-input pest management [19]. 
Large differences among vine cultivated with diverse 
treatments, resulting in a most vigorous growth for inte-
grated protocol, were found by Meissner et al. [20]. Simi-
larly, Döring et  al. [21] assessed an increase of growth 
and yield for the integrated viticulture in comparison 
to the organic and biodynamic grapevines. These latter 
appeared characterized by higher disease incidence and 
severity of downy mildew, which partially accounted for 
the observed results [21]. By contrast, grapes from biody-
namic and organic vineyards seemed to be more resistant 
to deterioration when compared with those ones from 
integrated treatment [22]. Furthermore, biodiversity at 
different trophic levels was improved in organic and bio-
dynamic viticulture compared to integrated cultivation, 
including an increase in earthworm abundance [20, 23]. 
However, stimulation of soil nutrients cycling requires 
years to produce an important effect on N levels and 
microbial activity in the soil [23]. This is usually accom-
plished by application of compost, use of varied cover 
crop mixtures and denial of chemical compounds, as pro-
moted in organic and biodynamic viticulture.

In particular, if biodynamically and organically man-
aged vineyards are compared, Reeve et al. [24] observed 
no differences in yield, in soil quality and in microbial 
efficiency. On the other hand, in the biodynamic grapes, 
a great quality was also specifically found, in terms of 
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significantly higher levels of soluble solids (i.e., °Brix), 
total phenols and anthocyanins [24]. Regarding to the 
physiological responses of grapevines, lower stomatal 
conductance and lower leaf water potential were found 
in biodynamic with respect to organic Vitis vinifera 
L. cv. Sangiovese. Moreover, an increase in leaf enzy-
matic activities of endochitinase, exochitinase (β-N-
acetylhexosaminidase and chitin 1,4-β-chitobiosidase) 
and β-1,3-glucanase, which are typically associated with 
plant biotic and abiotic stresses and with induced plant 
resistance, was also observed in biodynamic plants in 
comparison to those ones organically managed [25].

Influence of different agricultural management systems 
on the metabolites fingerprint of grapes was confirmed 
by some studies [24, 26, 27], although other authors did 
not observe significant variations in the metabolome of 
samples coming from different viticultural methods [28, 
29]. NMR-based metabolomics studies on grapes from 
diverse agricultural practices are few in literature, mainly 
concerning winegrapes and wines [30–32]. By 1H NMR, 
Picone et al. [32] evidenced various winegrape berries (cv. 
Sangiovese) metabolic profiles that could be correlated 
with the different physiological response of plants to the 
biodynamic and organic treatments. About table grapes, 
Gallo et al. [33], using 1H NMR, evaluated the effects of 
conventional local practices (CONV) and organic man-
agement on the chemical composition for cv. Superior 
Seedless, as well as the inter-vineyards variability for 
cv. Red Globe grown with different farming techniques 
established by each producer. They observed that sugar 
concentrations were appreciably affected by the appli-
cation of different cultivation practices, which, instead, 
resulted to have a less pronounced effect on organic acids 
content.

High-resolution Nuclear Magnetic Resonance (NMR) 
spectroscopy is normally combined with multivariate 
statistical analysis (MVA) in metabolomics studies. NMR 
spectroscopy is a very powerful tool, generally char-
acterized by rapid sample preparation procedures and 
extremely reproducible results [34]. Nowadays, high field 
NMR instruments, gradient assisted and equipped with 
cryo-probes, also allowed to overcome the original low 
sensitivity problems with respect to other analytical tech-
niques. Well-suited for metabolomics studies, capturing 
a “snapshot” of the metabolic profile of the analyzed sam-
ple at a given time, NMR spectroscopy provides detailed 
information on metabolites in complex mixtures. In the 
food science, NMR offers a wide range of applications: 
from studies of traceability, authenticity and safety of 
food [35, 36] to the monitoring of wine alcohol fermenta-
tion and aging [34], including also the analysis of a large 
variety of agri-food matrices [37–44]. The present work 
proposes a comparative study of metabolic profiles for 

cv. Italia table grapes juice from biodynamic, organic 
and integrated products, supplied by certified producers. 
Thus, this study may represent a useful completion of the 
investigations already carried out, based on the NMR-
based profiling of grapes juice [32, 33], including for 
the first time a direct comparison of biodynamic (BD), 
organic (ORG) and integrated (INT) agriculture. The 
general biodynamic definition reported in the present 
work, specifically refers, for the investigated case, to the 
organic vineyards certified Reg. CE 848/18 [45] DEME-
TER production rules [46].

Methods
Origin of grape berries samples and sampling methods
A total of 210 grapes samples was obtained from bunches 
of Vitis vinifera cv. Italia table grapes, harvested at mat-
uration according to the usual commercial practices. 
Grapes were collected from 2020 to 2022. They came 
from different specialized Italian farms placed in the same 
limited geographical area “Masseria Gaudella” included 
in the countryside of Castellaneta (Taranto province), 
in the south of Apulia Region (Italy) (Fig. 1a). Their geo-
graphic coordinates are: 40°34ʹ46.13″N 16°52ʹ6.20″E 
(BD farm), 40°34ʹ26.43″N 16°53ʹ0.61″E (ORG farm) 
and 40°34ʹ52.23″N 16°53ʹ10.57″E (INT farm). The vine-
yards selected for the study are located within a radius 
of approximately 1km (Fig. 1b), to homogenize as much 
as possible the pedoclimatic characteristics of the grapes 
growing area, as well as to minimize the possible vari-
ability effects of both occurring climatic conditions 
and soil properties on grape metabolism. According to 
the regions and provinces of Italian soil map [47], the 
selected vineyards are characterized by similar features 
with specific homologous pedological classification, as 
indicated in a detailed portion of the local map [48], more 
recently confirmed [49] (Additional file 1: Figure S1) and 
available from the regional database [50]. On the other 
hand, the soil characteristics could be influenced by the 
different land use in relation to the agronomic practices 
adopted, in particular for long-lasting management pro-
tocols, as recently demonstrated for the specific area of 
investigation [51]. The vine training system was a covered 
tendone with a layout measuring 3x3 m. The average of 
cv. Italia yield was, respectively, ca. 20–25 tons  ha-1  year-1 
for BD vineyard, ca. 20–30 tons  ha-1  year-1 for ORG vine-
yard and ca. 35–50 tons  ha-1  year-1 for INT vineyard. The 
field sampling was carried out during the ripening period 
of the cv. Italia grapes corresponding to the first half of 
September, collecting two bunches per plant. Selection of 
the plants to be sampled was randomized (as represented 
in the scheme, Fig. 1c) to guarantee for each vineyard a 
representative set of samples in the identified plots. The 
vineyards were managed according to the biodynamic, 
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organic and integrated farming methods. Supplier farms 
are certified producers, in particular the biodynamic (BD) 
farm has organic vineyards certified Reg. CE 848/18 [45] 
DEMETER production rules [46], organic (ORG) farm 
has organic vineyards certified Reg. CE 848/18 produc-
tion rules and integrated (INT) farm has integrated pest 
management (IPM) vineyards certified GDO produc-
tion rules [52]. Questionnaires, based on bibliographic 
research [20–22, 53] and consisting in open/close-ended 
questions (Additional file 1: Figure S2), were supplied to 
farms to know detailed information about their viticul-
tural practices (reported in Table  1). Immediately after 

collecting, the bunches of grapes were transported to the 
laboratory in three separated lots, respectively, of BD, 
ORG and INT grapes. In the same day of field sampling, 
fresh berries were selected for the preparation of samples 
(consisting in 10–15 berries), which were rapidly stored 
in freezer at −  20 ℃. For each farming method, berries 
were randomly selected from the bunches, to be repre-
sentative of the total studied population and to mini-
mize bias. During the experiment, every harvesting year, 
homogeneous sample replicates were derived from each 
provided lot (10 samples for 2020 which were increased 
to 30 samples for 2021 and 30 samples for 2022), reaching 

Fig. 1 Geographical area of samples origin, vineyard sites and sampling methods. a Map of Italy with place of origin of analyzed table grapes 
samples; b vineyards location area; c scheme of field sampling, green = rows of vine plants, yellow squares = sampled plants, brown = inter-row 
space

Table 1 Summary of treatments indicated by supplier farms on questionnaires

* Biodynamic preparations listed in questionnaires referred to Santoni et al. [53]

Management practices Biodynamic agriculture Organic agriculture Integrated agriculture

Perennial cover crop • Soil grassed by spontaneous plants
• Diverse cover crop mixture (Wolff mixture)

None, field treated with ploughing None, field treated with herbicides 
and ploughing

Annual cover crop • Soil grassed by spontaneous plants
• Diverse cover crop mixture

None, field treated with ploughing None, field treated with ploughing

Under-vine management Mowing grass Ploughing • Herbicides
• Ploughing

Fertilization method • Compost with biodynamic preparations
• Compost from manure (approximately 15 
 m3/ha every 3 years)

• Ploughing up cover crop
• Compost from manure
• Commercial compost

• Mineral fertilizers
• Synthetic fertilizers
• Commercial compost

Plant protection • Sulphur
• Plant strengtheners
• Bacillus thuringiensis

• Copper
• Wettable sulphur
• Plant strengtheners
• Spinosad
• Bacillus thuringiensis

• Systemic fungicides
• Wettable sulphur
• Rufast
• Tracer
• Topas

Biodynamic preparations* • n. 500
• n. 500P
• n. 501
• n. 502–507
• Compost

None None
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a total amount of 30 samples for 2020, 90 samples for 
2021 and 90 samples for 2022, as reported in Table 2.

