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Abstract 

Background Dissolved organic matter (DOM) is the most active component of soil organic matter (SOM), playing 
a major role in regulating soil fertility and carbon cycling. However, the effects of different wolfberry (Lycium barba-
rum L.) planting ages on the chemical diversity of DOM and its interaction with soil physicochemical properties have 
not been comprehensively studied. In this context, we collected soil samples (0–10 cm) from wolfberry orchards 
at different planting ages (1, 4, 6, 10, and 13 years) and from a corn field (0 years) in the arid region of Northwest 
Ningxia in China to assess the changes in soil DOM quantity and quality using ultraviolet–visible absorbance, fluores-
cence spectroscopy, and parallel factor analysis.

Results We found that the ages of the wolfberry plantation changed the contents of soil nutrients and SOM. In 
addition, significantly higher DOM concentrations were observed at wolfberry planting ages of 10 and 13 years 
than those in the control group (0 years) by 176.6 and 190.2%, respectively. The specific ultraviolet absorbance 
at 254 nm  (SUVA254) and 254 nm to 365 nm ultraviolet absorbance ratio (E2/E3) values were decreased and increased, 
respectively, after wolfberry planting, indicating low aromatic and molecular weight compounds of soil DOM. The 
biogenic index (BIX) and fluorescence index (FI) of soil DOM ranged from 0.6 to 0.7 and 1.42 to 1.93, respectively, sug-
gesting a combination of allochthonous and autochthonous sources. The short- and long-term wolfberry cultivations 
of 1 and 4 years decreased and increased the humification degrees of soil DOM, respectively. The contribution rate 
of the protein-like (C1) fluorescence intensity decreased, while that of the fulvic acid-like component (C3) increased 
with increasing wolfberry planting age, suggesting a change in the structure of soil DOM from protein-like to fulvic 
acids. In this study, total nitrogen (TN) and exchangeable  Ca2+ were the main factors affecting the quantity and qual-
ity of soil DOM in the wolfberry orchards with different planting ages.

Conclusions This study demonstrated that long-term wolfberry plantation enhances the accumulation of soil DOM 
and more complex compounds, thereby promoting soil organic carbon sequestration under different planting ages 
and land-use types in terrestrial ecosystems.
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Highlights 

• Plantation age of wolfberry influenced the quantity and chemical composition of soil DOM.
• Long-term wolfberry plantation (more than 10 years) significantly enhanced the DOM content.
• The conversion of farmland to wolfberry forest decreased the aromaticity and molecular weight of soil DOM.
• The fulvic acid-like substances become the main fluorescent components of soil DOM over time since wolfberry 

plantations.
• TN and exchangeable  Ca2+ were the main factors affecting the quality of wolfberry soil DOM.

Keywords Aridisols, Wolfberry, Planting age, Dissolved organic matter, Parallel factor analysis, Three-dimensional 
fluorescence spectrum

Graphical Abstract

Background
Dissolved organic matter (DOM) in soil environments 
is composed of soil organic matter (SOM) molecules [1] 
with relatively strong biological activity and high bioa-
vailability. In fact, DOM plays a key role in the global car-
bon cycle and biogeochemical functions of ecosystems 
[2–5], including soil formation, mineral weathering, and 
pollutant transport [6]. Soil DOM is mainly derived from 
plant-based substances, soil humus, root exudates, and 
microbial decomposition of SOM [6–8].

The stability and chemical composition of DOM in 
soils are influenced by several factors, such as biologi-
cal, abiotic, and anthropogenic factors [9]. These factors 
include soil physicochemical properties (e.g., pH, nutri-
ents, and C/N) [1, 10–12], land use patterns, ecosystem 

types and years of planting. Research shows that soil pH 
was the key factor affecting DOM composition in the 
upper soil layers during peatland succession [13]. In addi-
tion, available nutrients and magnesium (Mg) forms in 
soils were positively associated with labile carbon inputs, 
while available calcium (Ca) forms were positively asso-
ciated with stable carbon inputs, demonstrating that the 
availability of soil nutrients and minerals are influential 
factors of the DOM carbon-containing groups [14, 15]. 
Land use patterns, ecosystem types and planting years 
also affect the content, nature and composition of soil 
DOM. Early works in various terrestrial ecosystems have 
found that the concentration of DOM in soil generally 
decreased from forestland > grassland > cropland [16–19]. 
Li et  al. [20] showed that the transition from evergreen 
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broad-leaved forest to long-term chestnut plantation 
increased the aliphatic and aromatic compounds of soil 
DOM. Wang et al. [21] investigated the DOM character-
istics of farmland and forestland in a significant urban 
fringe area in eastern China, and they found that the aro-
maticity of farmland soils was higher than that of forest. 
Li et  al. [19] found that the DOM content of forestland 
increased with time since stand establishment, especially 
after 20  years. Therefore, it is essential to identify soil 
DOM storage and composition parameters, particularly 
under conditions of environmental changes.