Samples preparation for NMR analysis
From each sample, few grape berries were defrosted 
and squeezed to obtain the grapes juice. Then, 100 μL of 
phosphate buffer (1M  KH2PO4, 0.05 % TSP, trimethylsi-
lylpropanoic acid, as internal standard) and 2mM  NaN3 
to prevent microbial contamination, at pH 3.3, according 
to Girelli et  al. [54], were added to 900 μL of juice and 
subsequent centrifuged (at 10.000 g at room temperature 
for 5 min) to separate the solid phase from the liquid one. 
For 1H-NMR direct analysis on juice, 700 μL of the super-
natant were used to fill a 5 mm NMR tube.

NMR experiments and data processing
NMR spectra were acquired using a Bruker Avance III 
600 Ascend NMR spectrometer (Bruker, Ettlingen, Ger-
many), operating at 600.13 MHz for 1H observation, 
using a TCI cryo-probe, equipped with a z axis gradient 
coil and automatic tuning-matching (ATM). After load-
ing individual samples on a Bruker Automatic Sample 
Changer interfaced with the software IconNMR (Bruker), 
all the experiments were carried out at a temperature of 
300 K in automation mode. An automated procedure 
consisting of locking, tuning, matching and shimming 
with a zgcppr Bruker standard pulse sequence was used 
for the spectra acquisition, alongside NOESY experiment 
to suppress the residual water signal. A total of 64 tran-
sients (with 16 dummy scans) were collected into 64 k 
data points with relaxation delay set to 5.0 s. A spectral 
width of 20.0276 ppm (12019.230 Hz) and an acquisi-
tion time of 2.7262144 s were used. Free induction decays 
(FIDs) were Fourier transformed, after being multiplied 
by an exponential weighting function corresponding 
to a line broadening of 0.3 Hz. For every spectrum, the 
phase was manually adjusted, the baseline was corrected 
and the calibration was done by aligning TSP singlet to 
0 ppm. All acquired 1H NMR spectra were processed 
by using Topspin 3.5 (Bruker), which also allows for 
simultaneous visual inspection. The metabolites were 
assigned to the spectral peaks on the basis of 2D NMR 
spectra analysis (2D 1H Jres, 1H COSY, 1H–13C HSQC 
and HMBC) (Additional file  1: Figures  S3, S4, S5) and 

by comparison using Chenomx software (Chenomx Inc., 
Edmonton, Canada) and literature data [8, 32, 33, 54–58]. 
The acquisition and processing of 2D spectra were per-
formed as follows: a cosygpprqf Bruker standard pulse 
sequence with presaturation relaxation delay using gra-
dient pulses for coherence selection allowed to acquire 
a bi-dimensional 1H COSY spectrum. A spectral width 
in both dimensions 12,019 Hz (20.028 ppm), 2048 data 
points in f2, 1024 increments in f1, processed with an 
unshifted sine-bell squared (QSINE) window function in 
both dimensions before Fourier transform. An 1H homo-
nuclear J-resolved spectrum was obtained with a spec-
tral width of 12 kHz for f2 dimension and 80 Hz for f1, 
8096 data points in f2, 256 increments in f1, processed 
with zero filling in f1 to 4096 real data points, unshifted 
sine-bell squared window functions in both dimensions 
before Fourier transform. The 1H–13C gradient-selected 
HSQC spectrum was acquired with 1H–13C decoupling, 
9 and 37 kHz spectral widths in the 1H and 13C dimen-
sions, respectively, 2048 data points in f2, 256 increments 
in f1, forward linear prediction with 32 coefficients, zero 
filling to 4096 data points for the f1 dimension. Unshifted 
sine-bell squared (SINE) window functions were also 
applied in both dimensions before Fourier transform. 
The 1H–13C HMBC spectrum was obtained with 9 and 
45 kHz spectral widths in the 1H and 13C dimensions, 
respectively, 2048 data points in f2, 512 increments in f1, 
forward linear prediction with 32 coefficients, zero fill-
ing to 4096 data points in f1. Unshifted sine-bell squared 
window functions were also applied in both dimensions 
before Fourier transform.

Multivariate statistical analysis on NMR spectroscopy data
The 1H NMR spectra were divided into segments, called 
buckets or bins, of fixed 0.04 ppm width. The bucket-
ing was performed by Amix 3.9.13 (Analysis of Mixture, 
Bruker, Biospin, Italy), as the subsequent step in NMR 
data processing. The spectral region between 4.78 and 
5.00 ppm was excluded due to the presence of residual 
water signal and the remaining 233 buckets in the range 
10.00–0.48 ppm were normalized to total area, mean-
centered and integrated by Amix software. The total sum 
normalization was applied to minimize small differences 
due to sample concentration and/or little changes in 
experimental conditions among samples. After the align-
ment of buckets rows reduced spectra, the resulting data 
table was used in the MVA, employing the tools offered 
by Simca-P version 14 (Sartorius Stedim Biotech, Umet-
rics, Umeå, Sweden). In this work, a particularly careful 
alignment process was required to overcome shifts of 
some organic acid signals, despite the use of the buffer. 
Nevertheless, essentially for check purposes, a further 
data table was produced after manual adjustment of 

Table 2 Summary of analyzed samples divided per year and 
farming methods

Year Biodynamic 
agriculture

Organic 
agriculture

Integrated 
agriculture

Total samples

2020 10 10 10 30

2021 30 30 30 90

2022 30 30 30 90
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some buckets by merging, into wider buckets, bins con-
taining signals of tartaric (4.5; 4.46 ppm), malic (2.62; 
2.66; 2.70 ppm) and citric (2.74; 2.78 ppm) acids, without 
any overlapping neighboring resonances [59]. The results 
from analogous MVA performed on the latter data table 
did not show significant variations with respect to the 
conclusions from the statistical analyses on NMR data 
with regular bucketing (fixed buckets of 0.04 ppm width), 
here reported.

A data table consists of rows (the observations or sam-
ples) and columns (the variables or buckets). Buckets rep-
resent the variables used as descriptors for each sample 
in chemometric analysis. The Pareto scaling method was 
applied to the variables, which is performed by dividing 
the mean-centered data by the square root of the stand-
ard deviation [60]. Then, the data matrix was analyzed 
according to unsupervised and supervised pattern recog-
nition methods useful to have an overview of the intrin-
sic data variation. The first multivariate analysis is the 
Principal Component Analysis (PCA), an unsupervised 
method, which provides a summary of all observations, 
founding groupings, trends, outliers [61]. Starting from 
the data table, PCA can extract and show the systematic 
variation in a data matrix X, without using information 
on group identity to construct the model. Supervised 
methods, such as the Partial Least Squares Discriminant 
Analysis (PLS-DA) and Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA) are, then, used to dis-
criminate  samples grouped in classes with different char-
acteristics. The PLS-DA allows to stress the maximum 
separation between groups of observations and to obtain 
information about the variables responsible for the 
observed separation. It is performed by rotating the main 
components, that are the axes expressing the variance 
of the data [62]. A modified PLS-DA method, that is the 
OPLS-DA, is able to powerfully reveal the most discrimi-
nating variables, filtering out variation that is not directly 
related to the focused discriminating response. For this 
purpose, the portion of the variance useful for predictive 
comparisons is separated from the not-predictive, which 
is, therefore, considered as orthogonal. As a result, the 
model interpretability is considerably improved [63]. The 
statistical models were validated using the internal cross-
validation default method (7-fold) and the permutation 
test (100 permutations), available on the SIMCA-P soft-
ware [64]. In particular, the permutation tests were used 
to validate the PLS-DA and OPLS-DA models, checking 
the degree of overfit and the possibilities of false-positive 
findings. Models were considered valid if: the Q2 value 
on the actual data set is higher than all Q2 values from 
the permuted data set, as well as the  Q2 regression line 
has a negative value of intercept on the y-axis [65]. There 
are some parameters useful to evaluate the quality of the 

MVA models:  R2,  Q2 and p [CV-ANOVA]. The first  (R2) 
represents the part of the original data that is explained 
by the model. Therefore, it is a measure of the overall fit 
of the model. The second  (Q2) is the part of the original 
data which the cross-validated model explains. It is a 
measure of the predictive power of the model, describ-
ing how well it can predict correct classification for a test 
sample. In supervised methods, the cross-validated anal-
ysis of variance (CV-ANOVA) provides a p value, a tool 
to understand the level of significance of the observed 
group separation analysis. An overview on these param-
eters allows to evaluate the model robustness. An ideal 
model should have closest to unity and similar  R2 and 
 Q2 values. In a real MVA, the model shows  Q2 value 
lower than  R2, but if it is particularly lower the robust-
ness is compromised [66]. Score scatter plot, loading scat-
ter plot and S-line plot are tools available on SIMCA-P 
software to display the results and they were performed 
for the developed models. The score scatter plot displays 
the scores, which summarize the relationship among 
the observations of a model, in a 2D (or 3D) scatter plot 
revealing the possible presence of outliers,  groups, and 
other patterns in the data. The loading scatter plot shows 
in a 2D (or 3D) scatter plot the contribution of the origi-
nal variables, describing each sample (in our case the 
buckets obtained from its NMR spectrum), in determin-
ing the sample position in the score scatter plot. The 
S-line plot for an OPLS-DA model with two classes visu-
alizes the centred loading vector p(ctr) colored according 
to the absolute value of the correlation loading, p(corr). 
Changes in the metabolites content between two groups 
of observations can be evaluated as relative quantifica-
tion. For this purpose, the Fold Change (FC) ratios of the 
normalized median intensity of selected bucket-reduced 
NMR unbiased signals of discriminant metabolites in the 
pairwise comparisons of treatment were calculated and 
reported as Log2FC [54]. The statistical significance of 
the differences between the means, for each variable of 
the two groups, was assessed using the Student t test. A 
p value <0.05 (confidence level 95%) was considered sta-
tistically significant [54]. In this work, only metabolites 
with variable importance in projection (VIP) computed 
from all extracted components and correlation coef-
ficient p(corr) absolute values higher than 1.0 and 0.5, 
respectively, were considered as potential significant dis-
criminant compounds [67, 68] and taken into account for 
relative quantification.

Results
Cv. Italia table grapes composition
A representative spectroscopic fingerprinting of cv. Ita-
lia table grapes juice extracts can be observed in Fig. 2, 
where one of the acquired 1H NMR spectra is reported. A 
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summary of the assigned peaks is reported on Table 3. To 
better visualize the peaks and the metabolites assigned to 
their relative chemical shifts, three main regions can be 
identified in the 1H NMR spectra of table grapes juice: the 
aliphatic, the carbohydrate and the aromatic region [32]. 
The aliphatic region (range 0.9–3.2 ppm) is character-
ized by resonances mainly ascribable to amino acids and 
organic acids, which remarkably influence the organolep-
tic properties of grapes (Fig. 2a). Here, the most intense 
signals belong to malate, but a great variety of peaks of 
lower intensity corresponding to valine, leucine, isoleu-
cine, lactate, alanine, arginine, proline, GABA, glutamine 
and citrate are also present. Moreover, the methyl signal 
of ethanol is detected, which gives important informa-
tion about the active metabolic changes in grapes, such 
as some fermentation pathways of sugars occurring dur-
ing fruit ripening and responsible for the production of 
organic acids [3]. The most intense peaks are recorded 
in the middle field region of the spectrum (range 3.2–
5.6 ppm) (Fig.  2b), that is, the carbohydrate region. The 
dominant resonances of the whole spectrum, indeed, 
belong to sugar compounds that are present in high con-
centration in the grapes juice extract. Then, the aromatic 
region, ranging from 5.6 to 10 ppm (Fig. 2c), shows sig-
nals assigned mainly to aromatic compounds: syringate, 
pyridine alkaloids as trigonelline, amino acids as phenyla-
lanine and tyrosine. Very important are the peaks associ-
ated with polyphenols as the hydroxycinnamic acids that 
have well-known antioxidant properties [69]. Moreover, 
the signals ascribable-to-not-aromatic compounds, such 
as formate and fumarate, are also present.

Statistical analysis
To reveal the possible data grouping of the grapes sam-
ples, an unsupervised PCA was applied on the whole cv. 
Italia NMR data set, where all the vintages (2020, 2021 
and 2022) were considered. In the present PCA analysis 
 [R2X (cum) = 0.829,  Q2(cum) = 0.728], five components 
explained 82.9% of the total variance (38.9%, 23.7%, 9.9%, 
5.6% and 4.7% for t[1], t[2], t[3], t[4] and t[5], respec-
tively), describing the samples distribution in the space. 
The same t[1]/t[2] score scatter plot of the model was 
labeled according to both vintage (Fig.  3a) and farm-
ing method (Fig.  3b). Two main clusters are visible in 
Fig.  3a: the group of the vintages 2021–2022 shifted at 
more positive values of t[1] with respect to the group of 
the vintage 2020 mainly at negative values. Moreover, a 

further separation of samples can be observed along t[2]: 
the group of the vintages 2020–2021 at positive values of 
t[2] and the group of the vintage 2022 at negative values. 
A less evident clustering according to the different agri-
cultural practices is observed in Fig. 3b. Nevertheless, an 
indication of differentiation along t[2], between the ORG 
and INT samples, could be observed in the t[1]/t[2] PCA 
score scatter plot (Fig. 3b). To visualize the separation of 
the BD samples with respect to the others, the analysis 
of the 3D PCA score scatter plot also including t[3] was 
required (Fig. 3c). Interestingly, at first glance, the obser-
vation of the 3D PCA score scatter plot (Fig. 3c) suggests 
the possible existence of specific characteristics in the 
metabolic profiles, differentiating essentially BD from 
ORG samples. Loading scatter plot for the PCA model 
was also performed, aiming to reveal the metabolites 
responsible for the observed separation of the samples 
groups (Additional file 1: Figure S6).

The observed trends (Fig. 3) in the PCA analysis indi-
cated that the inter-annual variability due to the occur-
ring climatic conditions might influence the metabolism 
of grapes, besides those produced by other factors, such 
as the application of different cultivation methods. How-
ever, to clearly identify and possibly quantify all the dif-
ferences resulting from the 1H NMR metabolic profiling 
of grapes juice samples, supervised MVA methods were, 
therefore, used.

The separation among samples classes could be 
improved by PLS-DA analysis. Two supervised (PLS-DA) 
analyses were performed and compared, based on the 
PCA clustering indications (Fig. 4). One PLS-DA analysis 
was set on the class “harvesting year” (score scatter plot 
in Fig.  4a) and the other one was set on the class “viti-
cultural treatment” (score scatter plot in Fig. 4c). The two 
models, built using five components, were both reasona-
bly good: the first one with  R2X (cum) = 0.789,  R2Y(cum) 
= 0.742,  Q2(cum) = 0.689; the second one with  R2X (cum) 
= 0.802,  R2Y(cum) = 0.723,  Q2(cum) = 0.705. Interest-
ingly, the model parameters (descriptiveness/predictive-
ability) for the differentiation according to “viticultural 
treatment” were comparable to those characterizing the 
differentiation according to “harvesting year”. There-
fore, this result fully justified the further investigations 
on farming methods effects. Differences in the samples 
number per class, in the two PLS-DA models, should be 
also taken into account. Nevertheless, the results clearly 
indicate that both occurring climatic conditions specific 

Fig. 2 Typical 1H NMR spectrum of cv. Italia table grapes juice sample. Main resonances are labelled with the assigned metabolite. a Aliphatic 
region, mainly characterized by signals of amino acids and organic acids; b carbohydrate region, collecting mainly signals belonging to sugars and c 
Aromatic region (approximate zoom factor × 10), where signals principally of phenolic and other aromatic compounds are present

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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for each vintage and viticultural treatments influence 
the characteristics of the analyzed grapes juice samples, 
and the observed effects resulted at least comparable in 
importance. Permutation tests (n=100) were used to 
assess the validity and the degree of overfit of the two 
PLS-DA models (Additional file 1: Figure S7a).

Both PLS-DA analyses score scatter plots (Fig.  4a, c) 
showed a great separation among samples classes. In 
Fig.  4a, the t[1]/t[2] plot displayed the grapes samples 
belonging to the vintages 2020–2021 both at positive 
values of t[1], while the 2022 samples placed at negative 
values. This means that 2020–2021 grapes samples were 
more similar to each other with respect to those from 
2022. The corresponding loading scatter plot (Fig.  4b) 
clearly indicates the metabolites responsible for vin-
tages differentiation. In particular, table grapes samples 
from the 2020 to 2021 vintages appeared richer in α-/β-
glucose, malate and citrate than those from 2022, while 
instead the 2022 samples contained more fructose and 
alanine.

In Fig.  4c, an important degree of separation among 
cultivation methods was observed in the t[1]/t[2] score 
scatter plot, with BD and INT table grapes samples 
occurring mainly at positive values of t[1] and well-differ-
entiated from ORG samples placed, instead, at negative 
values. This result confirmed the PCA grouping indica-
tion (Fig.  3c). However, there are clearly other intrin-
sic aspects which determine the mutual differentiation 
between BD and INT-ORG samples along the t[2].