Several modern techniques have been used to evalu-
ate the physicochemical characteristics of soil DOM (e.g., 
molecular weight fractions and components), includ-
ing ultraviolet–visible (UV–Vis) and three-dimensional 
(3D) fluorescence spectroscopy [22, 23]. Previous stud-
ies have shown that UV absorbance at 254 nm  (SUVA254) 
can reflect the aromaticity level of DOM, with higher 
absorbance indicating higher aromaticity [24–26]. Peng 
et  al. [25] showed an increase in the  SUVA254 value of 
DOM in an intercropping soil, indicating high aroma-
ticity and hydrophobicity of DOM under this cropping 
practice. In addition, the ultraviolet absorbance ratio of 
254 to 365 nm (E2/E3) can reflect the proportionality of 
the relative estimated DOM molecular weight size to the 
DOM molecular weight [27, 28]. Zhang et al. [27] showed 
significant increases in the E2/E3 values by 21–25% fol-
lowing phosphate fertilizer applications, demonstrat-
ing the role of phosphate fertilization in increasing low 
molecular weight fractions of DOM. Several research-
ers have used fluorescence spectroscopy to comprehen-
sively study DOM characteristics, trace DOM sources, 
and assess DOM quality in various environmental sys-
tems [17, 29]. The humification index (HIX), fluorescence 
index (FI), and biological index (BIX) were used in sev-
eral studies to determine the humification degrees, main 
sources, and autogenic contributions of DOM, respec-
tively [17, 29]. Many studies have assessed DOM char-
acteristics by combining excitation–emission matrices 
(EEMs) with parallel factor analysis (PARAFAC) [13, 24, 
30]. Zhang et al. [14] used the EEMs-PAFAFAC approach 
and found that interplanting white clover in orchards can 
effectively improve the accumulation of macromolecular 
humic-like compounds of DOM, potentially promoting 
SOC storage. Moreover, Filep et al. [31] used the EEMs-
PARAFAC approach to investigate high molecular weight 
compounds of DOM fractions that may be derived from 
lignin-like structures of the particulate organic matter 
fraction.

Wolfberry is a deciduous woody perennial plant 
belonging to the Solanaceae family, known for its liver 
and kidney-nourishing, lung-moistening, and sight-
enhancing functions [32, 33]. In addition, wolfberry is a 

salt-tolerant plant species that can effectively reduce soil 
salinity [34], explaining its widespread cultivation in arid 
and semi-arid areas of Northwest China [35]. Ningxia is 
an autonomous region of the People’s Republic of China 
that has become an important agricultural region in 
China due to its typical geographical and climatic con-
ditions. Indeed, wolfberry cultivation has become an 
important means of increasing economic income and 
reclaiming saline-alkali lands in the Ningxia region. 
Studies have shown that changes in the growth status of 
above-ground plants will correspondingly affect changes 
in underground microbial communities [36]. Therefore, 
different planting years and soil microbial community 
changes have become important factors for the sustain-
able development of wolfberry industry [37]. The results 
showed that the content of soil organic matter in 0–30 cm 
wolfberry fields of Ningxia increased with the increase 
of tree age, which affected the content and properties of 
DOM [38]. However, other studies have shown that long-
term mono-cultivation of wolfberry will affect the input 
quality of litter, and secondary salinization will occur in 
soil, thus inhibiting the root activity of wolfberry, induc-
ing oxidative damage of root cells [39], reducing the 
diversity of soil microbial community [40], affecting the 
accumulation and decomposition of soil organic matter, 
and thus affecting DOM. So far, few studies have investi-
gated the effect of planting years on soil DOM structure 
complexity in wolfberry orchard. Therefore, it is neces-
sary to further study the response degree of soil DOM 
and the change mechanism of chemical composition in 
different planting years of wolfberry orchard soil. Zhang 
et al. [24] found that cultivation and maintenance of clo-
ver in the orchard promoted the accumulation of DOM 
and the humic-like content, increasing the potential for 
soil C sequestration, this gives us a good insight. Based 
on this insight, the present study aims (a) to analyze 
the changes in the DOM compositions under wolfberry 
plantations with different planting years; (b) to explore 
the main factors influencing soil DOM. We hypothesized 
that increases in plantation ages of wolfberry increase the 
contents of soil DOM and its molecular compounds by 
affecting soil physicochemical properties.

Materials and methods
Site description
This study was conducted at the wolfberry planting base 
(37°29′N, 105°38′E, 1348 m a.s.l.) in Zhongning County, 
Zhongwei City, in the NingxiaHui autonomous region 
(NHAR), China (Fig.  1). This region is located on the 
south bank of the Yellow River, belonging to the northern 
temperate continental monsoon climate zone, with aver-
age annual precipitation, average annual temperature, 
and average annual evaporation of 201 mm, 9.5  °C, and 
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1947 mm, respectively. Approximately 60% of the precip-
itation amount occurs in the growing season from June 
to August. The soil classification is Aridisols (IUSS Work-
ing Group WRB, 2007) by widespread irrigated silty loam 
soils. In this study, wolfberry orchards were selected 
from an agricultural cooperative with similar agricultural 
management practices. The wolfberry planting density in 
these orchards was 220 plants·ha−1, with row and plant 
spacing of 1.7 and 1.1  m, respectively. An organic ferti-
lizer was used as a base fertilizer at a rate of 9000 kg/ha. 
This fertilizer was spread and incorporated at the begin-
ning of April each year. In addition, mineral fertilizers 
were also applied twice annually in April and August. 
The total amounts of N,  P2O5, and  K2O applied were 500, 
240, and 50 kg/ha, respectively. In the traditional agricul-
tural area of the Yellow River Oasis in Zhongning County, 
corn is the main crop. After planting corn, the humifica-
tion degree of soil DOM increases and the DOM compo-
nent is mainly humic acid [41]. But in order to promote 
regional economic development, most of the corn fields 
have been converted to wolfberry cultivation. Therefore, 
in order to investigate the changes of DOM content and 
composition after the conversion from farmland to wolf-
berry planting, corn fields with the same soil texture and 
type as wolfberry were selected as the control.