The PLS-DA loading scatter plot for the model set 
according to “viticultural treatment” classification 
shows the discriminating metabolites responsible of 
the observed separation within the farming methods 

Table 3 1H-NMR chemical shift (δ) of metabolite resonances of 
cv. Italia table grapes juice

a Letters in parentheses indicate the peak multiplicities; s = singlet; d = doublet; 
t = triplet; q = quartet; qu = quintet; dd = doublet of doublet; m = multiplet

*Multiplets at δ 6.52–6.80 and δ 7.21–7.29 could be assignable to the side chain 
amide protons of arginine at acidic pH. However, as broad signals they were not 
considered [58]

Metabolites δ (ppm)

Leucine 0.94  (da), 0.96 (d)

Isoleucine 1.00 (d)

Valine 1.03 (d)

Ethanol 1.18 (t)

Lactate 1.32 (d)

Alanine 1.46 (d), 3.79 (q)

Arginine 1.61–1.79 (m), 1.88–1.97 (m), 3.24 (dd), 
6.52–6.80* (m), 7.21–7.29* (m)

γ-aminobutyrate (GABA) 1.90 (qu), 2.35 (t), 3.02 (t)

Proline 1.97–2.04 (m), 2.05–2.10 (m), 2.32–2.39 (m)

Glutamine 2.11–2.17 (m), 2.44–2.50 (m)

Malate 2.66 (dd), 2.82 (dd), 4.42 (dd)

Citrate 2.78 (d), 2.88 (d)

α-D-glucose 3.43 (dd), 3.50 (dd), 5.22 (d)

β-D-glucose 3.26 (dd), 3.40 (dd), 3.48 (t), 4.66 (d)

Fructose 4.01 (dd), 4.10 (d)

Tartaric acid (free) 4.46 (s)

Hydroxicinnamic acids 6.43 (d), 6.46 (d), 7.60 (d), 7.63 (d)

Fumarate 6.68 (s)

Tyrosine 6.91 (d), 7.19 (d)

Syringate 7.26 (s)

Phenylalanine 7.30 (d), 7.40–7.44 (m)

Trigonelline 8.08 (t), 8.80–8.86 (m), 9.13 (s)

Formate 8.66 (s)

Fig. 3 PCA score scatter plot for all grapes juice samples. Model parameters: five components give  R2X (cum) = 0.829,  Q2(cum) = 0.728; PCA score 
scatter plot a colored by vintage and b colored by farming method; c 3D PCA score scatter plot; BD = biodynamic, INT = integrated, ORG = organic 
agriculture
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clusters (Fig.  4d). In particular, a higher relative con-
tent of malate and ethanol characterized BD and INT 
grapes; while citrate, monosaccharides as α-/β-glucose 
and amino acids as arginine were more abundant in 

ORG samples. Noteworthy, from the comparative anal-
ysis of Fig.  4 loading scatter plots clearly results that 
the metabolites responsible for “viticultural treatment” 
discrimination do not correspond to those ascribable to 
“harvesting year” differentiation. These results further 

Fig. 4 PLS-DA analyses for all grapes juice samples. a PLS-DA score scatter plot from model set on class “harvesting year” (five components give  R2X 
(cum) = 0.789,  R2Y(cum) = 0.742,  Q2(cum) = 0.689), b PLS-DA loading scatter plot from model set on class “harvesting year”, c PLS-DA score scatter 
plot from model set on class “viticultural treatment” (five components give  R2X (cum) = 0.802,  R2Y(cum) = 0.723,  Q2(cum) = 0.705) and d PLS-DA 
loading scatter plot from model set on class “viticultural treatment”. Loading scatter plots for the models are coloured according to the absolute 
value of the correlation loading, p(corr). The colour bar associated with the plot indicates the correlation of the metabolites that discriminate 
the classes. w*c[1] and w*c[2] axes represented the weighted correlation vectors
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buttress the need to thoroughly study the specific 
effects of different agricultural managements.

To better investigate differences of metabolites, which 
discriminate BD, ORG and INT products, separate pair-
wise OPLS-DA analyses were performed, setting “viti-
cultural treatment” as classification category (Fig.  5). 
The score scatter plots of the three obtained models 
(Fig. 5a, c, e) displayed a good separation degree in each 
pairwise comparison (BD vs ORG, BD vs INT and ORG 

vs INT), confirmed by reasonably sound model param-
eters (Table  4). Remarkably, the BD vs ORG and BD vs 
INT OPLS-DA pairwise models showed higher descrip-
tiveness and predictive ability parameters with respect 
to the ORG vs INT model. The present result evidently 
testifies a better differentiation of BD from both ORG 
and INT samples, when compared with the ORG vs INT 
discrimination. Indeed, a greater discrimination of sam-
ples usually relates to a higher predictive ability of the 

Fig. 5 OPLS-DA analyses, pairwise comparisons. a pairwise OPLS-DA score scatter plot (one predictive and four orthogonal components, 
 R2X(cum) = 0.83,  R2Y(cum) = 0.912,  Q2(cum) = 0.889) for biodynamic (BD) and organic (ORG) treatments, b S-line for the model; c pairwise OPLS-DA 
score scatter plot (one predictive and four orthogonal components,  R2X(cum) = 0.84,  R2Y(cum) = 0.874,  Q2(cum) = 0.835) for biodynamic (BD) 
and integrated (INT) treatments, d S-line for the model; e pairwise OPLS-DA score scatter plot (one predictive and four orthogonal components, 
 R2X(cum) = 0.794,  R2Y(cum) = 0.824,  Q2(cum) = 0.779) for organic (ORG) and integrated (INT) treatments, f S-line for the model. In the score scatter 
plots, the colour intensity of the dots increases progressively according to the vintage (light = 2020, medium = 2021, dark = 2022). The S-line plots 
for the OPLS-DA models visualize the centred loading vector (p(ctr)), colored according to the absolute value of the correlation loading, p(corr).The 
colour bar associated with the plot indicates the correlation of the metabolites that discriminate the classes
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corresponding models in the pairwise OPLS-DA evalu-
ation [70]. Permutation tests (n=100) were used to check 
the validity and the degree of overfit of the three OPLS-
DA models (Additional file 1: Figure S7b).

Interestingly, in all the comparisons (Fig.5), a very low 
differentiation according to the harvesting years was 
observed along the orthogonal component of the OPLS-
DA score scatter plots. In addition, this result reinforces 
the already discussed comparable importance of vin-
tages effects and viticultural treatments influences. For 
the pairwise OPLS-DA models, the corresponding S 
line plots (Fig.  5b, d, f ) clearly indicate the metabolites 
responsible for BD vs ORG, BD vs INT and ORG vs 
INT differentiations. In the BD vs ORG comparison, the 
S-line plot for the OPLS-DA model (Fig.  5b) showed a 
higher relative content of ethanol, malate and β-glucose 
for BD table grapes samples with respect to ORG ones. 
On the contrary, ORG samples contained more arginine, 
citrate, tartaric acid and α-glucose than BD ones. In the 
pairwise comparison BD vs INT, the S-line plot for the 
model (Fig.  5d) indicated a greater abundance of etha-
nol, citrate, tartaric acid and carbohydrates such as α-/β-
glucose in BD samples with respect to INT ones. On the 
other hand, INT samples were characterized by higher 
relative content of malate, fructose and amino acids such 
as arginine, glutamine and leucine. Finally, in the ORG vs 
INT comparison, the S-line plot for the model (Fig.  5f ) 

pointed out the presence of more citrate, tartaric acid 
and α-/β-glucose for ORG samples than INT ones. These 
latter contained, instead, higher quantities of malate, 
fructose and glutamine.

A complete comparative view of occurring discrimi-
nating metabolites’ trends in samples, relatively to all the 
investigated agricultural managements, is summarized 
in Fig. 6. Potential significant discriminating metabolites 
were identified using VIP and p(corr) values (Additional 
file 1: Tables S1, S2, S3). Only assigned metabolites show-
ing a major contribution to the OPLS-DA models, with 
high statistical reliability |p(corr)| ≥ 0.5 and strong dis-
crimination power (VIP≥1), were selected. The relative 
quantification of these significant discriminant metabo-
lites, for BD vs ORG, BD vs INT and ORG vs INT sam-
ples classes, was performed by considering the Fold 
Change (FC) ratio. FCs were calculated from the buckets’ 
integral values of the relevant NMR signals for leucine, 
ethanol, arginine, glutamine, malate, α- and β-glucose. 
Significant (p value < 0.05)  log2(FC) values are reported 
in the graph, as shown in Fig. 6a, b, c.

Discussion
The present study aimed at analyzing the effects of dif-
ferent viticultural treatments on metabolic profile of cv. 
Italia table grapes juice. We report, for the first time in 
this cultivar, a comparison among samples from biody-
namic, organic and integrated agriculture, over a 3-year 
period, by using an 1H NMR-based metabolomics anal-
ysis combined with MVA. Besides the sampling method 
and the analytical protocol, also other experimental 
aspects were kept constant over the three considered 
vintages (2020, 2021 and 2022): geographical area of 
samples origin, supplier farms and agricultural man-
agements of vineyards. About the management, within 
each type of cultivation (biodynamic, organic and inte-
grated) the used practices in the vineyard were kept 

Table 4 Descriptiveness and predictive ability parameters of 
pairwise OPLS-DA analyses models

One predictive and four orthogonal components were considered for each 
model

Pairwise comparison R2X(cum) R2Y(cum) Q2(cum)

BD vs ORG 0.83 0.912 0.889

BD vs INT 0.84 0.874 0.835

ORG vs INT 0.794 0.824 0.779

Fig. 6 Graphical representation of discriminant metabolites in each pairwise comparison for the investigated agricultural managements (only 
metabolites with |p(corr)|≥ 0.5 and VIP ≥ 1 were taken into account). Quantitative comparisons are, respectively, between a BD/ORG, b BD/INT 
and c ORG/INT samples classes. The x-axis reports significant (p value < 0.05)  log2(FC) values. (FC = Fold Change, BD = biodynamic, ORG = organic, 
INT = integrated treatment)
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the same and replicated year by year. The preliminary 
unsupervised PCA analysis, performed on the whole 
NMR data set, showed that both inter-annual vari-
ability (Fig. 3a) and different farming methods (Fig. 3c) 
resulted as significant drivers for samples differentia-
tion. The two supervised PLS-DA analyses (Fig. 4a and 
c), respectively, set on “harvesting year” and “viticul-
tural treatment” as classification categories, revealed 
that BD, ORG and INT cultivations determined dis-
crimination among samples at least to a same extent 
as the vintages. This evidence emerged from the com-
parison of models’ statistical parameters. The relative 
loading scatter plots (Fig.  4b, d) highlighted that dis-
criminating metabolites for the observed classes sepa-
ration were diverse between the two PLS-DA analyses. 
Thus, vintages and agricultural managements of vine-
yards seemed to differently affect the cv. Italia grape 
berries metabolic profiles. This aspect, combined with 
reasonably sound PLS-DA models parameters, but-
tressed the need to deepen the specific influences of 
farming methods. Thus, OPLS-DA pairwise compari-
sons (BD vs ORG, BD vs INT and ORG vs INT) were 
performed (Fig. 5a, c, e), along with the S-line for each 
model (Fig. 5b, d, f ). As showed by the descriptiveness 
 (R2) and predictive ability  (Q2) values parameters, the 
highest discrimination was observed between BD vs 
ORG samples groups, followed by BD vs INT and, then, 
ORG vs INT comparisons (Table  4) in decreasing dis-
crimination order. These results suggest that BD agri-
culture could produce clearly different foodstuffs from 
those obtained by ORG and INT treatments, which 
appear more similar to each other. Then, the relative 
quantification of discriminant metabolites (|p(corr)|≥ 
0.5 and VIP ≥ 1) was carried out by considering the 
Fold Change (FC) ratio for each pairwise comparison 
(Fig. 6a, b, c).

In the case of BD vs ORG comparison (Fig.  6a), sig-
nificant relative content changes between samples 
groups from the two considered agricultural practices 
resulted for β-glucose, ethanol, malate and arginine. In 
particular, β-glucose, ethanol and malate relative con-
tents were significantly higher in BD samples than ORG 
ones with 0.05-, 1.30- and 1.14-fold increases, respec-
tively. With the exception of the sugars, similar findings 
were reported by Picone et  al. [32] in cv. Sangiovese 
winegrapes regarding trends in ethanol and malate con-
tents. The concomitant relative increase of the latter 
would suggest the activation of glycolysis toward fer-
mentative metabolic pathways mostly in BD products 
[32]. Furthermore, the resulting greater abundance of 
arginine (0.87-fold increase) in ORG samples compared 
to BD ones is an outcome dissimilar to that described 
by other authors [32], who also observed an increased 

concentration of some amino acids in BD grapes with 
respect to ORG ones.

In the BD vs INT comparison (Fig.  6b), similarly as 
observed in the previous comparison (BD vs ORG), BD 
samples showed a statistically significant higher rela-
tive content of β-glucose and ethanol (0.03- and 1-fold 
increases, respectively) with respect to INT samples. 
In the case of β-glucose similar results was obtained, 
although not statistically meaningful, in the roots of red 
beet Beta vulgaris from BD agriculture with respect to 
both INT and ORG [71]. On the other hand, the large 
relative content of ethanol in BD samples, with one-fold 
increase respect to INT ones, is noteworthy and may 
suggest that the abundance of ethanol could be a specific 
feature of studied BD grapes. By opposite, in samples 
from INT practices a higher relative content of amino 
acids arginine, leucine and glutamine resulted. The appli-
cation of fertilizers (mineral and synthetic, as declared by 
supplier farmers) in INT vineyards could account for the 
observed greater relative concentration of amino acids 
in INT samples [72] rather than in BD ones, which were 
grown up without these kinds of fertilization treatments.

Finally, in the ORG vs INT comparison (Fig.  6c), the 
resulting most discriminant metabolites were α-glucose, 
malate and glutamine. In particular, ORG samples 
showed a limited—although statistically significant—
higher relative content of α-glucose (0.02-fold increase) 
with respect to INT samples. In accordance with some 
literature data on the total sugars content from apples 
produced by ORG and INT farming methods [73], the 
α-glucose content was found to be slightly higher in ORG 
samples compared to INT ones. Other authors found, 
instead, no substantial differences between foodstuffs 
from ORG and INT cultivations, in terms of sugars quan-
tity (red beet: [71], apples: [74]), and this could justify the 
only α-glucose increase. On the other hand, malate and 
glutamine showed higher statistically significant content 
(1.13- and 1.29-fold increases, respectively) in INT sam-
ples than ORG ones. In the case of malate, the obtained 
result appears consistent with previous findings related 
to the highest malate and citrate total content in apple 
fruit from INT vs ORG production treatment [75].

Therefore, a general overview of the obtained data sug-
gests that, also in the here studied systems, sugars con-
tent was clearly affected by the agricultural practices in 
accordance to some literature results [32, 33]. However, 
although significant, the here reported relative differ-
ences in α-/β-glucose content were not particularly pro-
nounced in all the treatments’ pairwise comparisons 
(Fig. 6). Moreover, apart from glucose, none of the other 
sugar metabolites appeared as significant discriminating 
factor in the present study. Hence, the total sum of solu-
ble sugars in the grapes juice could remain approximately 
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unchanged, among the applied different agricultural 
practices, according to other literature data. A specific 
review proposed a meta-regression analysis showing that 
the juice sugar concentration of grapes from ORG and 
BD managed vineyards was almost the same as grapes 
from CONV or INT viticulture [23]. Further insights on 
the issue are required, since other authors found similar 
outcomes, detecting no statistically significant differ-
ences on sugars concentration also in other food prod-
ucts cultivated with different farming methods (red beet: 
[71], apples: [74]).

Focusing on organic acids, the most discriminant 
metabolite in agricultural practices pairwise compari-
sons was malate (Fig. 6). In particular, grapes juice sam-
ples from both BD and INT agriculture showed higher 
content of malate, with similar values of FC increase 
(respectively, 1.14 and 1.13, Fig.  6a and c), with respect 
to samples from ORG treatment. This result is in agree-
ment with literature data related to grapes [32] and other 
food matrices as reed beet [71] and apple fruits [75]. 
Since malate is involved in diverse aspects of cellular 
metabolism in grapes, its quantity can be influenced by 
many factors. In general, the accumulation of malate in 
grapevines is known to be due to de novo synthesis dur-
ing the pre-veraison. This occurs through metabolism of 
assimilates translocated from leaf tissues to berries, as 
well as photosynthetic activity within the fruit itself [76]. 
Furthermore, loss of malate is associated with post-verai-
son period, when it is involved in various catabolic path-
ways. The switch from net accumulation to degradation 
of malate occurs just before veraison. Since its content 
in fruits is extremely variable [76], many reasons could 
account for the abundance of malate in the studied BD 
and INT grapes juice samples, with respect to ORG ones, 
buttressing the need for further insights.

In the case of ethanol, significantly discriminant for BD 
grapes in both BD vs ORG and BD vs INT comparisons 
(Fig. 6a, b), it is known to be naturally present in grape 
berries as metabolism product and it was found to be 
one of the most farming methods-dependent metabolites 
[33]. However, as already proposed by Gallo et al. [33], it 
can be hypothesized that the occurring ethanol could be 
the sum of the ethanol naturally contained before har-
vest and that further formed by enzymatic degradation 
during storage and sample manipulation. The latter por-
tion could be either negligible with respect to the start-
ing amount or variable due to other specific factors (e.g., 
yeast population) depending on cultivation method [33].