Sample collection and processing
In this study, specimens from five wolfberry plantations 
of different ages (1, 4, 6, 10, and 13 years) were collected 
in July 2022. Surrounding corn fields were used as a blank 
control (0 years). Six plots were selected for each stand 

age (36 plots), and 20 × 20 m subplots were randomly set 
in each plot as replicates. Five ‘S’-shaped points were ran-
domly excavated in each subplot to collect undisturbed 
soil samples from the 0–10 cm soil layer after cutting the 
above-ground herbaceous layer and removing litter. In 
total, 36 soil composite samples of approximately 1000 
g were collected (6 plots × 6 replicates × 1 soil layer). The 
collected soil samples were first air-dried in the labora-
tory and removed from gravel, plants, and other debris, 
then ground and sieved into two parts. The first part was 
analyzed for soil physicochemical properties, while the 
second one was analyzed for soil DOM.

Methods of soil analysis
Determination of soil physical and chemical properties 
and extraction of DOM
Soil total nitrogen (TN) was determined using the 
Kjeldahl method [42]. Available phosphorus (AP) was 
extracted by 0.5 mol/L  NaHCO3 and determined using 
the molybdate colorimetric method [43]. Soil organic 
matter (SOM) was determined using the external heating 
 H2SO4–K2Cr2O7 oxidation method [44]. The exchange-
able  Na+,  K+,  Mg2+,  Ca2+ cations and the total exchange-
able base (TEB) were determined by the method of 
ammonium acetate replacement method. The exchangea-
ble cations in the leachate were determined using atomic 
absorption spectrometer [45]. Soil pH was measured 
with an S20K pH meter (Mettler Toledo, Switzerland) at 
a soil/water ratio of 1:2.5 [46].

Soil DOM was extracted using the soil–water oscilla-
tion method [47]. In fact, 5 g of the air-dried soil samples 

Fig. 1 Geographic location of the study area and image of corn field and wolfberry orchards with different planting ages
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(0.25 mm) were first placed in centrifuge tubes and mixed 
with deionized water at a soil/water ratio of 1:5, then 
agitated for 30 min and centrifuged for 10 min at 3000 
r/min. The supernatant was filtered through a 0.45-um 
filter membrane to obtain the DOM solutions. The solu-
tions were stored in a refrigerator at 4 ℃ for subsequent 
DOC and spectral analyses. Soil DOM concentration was 
represented by DOC and determined using a TOC ana-
lyzer (TOC-V CSH/CPN, Shimadzu, Japan).

Spectrum determination and parameter calculation
The UV–Vis spectra of the DOM samples in a 1-cm 
quartz cuvette were determined using a TU-1900 spec-
trometer (Beijing Purkinje General Instrument Co. Ltd., 
Beijing, China) with a scanning wavelength range of 200–
800 nm. Deionized water was used as a measurement 
blank for the UV–Vis spectral analysis. In this study, the 
UV–Vis spectra relevant parameters included  UV254, E2/
E3, E3/E4, and  SUVA254. Among them,  UV254 reflects the 
DOM concentration and aromaticity [48], while  SUVA254 
refers to the  UV254 to DOC concentration ratio, repre-
senting the DOM aromaticity [49]. Whereas E2/E3 and 
E3/E4 refer to the 254 to 365 nm and 300 to 400 nm ultra-
violet ratios, representing the DOM molecular weight/
size and humification/aromatic degree, respectively [50].

The EEMs of the DOM solution samples were meas-
ured using a F7000 fluorescence spectrometer (Hitachi, 
Japan), with excitation (Ex) and emission (Em) wave-
length ranges at 5 nm steps and 5 nm increment of 
200–500 nm and 250–550 nm, respectively. The scan-
ning speed was fixed at 1200 nm  min−1, while Raman 
scattering-derived artifacts were eliminated by sub-
tracting the reference measurement of the water blank. 
In this study, PARAFAC modeling was performed to 
evaluate the DOM fluorescence components and to 
identify the source of characteristic variables using 
the DOMFluor v.1.7 toolboxes in Matlab 2021. The FI 
was determined by calculating the Em intensity ratio at 
450 to 500 nm at an Ex wavelength of 370 nm to reveal 
the sources of the humic-like substances in soil DOM. 
Indeed, low and high FIs of about 1.4 and 1.9 suggest 
terrestrial and microbial sources, respectively, of the 
humic-like substances [51]. On the other hand, the BIX 
refers to the Em fluorescence intensity ratio at 380 to 
430 nm at an Ex wavelength of 310 nm, reflecting the 
intensity of biological features of DOM. BIX values 
greater and lower than 1 imply high and low production 
of DOM components from biological sources, respec-
tively. The higher the BIX value, the higher the DOM 
degradation degree and the higher the autobiogenic 
product concentration [52, 53]. The HIX can be used 
to reflect the humification degree of soil DOM. It was 
determined in this study by calculating the Em spectra 

peak area at the 435–480 nm wavelength range to the 
sum of the peak areas at the 300–345 nm and 435–480 
nm wavelength ranges at an Ex of 254 nm. HIX greater 
than 6 indicates high humification and terrigenous 
contribution, while HIX lower than 4 indicates that 
the humification degree of soil DOM is dominated by 
autogenetic DOM [54].

Data processing and analysis
Excel 2021 was used to organize the collected data. One-
way analysis of variance (ANOVA) was performed using 
SPSS. 26.0 (IBM, USA) to determine whether the differ-
ences in the soil physicochemical properties and DOM 
spectral characteristics between the different wolfberry 
planting ages were statistically significant at the P < 0.05 
level. The relationships between the DOM components, 
spectral parameters, and soil physicochemical proper-
ties were assessed using principal components analysis 
(PCA) and Pearson correlation analysis. All figures were 
generated using Origin 2021.

Results
Soil physicochemical properties and DOM contents 
at different wolfberry plantation ages
The results showed significant increases in the SOM, TN, 
and AP contents with increasing wolfberry planting ages 
(P < 0.05). Compared with the control group (0 years), 
the AP content was significantly increased by 24.70% at 
a planting age of 10 years, while the TN and SOM con-
tents were increased by 27.74 and 26.52%, respectively, at 
a planting age of 13 years. On the other hand, the total 
exchangeable base ions (TEB) content in the soil exhib-
ited a significant decrease with increasing wolfberry 
planting age (P < 0.05). Indeed, compared with the con-
trol group (0-yr), the TEB,  K+,  Ca2+,  Na+, and  Mg2+ con-
tents decreased by 27.22, 27.69, 8.88, 33.33, and 17.21%, 
respectively, with increasing planting age. However, there 
were no significant differences in the pH and C/N values 
between the different planting ages (P > 0.05) (Table 1).

The results revealed an increase in the DOM content 
with increasing planting age (Fig.  2). In fact, the DOM 
contents at wolfberry planting ages of 10 and 13 years 
were significantly higher than those observed at the 
other planting ages (P < 0.05). Compared with the con-
trol group, the DOM content increased significantly by 
176.58 and 190.20% at planting ages of 10 and 13 years, 
respectively. The above results showed that DOM con-
tent, SOM, TN and AP contents in soil significantly 
increased with the increasing of plantation ages of 
wolfberry (P < 0.05), the results are consistent with our 
hypothesis.
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Spectral properties of soil DOM at the different wolfberry 
planting ages
UV–Vis spectral features
The  UV254,  SUVA254,  E2/E3, and  E3/E4 indices were used 
in this study to assess the chemical characteristics of 
soil DOM released at the different wolfberry plant-
ing ages using UV–visible spectrophotometry (Fig.  3). 
Compared with the results obtained in the corn field 
(0-yr), substantial decreases in the  UV254 and  SUVA254 
values of soil DOM with increasing planting age were 
observed (Fig.  3A, B). In fact, the  UV254 and  SUVA254 
of soil DOM initially decreased with increasing plant-
ing age. The  UV254 and  SUVA254 values at the wolfberry 
planting age of 6 years were considerably higher than 

those observed at the remaining planting ages (Fig. 3A, 
B), indicating comparatively higher DOM aromatic-
ity at this age. The  E2/E3 and  E3/E4 showed gradual 
increases with increasing wolfberry planting age, indi-
cating lower aromatics and molecular weight of soil 
DOM (Fig. 3C, D). The results showed that the aromatic 
property of farmland was greater than that of wolfberry 
forest land, but with the increase of planting years, the 
aromatic property of soil DOM increased first and then 
decreased, and the molecular weight decreased.

3D‑EEM spectral features
According to the classification of the five regions estab-
lished by [47], three fluorescence peaks were observed 
in the soil DOM three-dimensional fluorescence spectra 
at the different wolfberry planting ages (Fig. 4). Fluores-
cence peaks 1, 2, and 3 belonged to soluble microbial 
metabolites, humic acids, and tryptophanoid, respec-
tively. These peaks were observed at wolfberry planting 
ages of 1, 6, and 13 years. Compared with the results 
observed in the corn control group (0 years), the fluores-
cence intensity of Peak 1 showed a decreasing-increasing 
trend with increasing wolfberry planting age. The low-
est and highest fluorescence intensities at the wolfberry 
planting ages of 4 years were attributed to Peak 1 and 
Peak 2, respectively. This finding indicates a decrease and 
increase in the contents of soluble microbial metabolites 
and humic acids, respectively, suggesting transformations 
of these two compounds. Peak 2 showed a blue shift with 
increasing wolfberry planting age. Whereas Peak 3 only 
appeared at wolfberry planting ages of 1, 6, and 13 years, 
showing gradual temporal increases, indicating a gradual 
transformation of humic acids into tryptophan and, con-
sequently, decreasing the aromatic and molecular weight 
of SOM.