Finally, pairwise comparisons (Fig.  6) highlighted 
remarkably that INT samples would appear the rich-
est of some amino acid compounds, compared to both 
BD and ORG samples (Fig.  6b, c). It can be assumed 
that metabolism in INT vine would invest appreciably 

in anabolic pathways, as the amino acids’ biosynthesis, 
boosted by the combined use of organic and mineral/syn-
thetic fertilizers. These latter provide plants with impor-
tant nutrients as nitrogen (N), which seem to increase 
the concentration of some amino acids in many crops 
[72]. The higher abundance of glutamine in INT samples 
could be an index of the general better nutritional status 
of INT vines, since glutamine is known to have an impor-
tant anabolic role as N atoms source for biosynthesis of 
other amino acids and also biological molecules contain-
ing N [77, 78]. In our case, as declared in the question-
naires by the supplier farms, the dissimilar features in 
the fertilization method between INT and BD viticulture 
along other treatments (Table  1) may explain different 
plant’s nutritional conditions and, consequently, the sta-
tistically significant differences in the relative quantity of 
some amino acids shown in the BD vs INT comparison 
(Fig.  6b). In the case of arginine, its content appears to 
be strictly dependent on farming methods, in accord-
ance to previous work [33]. Arginine is important for 
N storage in plants and many mechanisms are involved 
in the regulation of its levels in plant tissues. Arginine 
synthesis and catabolism, both are linked to the overall 
nutritional status of the plant cell and its consumption 
seems to be coordinated with the sugar starvation status 
of plants. Thus, arginine catabolism allows mobilization 
of stored nitrogen and relates to other metabolic path-
ways, including fine-tuning of polyamines production 
(essential for development and stress responses of plants) 
[79]. Although the regulation of the different catabolic 
pathways concerning arginine requires further research, 
several regulatory mechanisms of its biosynthesis were 
identified [79]. Arginine accumulates in grape berries 
from shortly before veraison until the fruit ripens, when 
its biosynthesis stops [80]. Therefore, the observed lower 
arginine content in ripe BD table grapes juice compared 
to both ORG and INT samples (Fig. 6a, b), besides testi-
fying a major intake of nutrients characterizing ORG and 
particularly INT agriculture, may also suggest a specific 
metabolic response by the BD plants. Indeed, BD agricul-
ture could stimulate the natural resistance of the grape-
vines activating the synthesis of polyamines, which are 
important in plant defense processes and determine the 
arginine use, so explaining our findings.

Conclusions
The present metabolomics study demonstrated that 
cv. Italia table grapes juice composition is significantly 
affected by the use of different kinds of vineyard man-
agements. The comparison here carried out was among 
three farming methods: biodynamic (BD), organic 
(ORG) and integrated (INT). The metabolic profiling 
of cv. Italia table grapes—from the same geographical 
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area and three different vintages 2020, 2021 and 
2022—was performed with the 1H Nuclear Magnetic 
Resonance spectroscopy as analytical platform and 
multivariate statistical analysis of the NMR spectra-
derived data set. The preliminary unsupervised PCA 
analysis of the data revealed both inter-annual vari-
ability (vintages 2020, 2021, 2022) and different farm-
ing methods (BD, ORG, INT) as significant drivers for 
samples differentiation. In the following supervised 
PLS-DA data analyses, the inter-vineyards variability 
due to the diverse managements turned out to discrim-
inate samples at least to a same extent as the harvesting 
year. Moreover, the observed discriminating metabo-
lites for samples separation were different considering 
the viticultural practices rather than the harvesting 
year, as assigned class in the PLS-DA analyses. Note-
worthy, OPLS-DA pairwise comparisons between field 
treatments indicated the biodynamic vs organic sam-
ples as the best differentiation, followed by the biody-
namic vs integrated and organic vs integrated samples 
comparisons, in decreasing discrimination order. These 
results somehow quantified the relations of the over-
all changes for metabolites composition with different 
agronomic management. Although variation of product 
characteristics, according to the different agricultural 
practices, is an expected outcome, an estimation of its 
specific effect in a multi-year experiment, for the three 
different vineyard conductions here focused, is novel. 
Ethanol, sugars as α-/β-glucose, organic acids as malate 
and some amino acids as arginine, leucine, glutamine, 
resulted the chemical species mostly influenced by 
the viticultural treatments. In particular, besides etha-
nol, arginine content appears to be strictly dependent 
on farming methods, in accordance to previous work. 
The here observed lower arginine content in ripe BD 
table grapes juice with respect to both ORG and INT 
samples, besides testifying a major intake of nutrients 
characterizing ORG and particularly INT agriculture, 
also suggests a BD specific metabolic response possibly 
related to plant defense processes.

Abbreviations
NMR  Nuclear Magnetic Resonance
MVA  Multivariate Statistical Analysis
BD  Biodynamic
ORG  Organic
INT  Integrated
CONV  Conventional
ATM  Automatic tuning-matching
FID  Free induction decay
PCA  Principal Component Analysis
PLS-DA  Partial Least Squares Discriminant Analysis
OPLS-DA  Orthogonal Partial Least Squares Discriminant Analysis
VIP  Variable importance for the projection
FC  Fold Change

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40538- 024- 00553-5.

Additional file 1: Figure S1. local pedological map; Figure S2. question-
naires supplied to farms; Figure S3.  [1H,1H]-cosy spectrum; Figure S4. 
 [1H,13C]-HSQC spectrum; Figure S5.  [1H,13C]-HMBC spectrum; Figure 
S6. PCA loading scatter plot; Figure S7. examples of permutation tests; 
Table S1. list of discriminating chemical descriptors with corresponding 
p(corr) and VIP, for BD vs ORG samples comparison in the related OPLS-DA 
model; Table S2. list of discriminating chemical descriptors with corre-
sponding p(corr) and VIP, for BD vs INT samples comparison in the related 
OPLS-DA model; Table S3. list of discriminating chemical descriptors with 
corresponding p(corr) and VIP, for ORG vs INT samples comparison in the 
related OPLS-DA model.

Acknowledgements
This work was performed in collaboration with Azienda Agricola Lacalamita 
Rosa (for organic grapes certified Reg. CE 848/18, DEMETER production rules), 
Azienda D’Alessandro (for organic grapes certified Reg. CE 848/18 production 
rules) and Azienda Martemucci (for IPM grapes certified GDO production 
rules).

Author contributions
FPF and GC designed the research and choose the methodology; GC 
collected samples in the field experiment; CSC and MH performed the 
experiments; CSC and CRG analyzed the data; CSC, CRG and FPF interpreted 
the results; CSC wrote the manuscript and created the figures; CRG and FPF 
reviewed the manuscript. All authors read and approved the final manuscript.

Funding
The authors acknowledge POLITICHE EUROPEE E COOPERAZIONE INTERNA-
ZIONALE—REGIONE PUGLIA for a PhD grant POR PUGLIA FESR FSE 2014-2020 
(CUP: F82F20000090002).

Availability of data and materials
The data sets used and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biological and Environmental Sciences and Technologies, 
Di.S.Te.B.A., University of Salento, 73100 Lecce, Italy. 2 CIHEAM-Bari, Via Ceglie 9, 
70010 Valenzano (Bari), Italy. 

Received: 13 December 2023   Accepted: 21 February 2024

References
 1. Antonacci D, Scienza A. L’uva da tavola: botanica, storia e arte, alimen-

tazione, paesaggio, coltivazione, ricerca, utilizzazione, mondo e mercato. 
Collana Coltura & Cultura. Ed. Script, Bologna. Milano: Bayer CropScience 
S.r.l.; 2010. 624 p.

 2. ISTAT. Statistiche Istat. 2023. http:// dati. istat. it/. Accessed 4 Dec 2023.

https://doi.org/10.1186/s40538-024-00553-5
https://doi.org/10.1186/s40538-024-00553-5
http://dati.istat.it/


Page 16 of 17Colì et al. Chem. Biol. Technol. Agric.           (2024) 11:35 

 3. Ali K, Maltese F, Choi YH, Verpoorte R. Metabolic constituents of grape-
vine and grape-derived products. Phytochem Rev. 2010;9(3):357–78.

 4. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berry phenolics of grape-
vine under challenging environments. Int J Mol Sci. 2013;14(9):18711–39.

 5. Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, Deborde C, et al. 
Microclimate influence on mineral and metabolic profiles of grape ber-
ries. J Agric Food Chem. 2006;54(18):6765–75.

 6. Mulas G, Galaffu MG, Pretti L, Nieddu G, Mercenaro L, Tonelli R, et al. NMR 
analysis of seven selections of vermentino grape berry: metabolites 
composition and development. J Agric Food Chem. 2011;59(3):793–802.

 7. van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu 
D. Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic. 
2004;55(3):207–17.

 8. Pereira GE, Gaudillere JP, Van Leeuwen C, Hilbert G, Lavialle O, Maucourt 
M, et al. 1H NMR and chemometrics to characterize mature grape berries 
in four wine-growing areas in Bordeaux. France J Agric Food Chem. 
2005;53(16):6382–9.

 9. Pereira GE, Gaudillere JP, van Leeuwen C, Hilbert G, Maucourt M, Deborde 
C, et al. 1H NMR metabolite fingerprints of grape berry: comparison of 
vintage and soil effects in Bordeaux grapevine growing areas. Anal Chim 
Acta. 2006;563(1):346–52.

 10. Mazzei P, Francesca N, Moschetti G, Piccolo A. NMR spectroscopy evalu-
ation of direct relationship between soils and molecular composition of 
red wines from Aglianico grapes. Anal Chim Acta. 2010;673(2):167–72.

 11. Food and Agriculture Organization of the United Nations, FAO. “Energy-
Smart” Food for People and Climate—issue Paper (2011). https:// www. 
fao. org/ susta inable- food- value- chains/ libra ry/ detai ls/ en/c/ 266092/. 
Accessed 4 Dec 2023.