Table 1 Effects of the wolfberry planting age on the soil physicochemical properties

Different lower-case letters indicate significant differences between the wolfberry planting age (P < 0.05)

Parameters Planting age (y)

0 1 4 6 10 13

SOM (g·kg−1) 23.54 ± 1.72 bc 21.45 ± 4.01 bc 21.15 ± 1.15 c 21.54 ± 1.94 bc 25.48 ± 1.51 b 30.07 ± 0.93 a

pH 8.11 ± 0.03 a 8.16 ± 0.03 a 8.12 ± 0.06 a 8.18 ± 0.01 a 8.16 ± 0.03 a 8.22 ± 0.03 a

AP (mg·kg−1) 118.6 ± 22.41 bc 100.9 ± 8.32 bc 98.23 ± 4.70 c 121.3 ± 2.40 bc 147.9 ± 12.70 a 123.57 ± 12.43b

TN (g·kg−1) 1.32 ± 0.13 b 1.17 ± 0.23 b 1.19 ± 0.09 b 1.23 ± 0.15 b 1.43 ± 0.06 b 1.67 ± 0.03 a

C/N 10.34 ± 0.33 a 10.62 ± 0.20 a 10.32 ± 0.19 a 10.21 ± 0.36 a 10.35 ± 0.22 a 10.46 ± 0.15 a

TEB (coml·m−2) 27.22 ± 0.47 a 25.91 ± 0.47 b 25.7 ± 0.85 bc 25.27 ± 0.12 bc 25.26 ± 0.17 bc 24.99 ± 0.37 c

K+ (coml·m−2) 0.65 ± 0.05 a 0.57 ± 0.08 ab 0.53 ± 0.07 b 0.5 ± 0.04 b 0.51 ± 0.05 b 0.47 ± 0.05 b

Ca2+ (coml·m−2) 23.08 ± 0.41 a 21.73 ± 0.24 b 21.58 ± 0.09 b 21.43 ± 0.63 b 21.14 ± 0.24 b 21.03 ± 0.33 b

Na+ (coml·m−2) 1.11 ± 0.20 a 0.94 ± 0.08 ab 0.89 ± 0.03 ab 0.84 ± 0.22 ab 0.83 ± 0.15 b 0.74 ± 0.03 b

Mg2+ (coml·m−2) 2.86 ± 0.03 a 2.84 ± 0.07 a 2.68 ± 0.01 b 2.49 ± 0.05 c 2.45 ± 0.06 c 2.44 ± 0.06 c

b
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calculated from the DOM data of the five wolfberry plantations 
with different ages
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The FI is negatively related to aromatic contents and is 
typically employed to identify the sources of DOM [55]. 
The FI of soil DOM at the different wolfberry planting 
ages ranged from 1.42 to 1.93 (Fig.  5A), indicating that 
both microorganisms and plant residues were the main 
sources of the soil DOM pool. The FI value of soil DOM 
at the wolfberry planting age of 1 year was 1.42, indicat-
ing that plant root, stem, and leaf residues were the main 
sources of soil DOM at this planting age (Fig. 5A). How-
ever, the average FI value at the wolfberry planting age of 
6 years was greater than 1.8 (Fig. 5A), which is closer to 
the endogenous characteristic value of 1.9. The source of 
soil DOM at this planting age was relatively dominated 
by microbial metabolism and degradation products. The 
results showed that soil DOM changed from terrestrial 
source to biological source with increasing wolfberry 
planting age, decreasing the contents of aromatic com-
pounds. The BIX value of soil DOM ranged from 0.6 
to 0.7 (Fig.  5B), indicating that mixed terrigenous and 
microbial substances were the main sources of soil DOM. 
The HIX is an indicator of the condensation and conjuga-
tion degrees of aromatic structures and unsaturated ali-
phatic chains, respectively, in soil DOM [55]. Compared 
with the control group (0 years), significant decreases in 
the HIX value of soil DOM were observed after plant-
ing wolfberry. The lowest HIX value was observed at the 
wolfberry planting age of 1 year (Fig. 5C). Therefore, the 
conversion of corn fields to wolfberry orchards decreased 
the humification degree of soil DOM. On the other hand, 
the HIX value showed a gradual increase with increasing 
wolfberry planting age (Fig. 5B), indicating an increase in 
the humification degree of soil DOM and, consequently, 
increasing the contents of aromatic compounds (e.g., 
humus).

The fluorescence EEM spectra of three DOM compo-
nents are shown in Fig. 6. C1 (Ex/Em = 235, 280/335 nm) 
refers to a protein-like DOM component rich in car-
boxyl functional groups and aromatic cyclic amino acids, 
mainly produced by microbial and heterotrophic organ-
isms. C2 (Ex/Em = 225/340, 440nm) refers to a mixture 
of protein and fulvic acid-like components, while C3 (Ex 
/ Em = 265/435) indicates fulvic acid-like components. 
These results indicate that soil DOM was relatively stable, 
with high aromaticity degrees.

The fluorescence intensities of the EEM-PARAFAC 
components are shown in Fig.  7. According to the 
obtained results, C1 and C3 exhibited the highest con-
tributions to the fluorescence intensities. In addition, the 
contribution rate of fluorescence intensity of C1 was the 
largest at 0-yr, and that of C3 was the largest at 13 years. 
At the same time, after changing to long-term cultiva-
tion mode of wolfberry, C1 decreased and C3 increased 
with the increase of planting years. On the other hand, 

the contribution of C2 (mixture of protein-like and ful-
vic acid-like) to the fluorescence intensity showed an 
increasing–decreasing trend with increasing wolfberry 
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planting age. The above results showed that after the 
conversion of farmland to wolfberry cultivation, with 
the increase of planting years, the main components of 
soil DOM were microbial metabolites and tryptophan 
(Fig.  4), the source of DOM moved from terrestrial to 
biological source (Fig.  5A), the degree of humification 
first decreased and then increased (Fig. 5C), and the fluo-
rescence components of DOM gradually changed from 

protein-like substances to fulvic acid-like substances 
(Fig. 7), this is consistent with our expected assumptions.

Relationships between the DOM compositions, spectral 
indices, and soil properties
In this study, Pearson correlation analysis was performed 
to evaluate the relationships between the soil physico-
chemical properties and soil DOM (Fig.  8). The results 
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showed significant positive correlations of soil DOM with 
SOM, TN, and E3/E4 (P < 0.05), with correlation coeffi-
cients of 0.84, 0.83, and 0.87, respectively. The  UV254 and 
 SUVA254 values were significantly and positively corre-
lated with the soil  Ca2+ contents (P < 0.05), with corre-
lation coefficients of 0.83 and 0.84, respectively. On the 
other hand, E3/E4 exhibited significant negative correla-
tions with  Ca2+,  Mg2+,  Na+, and TEB (P < 0.05); whereas, 
the FI showed a significant negative correlation coeffi-
cient with soil  Mg2+ of -0.93 (P < 0.05).

In this study, PCA was performed to evaluate the rela-
tionships between the soil physicochemical properties 
and DOM optical properties (Fig.  9). Principal compo-
nent 1 (PC1) and principal component 2 (PC2) explained 
54.7% of the total variance of the DOM fluorescence 
properties. PC1 was positively correlated with  K+,  Ca2+, 
 Na+,  Mg2+, and TEB, while PC2 exhibited strong posi-
tive and negative correlations with C/N and C2, respec-
tively. The DOM components were correlated with the 
soil physicochemical parameters to varying degrees 
(Fig. 8). C1 (protein-like component) was positively cor-
related with the soil C/N,  K+,  Ca2+,  Na+,  Mg2+, and TEB 
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contents (P < 0.05), while C3 (fulvic acid-like compo-
nent) was positively correlated with the soil pH, TN, and 
SOM (P < 0.05). The soil pH values were negatively cor-
related with the HIX and  UV254 values (P < 0.05), as well 
as positively correlated with the FI (P < 0.05). The results 
of PCA showed that the first principal component and 
the second principal component explained 54.7% of the 
fluorescence properties of DOM (Fig.  9), and the main 
factors affecting the quantity and quality of DOM in for-
est soil with different planting years were SOM, TN and 
 Ca2+ (Fig. 8). The correlation between soil properties and 
DOM is exactly consistent with our hypothesis.

Discussion
Effects of the different wolfberry planting ages on the soil 
physicochemical properties and DOM contents
After the corn field is converted to wolfberry cultivation, 
the results showed increases in the SOM and soil TN 
contents with increasing planting age. These observa-
tions are consistent with those reported by Li et  al., Xu 
et  al., Zhao et  al. [56–58]. The SOM and soil TN con-
tents at the planting age of 1, 4 and 6 years were lower 