 12. Food and Agriculture Organization of the United Nations, FAO. Building 
a common vision for sustainable food and agriculture. Principles and 
approaches. (2014) https:// www. fao. org/ docum ents/ card/ en? detai ls= 
i3940e. Accessed 4 Dec 2023.

 13. Campbell BM, Vermeulen SJ, Aggarwal PK, Corner-Dolloff C, Girvetz E, 
Loboguerrero AM, et al. Reducing risks to food security from climate 
change. Glob Food Sec. 2016;1(11):34–43.

 14. Wright J. A revitalisation of European farming and the promise of the 
biodynamic worldview. Chem Biol Technol Agric. 2022;9(1):64.

 15. Ponzio C, Gangatharan R, Neri D. Organic and biodynamic agriculture: a 
review in relation to sustainability. Int J Plant Soil Sci. 2013;2(1):95–110.

 16. Zucca G, Smith DE, Mitry DJ. Sustainable viticulture and winery prac-
tices in California: What is it, and do customers care? Int J Wine Res. 
2009;1:189–94.

 17. Mann S, Ferjani A, Reissig L. What matters to consumers of organic wine? 
Br Food J. 2012;114(2):272–84.

 18. Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G. Comparative life 
cycle assessment in the wine sector: biodynamic vs. conventional viticul-
ture activities in NW Spain. J Cleaner Prod. 2014;65:330–41.

 19. Integrated Pest Management (IPM) https:// food. ec. europa. eu/ plants/ 
pesti cides/ susta inable- use- pesti cides/ integ rated- pest- manag ement- 
ipm_ en. Accessed 4 Dec 2023.

 20. Meissner G, Athmann ME, Fritz J, Kauer R, Stoll M, Schultz HR. Conversion 
to organic and biodynamic viticultural practices: impact on soil, grape-
vine development and grape quality. OENO One. 2019. https:// doi. org/ 
10. 20870/ oeno- one. 2019. 53.4. 2470.

 21. Döring J, Frisch M, Tittmann S, Stoll M, Kauer R. Growth, yield and fruit 
quality of grapevines under organic and biodynamic management. PLoS 
ONE. 2015;10(10): e0138445.

 22. Fritz J, Athmann M, Meissner G, Kauer R, Köpke U. Quality characterisation 
via image forming methods differentiates grape juice produced from 
integrated, organic or biodynamic vineyards in the first year after conver-
sion. Biol Agric Hortic. 2017;33(3):195–213.

 23. Döring J, Collins C, Frisch M, Kauer R. Organic and biodynamic viticulture 
affect biodiversity and properties of vine and wine: a systematic quantita-
tive review. Am J Enol Vitic. 2019;70(3):221.

 24. Reeve JR, Carpenter-Boggs L, Reganold JP, York AL, McGourty G, McClo-
skey LP. Soil and winegrape quality in biodynamically and organically 
managed vineyards. Am J Enol Vitic. 2005;56(4):367–76.

 25. Botelho RV, Roberti R, Tessarin P, Garcia-Mina JM, Rombolà AD. Physiologi-
cal responses of grapevines to biodynamic management. Renew Agric 
Food Syst. 2016;31(5):402–13.

 26. Ferrara G, Mazzeo A, Netti G, Pacucci C, Matarrese AMS, Cafagna I, et al. 
Girdling, gibberellic acid, and forchlorfenuron: effects on yield, qual-
ity, and metabolic profile of table grape cv. Italia. Am J Enol Viticult. 
2014;65(3):381–7.

 27. Malagoli M, Sut S, Kumar G, Dall’Acqua S. Variations of elements, pig-
ments, amino acids and secondary metabolites in Vitis vinifera (L.) cv 
Garganega after 501 biodynamic treatment. Chem Biol Technol Agric. 
2022;9(1):36.

 28. Tassoni A, Tango N, Ferri M. Comparison of biogenic amine and polyphe-
nol profiles of grape berries and wines obtained following conventional, 
organic and biodynamic agricultural and oenological practices. Food 
Chem. 2013;139(1):405–13.

 29. Tassoni A, Tango N, Ferri M. Polyphenol and biogenic amine profiles of 
albana and lambrusco grape berries and wines obtained following differ-
ent agricultural and oenological practices. Food Nutr Sci. 2014;5:9.

 30. De Pascali SA, Coletta A, Del Coco L, Basile T, Gambacorta G, Fanizzi FP. 
Viticultural practice and winemaking effects on metabolic profile of 
Negroamaro. Food Chem. 2014;15(161):112–9.

 31. Laghi L, Versari A, Marcolini E, Parpinello GP. Metabonomic investigation 
by 1H-NMR to discriminate between red wines from organic and biody-
namic grapes. Food Nutr Sci. 2014;5:8.

 32. Picone G, Trimigno A, Tessarin P, Donnini S, Rombolà AD, Capozzi F. 1H 
NMR foodomics reveals that the biodynamic and the organic cultiva-
tion managements produce different grape berries (Vitis vinifera L. cv. 
Sangiovese). Food Chem. 2016;213:187–95.

 33. Gallo V, Mastrorilli P, Cafagna I, Nitti GI, Latronico M, Longobardi F, et al. 
Effects of agronomical practices on chemical composition of table grapes 
evaluated by NMR spectroscopy. J Food Compos Anal. 2014;35(1):44–52.

 34. Qu Q, Jin L. Application of nuclear magnetic resonance in food analysis. 
Food Sci Technol. 2022. https:// doi. org/ 10. 1590/ fst. 43622.

 35. Trimigno A, Marincola FC, Dellarosa N, Picone G, Laghi L. Defini-
tion of food quality by NMR-based foodomics. Curr Opin Food Sci. 
2015;1(4):99–104.

 36. Calò F, Girelli CR, Angilè F, Del Coco L, Mazzi L, Barbini D, et al. 1H-NMR 
profiling shows as specific constituents strongly affect the international 
EVOO blends characteristics: the case of the Italian oil. Molecules. 
2021;26(8):2233.

 37. Son HS, Hwang GS, Ahn HJ, Park WM, Lee CH, Hong YS. Characterization 
of wines from grape varieties through multivariate statistical analysis of 
1H NMR spectroscopic data. Food Res Int. 2009;42(10):1483–91.

 38. Amargianitaki M, Spyros A. NMR-based metabolomics in wine quality 
control and authentication. Chem Biol Technol Agri. 2017;4(1):9.

 39. Consonni R, Bernareggi F, Cagliani LR. NMR-based metabolomic 
approach to differentiate organic and conventional Italian honey. Food 
Control. 2019;1(98):133–40.

 40. Girelli CR, Schiavone R, Vilella S, Fanizzi FP. Salento Honey (Apulia, 
South-East Italy): a preliminary characterization by 1H-NMR metabolomic 
fingerprinting. Sustainability. 2020;12(12):5009.

 41. Lau H, Laserna AKC, Li SFY. 1H NMR-based metabolomics for the 
discrimination of celery (Apium graveolens L. var. dulce) from different 
geographical origins. Food Chem. 2020;332:127424.

 42. Hussain M, Girelli CR, Verweire D, Oehl MC, Avendaño MS, Scortichini M, 
et al. 1H-NMR metabolomics study after foliar and endo-therapy treat-
ments of Xylella fastidiosa subsp. pauca infected olive trees: medium time 
monitoring of field experiments. Plants. 2023;12(10):1946.

 43. Belton PS, Colquhoun IJ, Kemsley EK, Delgadillo I, Roma P, Dennis MJ, 
et al. Application of chemometrics to the 1H NMR spectra of apple juices: 
discrimination between apple varieties. Food Chem. 1998;61(1):207–13.

 44. Salvino RA, Colella MF, De Luca G. NMR-based metabolomics analysis of 
Calabrian citrus fruit juices and its application to industrial process quality 
control. Food Control. 2021;1(121): 107619.

 45. REGOLAMENTO (UE) 2018/848 DEL PARLAMENTO EUROPEO E DEL 
CONSIGLIO del 30 maggio 2018 relativo alla produzione biologica e 
all’etichettatura dei prodotti biologici e che abroga il regolamento (CE) n. 
834/2007 del Consiglio.

 46. DEMETER - Biodynamic Federation Demeter International. International 
Demeter Biodynamic Standard. https:// demet er. net/ certi ficat ion/ stand 
ard/. Accessed 4 Dec 2023.

 47. L’Abate G, Costantini E, Roberto B, Fantappiè M, Lorenzetti R, S. M. Carta 
dei Suoli d’Italia 1:1.000.000 (Soil map of Italy, scale 1:1.000.000). S.EL.CA. 

https://www.fao.org/sustainable-food-value-chains/library/details/en/c/266092/
https://www.fao.org/sustainable-food-value-chains/library/details/en/c/266092/
https://www.fao.org/documents/card/en?details=i3940e
https://www.fao.org/documents/card/en?details=i3940e
https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides/integrated-pest-management-ipm_en
https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides/integrated-pest-management-ipm_en
https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides/integrated-pest-management-ipm_en
https://doi.org/10.20870/oeno-one.2019.53.4.2470
https://doi.org/10.20870/oeno-one.2019.53.4.2470
https://doi.org/10.1590/fst.43622
https://demeter.net/certification/standard/
https://demeter.net/certification/standard/


Page 17 of 17Colì et al. Chem. Biol. Technol. Agric.           (2024) 11:35  

Firenze, Italia; 2012 [cited 2024 Feb 10]. https:// esdac. jrc. ec. europa. eu/ 
conte nt/ carta- dei- suoli- dital ia- soil- map- italy

 48. Carrante V, Della Gatta L, Perniola M, Lopez G. I terreni agrari della 
provincia di Taranto. In: Annali di Sperimentazione Agraria [Internet]. 
Roma: Fondazione per la sperimentazione agraria, Ministero agricoltura 
e foreste; 1957. p. 79–145. https:// acnps earch. unibo. it/ journ al/ 498, Map 
available at https:// zenodo. org/ recor ds/ 10646 256

 49. Caliandro A, Lamaddalena N, Stelluti M, Steduto P. Progetto ACLA 2. 
Caratterizzazione agroecologica della Regione Puglia in funzione della 
potenzialità produttiva. Opuscolo divulgativo. Bari: UE-Regione Puglia; 
2005. 179 p. https:// search. world cat. org/ it/ title/ 95474 7483

 50. Apulian pedological map published on the website of Apulia Region. 
https:// pugli acon. regio ne. puglia. it/ web/ sit- puglia- sit/ siste ma- infor 
mativo- dei- suoli. Accessed 12 Feb 2024.

 51. Calabrese A, Mandrelli L, Loi E, Blonda M. Chemical and microbiological 
characterization of soil under different agronomical use and practical: 
first focus on nitrogen cycles. IOSR J Biotechnol Biochem. 2020;6:45–57.

 52. Regione Puglia - Disciplinare Di Produzione Integrata - Anno 2023. 
https:// filie reagr oalim entari. regio ne. puglia. it/ docum ents/ 16624 05/ 47642 
62/ DET_ 23_ 13_2_ 2023. pdf/ 32aa2 169- f87f- be84- 22f4- 2c976 cc986 97?t= 
16776 63365 867. Accessed 5 Dec 2023.

 53. Santoni M, Ferretti L, Migliorini P, Vazzana C, Pacini GC. A review of scien-
tific research on biodynamic agriculture. Org Agric. 2022;12(3):373–96.

 54. Girelli CR, Accogli R, Del Coco L, Angilè F, De Bellis L, Fanizzi FP. 1H-NMR-
based metabolomic profiles of different sweet melon (Cucumis melo L.) 
Salento varieties: Analysis and comparison. Food Res Int. 2018;114:81–9.

 55. Girelli CR, De Pascali SA, Del Coco L, Fanizzi FP. Metabolic profile com-
parison of fruit juice from certified sweet cherry trees (Prunus avium 
L.) of Ferrovia and Giorgia cultivars: a preliminary study. Food Res Int. 
2016;90:281–7.

 56. Ali K, Maltese F, Fortes AM, Pais MS, Choi YH, Verpoorte R. Monitoring 
biochemical changes during grape berry development in Portuguese 
cultivars by NMR spectroscopy. Food Chem. 2011;124(4):1760–9.

 57. Ali K, Maltese F, Zyprian E, Rex M, Choi YH, Verpoorte R. NMR meta-
bolic fingerprinting based identification of grapevine metabolites 
associated with downy mildew resistance. J Agric Food Chem. 
2009;57(20):9599–606.

 58. Savage AK, van Duynhoven JPM, Tucker G, Daykin CA. Enhanced NMR-
based profiling of polyphenols in commercially available grape juices 
using solid-phase extraction. Magn Reson Chem. 2011;49(S1):S27-36.

 59. Consonni R, Cagliani LR, Cogliati C. NMR based geographical characteri-
zation of roasted coffee. Talanta. 2012;15(88):420–6.

 60. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der 
Werf MJ. Centering, scaling, and transformations: improving the 
biological information content of metabolomics data. BMC Genomics. 
2006;7(1):142.

 61. Jackson JE. A user’s guide to principal components. Vol. 587. John Wiley & 
Sons; 2005.

 62. Wold S, Eriksson L, Trygg J, Kettaneh N. The PLS method–partial least 
squares projections to latent structures–and its applications in industrial 
RDP (research, development, and production). Umeå University: Umeå, 
Sweden. 2004; 1–44

 63. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J 
Chemom. 2002;16(3):119–28.

 64. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. Multi-and mega-
variate data analysis basic principles and applications. Vol. 1. Umetrics 
Academy; 2013.

 65. Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic 
data using support vector machines. Anal Chem. 2008;80(19):7562–70.

 66. Wheelock ÅM, Wheelock CE. Trials and tribulations of ‘omics data analysis: 
assessing quality of SIMCA-based multivariate models using examples 
from pulmonary medicine. Mol BioSyst. 2013;9(11):2589–96.

 67. Le Mao I, Da Costa G, Bautista C, de Revel G, Richard T. Application of 1H 
NMR metabolomics to French sparkling wines. Food Control. 2023;1(145): 
109423.

 68. Cocchi M, Biancolillo A, Marini F. Chapter ten—chemometric methods for 
classification and feature selection. In: Jaumot J, Bedia C, Tauler R, editors. 
Comprehensive analytical chemistry. Elsevier; 2018. p. 265–99.

 69. Vinholes J, Silva BM, Silva LR. Hydroxycinnamic acids (HCAS): structure, 
biological properties and health effects. Adv Med Biol. 2015;88(8):1–33.

 70. Girelli CR, Del Coco L, Papadia P, De Pascali SA, Fanizzi FP. Harvest year 
effects on Apulian EVOOs evaluated by 1H NMR based metabolomics. 
Peer J. 2016;4:e2740.

 71. Bavec M, Turinek M, Grobelnik-Mlakar S, Slatnar A, Bavec F. Influence 
of industrial and alternative farming systems on contents of sugars, 
organic acids, total phenolic content, and the antioxidant activity of 
red beet (Beta vulgaris L. ssp. vulgaris Rote Kugel). J Agric Food Chem. 
2010;58(22):11825–31.

 72. Wang ZH, Li SX, Malhi S. Effects of fertilization and other agronomic 
measures on nutritional quality of crops. J Sci Food Agric. 2008;88(1):7–23.

 73. Reganold JP, Glover JD, Andrews PK, Hinman HR. Sustainability of three 
apple production systems. Nature. 2001;410(6831):926–30.

 74. Róth E, Berna A, Beullens K, Yarramraju S, Lammertyn J, Schenk A, et al. 
Postharvest quality of integrated and organically produced apple fruit. 
Postharvest Biol Technol. 2007;45(1):11–9.

 75. Jakopic J, Simoncic A, Slatnar A, Stampar F, Veberic R. Analysis of selected 
primary metabolites and phenolic profile of ‘golden delicious’ apples from 
four production systems. Fruits. 2012;67(5):377–86.

 76. Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. Regulation of 
malate metabolism in grape berry and other developing fruits. Phyto-
chemistry. 2009;70(11):1329–44.

 77. Yemm EW. Glutamine in the metabolism of barley plants. New Phytol. 
1949;48(3):315–31.

 78. Roubelakis-Angelakis KA, Kliewer WM. Nitrogen Metabolism in Grapevine. 
In: Horticultural Reviews. 1992. p. 407–52. https:// doi. org/ 10. 1002/ 97804 
70650 523. ch9

 79. Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implica-
tions of arginine metabolism in plants. Front Plant Sci. 2015;6:534.

 80. Stines AP, Grubb J, Gockowiak H, Henschke PA, Pb HJ, van Heeswijck R. 
Proline and arginine accumulation in developing berries of Vitis vinifera 
L. in Australian vineyards: influence of vine cultivar, berry maturity and 
tissue type. Aust J Grape Wine Res. 2000;6(2):150–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy
https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy
https://acnpsearch.unibo.it/journal/498
https://zenodo.org/records/10646256
https://search.worldcat.org/it/title/954747483
https://pugliacon.regione.puglia.it/web/sit-puglia-sit/sistema-informativo-dei-suoli
https://pugliacon.regione.puglia.it/web/sit-puglia-sit/sistema-informativo-dei-suoli
https://filiereagroalimentari.regione.puglia.it/documents/1662405/4764262/DET_23_13_2_2023.pdf/32aa2169-f87f-be84-22f4-2c976cc98697?t=1677663365867
https://filiereagroalimentari.regione.puglia.it/documents/1662405/4764262/DET_23_13_2_2023.pdf/32aa2169-f87f-be84-22f4-2c976cc98697?t=1677663365867
https://filiereagroalimentari.regione.puglia.it/documents/1662405/4764262/DET_23_13_2_2023.pdf/32aa2169-f87f-be84-22f4-2c976cc98697?t=1677663365867
https://doi.org/10.1002/9780470650523.ch9
https://doi.org/10.1002/9780470650523.ch9

	Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Origin of grape berries samples and sampling methods
	Samples preparation for NMR analysis
	NMR experiments and data processing
	Multivariate statistical analysis on NMR spectroscopy data

	Results
	Cv. Italia table grapes composition
	Statistical analysis

	Discussion
	Conclusions
	Acknowledgements
	References