than blank control, but at 13  years were significantly 
higher than those observed at the other planting ages 
(Table 1). On the one hand, this finding might be due to 
the farmland conversion into wolfberry orchards, result-
ing in less human interference (e.g., tillage), coupled with 
the increase of litter, residual roots and root secretions 
caused by wolfberry growth, resulted in the accumulation 
of SOM, so the SOM content in wolfberry orchards was 
higher than that in farmland ecosystems [59, 60]. This 
observation is consistent with the reported by Lu et  al. 
[61]. On the other hand, long-term cultivation of wolf-
berry in semi-arid and arid regions can increase organic 
residue inputs, such as fine root biomass, litter biomass, 
above-ground biomass, and subsurface biomass, due to 
good soil moisture conditions, contributing greatly to 
the soil C pool, which is consistent with the results of Shi 
et al. [62]. Total N (TN) is an essential element for biolog-
ical growth, improving plant productivity, and increasing 
SOM content [63]. In this study, long-term cultivation 
of wolfberry and the continuous application of litters 
and fertilizers/organic fertilizers continuous application 
of fertilizer/organic fertilizer in the wolfberry orchards 
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affected the quantity and quality of litter and root bio-
mass [64], thus promoting the accumulation of soil TN 
content and affecting the SOM contents. These are con-
sistent with the results of Zhang et al. [65] and Xue et al. 
[66] studies on the effects of different tea planting years 
on the physical and chemical properties of soil in tea gar-
dens. Exchangeable base ions in soils  (Ca2+,  Mg2+,  K+, 
and  Na+) are important indicators of soil quality, playing 
a crucial role in maintaining soil nutrients and buffering 
capacity [67]. The results of this study showed a decrease 
in the exchangeable base ion  (Ca2+,  Mg2+,  K+, and 
 Na+) content with increasing wolfberry planting years 
(Table 1). First, this finding might be due to the require-
ment of high soil  K+,  Ca2+,  Na+, and  Mg2+ amounts 
for the wolfberry growth process [68]. Second, soil  K+, 
 Ca2+,  Na+, and  Mg2+ are the main elements utilized by 
wolfberry fruits [69]. In addition, the decrease in the 
exchangeable base ion contents might also be due to the 
effects of soil microorganisms or the environment, pro-
viding optimal conditions for the occurrence of leaching 
processes of these cations and, consequently, changing 
the soil nutrients of wolfberry orchard. This suggestion is 
consistent with the results reported by Wang et al. [69]. 
At the same time, other studies have found that under 
continuous planting and different land use types [70], soil 
exchangeable alkali ion content decreases, which may be 
due to the influence of leaching and soil properties [71], 
these are consistent with the results of this study.

The results of the chronosequence approach used 
in this study revealed increases in the DOM content in 
the 0–10  cm soil layer with increasing wolfberry plant-
ing years. Compared with the control group, there were 
significant increases in the DOM contents by 176.58 
and 190.20% at the wolfberry planting ages of 10 and 
13  years, respectively (Fig.  2), but the DOM content 
at the wolfberry planting ages of 4 years, respectively, 
no difference with the control group. This is consistent 
with the results of Li et al. [72, 73]. This finding suggests 
that long-term wolfberry planting led to a continu-
ous increase in the DOM content over the entire study 
period. It might be due to the fact that long-term plant-
ing of wolfberry promoted increases in the plant, litter, 
and root biomass, which can undergo continuous micro-
bial decomposition and, consequently, gradually increase 
soil DOM concentrations [19, 74]. At the same time, as 
perennial plants such as wolfberry remain on the soil 
surface, anaerobic microorganisms may increase and 
affect soil humidity and temperature, thus affecting the 
decomposition of plant residues and promoting DOM 
accumulation [75, 76]. The use of organic and chemical 
fertilizers is beneficial for the growth of wolfberry trees, 
providing more mineral nutrients and organic residues to 
the soils and potentially increasing the SOM and DOM 

inputs. In our study, the DOM concentration was signifi-
cantly and positively correlated with the SOM and TN 
contents, with correlation coefficients of 0.84 and 0.83, 
respectively, (Fig.  8, P < 0.05), indicated that high SOC 
and TN encourage plant development, and increasing lit-
ter and photosynthetic C input from plants boosts micro-
bial growth and metabolism [77, 78], consequently affects 
the DOM concentration, this observation is consistent 
with the reported by Kalbitz et  al. [6], further confirm-
ing that SOM and TN are important factors in soil DOM 
regulation. These observations are consistent with those 
reported by Zhang et  al. [24], demonstrating the major 
importance of microbial biomass N in soil DOM vari-
ations in apple orchards on the Loess Plateau in China. 
The microbial community structure was changed with 
increasing wolfberry planting ages from bacteria to fungi 
[79–81], mainly increasing the community density and 
colonization ability of soil fungi [82]. Some previous 
studies have also highlighted the contributions of high 
above and below-ground biomass inputs to the increase 
in the fungal spore and mycelium densities through root 
secretions, promoting DOM accumulation in long-term 
wolfberry cultivations [83, 84]. Additionally, litter cover-
age in wolfberry orchards and microclimate changes can 
reduce SOC and nutrient losses caused by solar radiation 
[85], promoting DOM accumulation. This suggestion is 
consistent with the results of Wu et al. [86].

Effects of the different wolfberry planting ages on soil 
DOM quality
The low  SUVA254 and high  E2/E3 indicated low aro-
matic compound contents and DOM molecular weight, 
respectively. The  SUVA254 values at the different wolf-
berry planting ages were lower than those observed in 
the control group. This observation is consistent with the 
reported by Wang et al. [21]. On the other hand, the  E2/
E3 values at the wolfberry planting ages of 1 and 4 years 
were higher than those in the control group (Fig.  3), 
indicating low soil DOM aromatic compounds and 
molecular weights under short-term wolfberry cultiva-
tions. This was probably due to the deep root systems of 
wolfberry trees, resulting in the gradual accumulation of 
the hydrophilic components with high aromaticity and 
molecular weight in deeper soil layers [87, 88]. However, 
the 0–10 cm soil layer in the farmland contained mainly 
maize roots. These materials provided sufficient energy 
for microbial growth, thereby enhancing the decom-
position of these materials and the formation of humic 
substances [89]. This result was confirmed by the iden-
tified soil DOM components using the EEM-PARAFAC 
analysis. Compared with the control group, significant 
increase and decrease in the contributions of C1 and 
C3, respectively, to the DOM fluorescence intensity 
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were observed after short-term wolfberry cultivation 
(1 and 4 years) (Fig. 7). The decrease in the C3 compo-
nents demonstrated that the conversion of farmland to 
wolfberry orchards decreases the contents of the fulvic 
acid-like component in soils. Previous studies have also 
found higher proportions of DOM-related humic-like 
substances in cropland soils than those in forest soils [90, 
91]. In addition, Zhang et  al. [92] detected more fulvic- 
and humic-like compounds following the conversion of 
forest land to farmland. This might be due to the peren-
nial characteristics of wolfberry, leading to fewer plant 
residues and fast SOM decomposition under short-term 
wolfberry cultivation [86, 93]. In this study, we found sig-
nificantly lower HIX values of soil DOM under wolfberry 
cultivation than those in the control group, especially in 
the first year of wolfberry plantation (Fig.  5C), indicat-
ing that short-term wolfberry plantation can decrease 
the humification degree of soil DOM. Soil DOM in the 
cropland and wolfberry orchards had relatively high and 
low humification degrees, respectively. Previous studies 
have demonstrated the capacity of maize and soybeans 
to enhance the accumulation of SOM and increase the 
humification degree [90, 94]. In this study, the FI and BIX 
of DOM in short-term planting wolfberry soils (1 and 4 
years) ranged from 1.4 to 1.75 and 0.6 to 0.7, respectively 
(Fig.  5A and C), and there was no significant difference 
between farmland and short-term wolfberry orchards. It 
shows that plant source contributes more to DOM [95].

At the wolfberry planting ages of 6 years and 13 years, 
the C1 component contents decreased through bio-
degradation and mineralization, making C3 the main 
fluorescence component of soil DOM (Fig.  7), but the 
results were opposite at 10 years. This result was con-
firmed by the identified soil DOM components using 
the EEM-PARAFAC analysis. The results indicated that 
the humus degree increased during the long-term cul-
tivation of wolfberry, which may be due to the fact that 
the number of litter and humus on the ground of wolf-
berry greatly increased during the planting years, thus 
promoting the production of lignin-derived aromat-
ics, humus and condensation substances in DOM [96, 
97]. This observation is consistent with the reported by 
Zhang et  al. [98]. At the same time, Zhang et  al. [24] 
reported increases and decreases in the relative abun-
dances of humic-like and protein-like compounds, 
respectively, with increasing apple planting ages in the 
Loess Plateau in China, which also is consistent with 
our results. Long-term wolfberry planting can change 
the quality of litter inputs into soils [86, 99], which in 
turn promotes plant residue inputs and root exudates, 
providing additional carbon and energy sources for 
microbial activity and turnover. It has been proven 
that microorganisms in soil easily decompose proteins 

used by microorganisms into monomers, which form 
humus in soil through polymerization [100]. Overall, 
after 6 years of wolfberries planting, FI values ranged 
from 1.76 to 1.93 (Fig. 5A), and DOM weights of plant 
residues on soil surface continued to decline, indicat-
ing that the source of DOM gradually shifted from 
plant stubble to related microorganisms and their 
metabolites [101]. This finding was in line with that 
reported by Li et al. [13], the results indicated that the 
litters of wolfberry orchard had lower lignin content 
and were more bioavailable to microorganisms [102], 
this finding was in line with that reported by Zhang 
et  al. [98]. The HIX is closely related to soil microbial 
activities, reflecting humus contents or SOM humifi-
cation degrees. The HIX values were less than 4 in our 
study, indicating that the lower degree of humification 
is dominated by autogenetic DOM [103]. On the other 
hand, the long-term wolfberry cultivation increased 
the HIX values, indicating the continuous supply of C 
sources (leaf litter and root exudates) with organic sub-
stances in the soil, effectively enhancing soil microbial 
activities and promoting macromolecular substance 
decomposition, thus forming more stable C compo-
nents in soil DOM. The temporal increase in the HIX 
also suggested that DOM was depleted of labile-C com-
ponents [12]. In addition, the obtained results in this 
study showed significant positive correlations between 
HIX and  UV254 in DOM (r = 0.87, P < 0.05) (Fig. 8), sug-
gesting the major role of DOM-derived sources served 
to soil microbial growth, enhancing the decomposition 
and humification of SOM [104, 105].

Wolfberry planting ages not only directly affect the 
chemical composition of soil DOM but also regulate it 
by mediating soil physiochemical properties. This study 
showed that there was a significant positive correlation 
between exchangeable  Ca2+ content and DOM content, 
this finding was in line with that reported by Xiao et al. 
[106]. In addition, we found a significant positive cor-
relation between the exchangeable  Ca2+ contents and 
 SUVA254 values, suggesting an obvious Ca stabilizing 
effect on aromatic-C compounds. This finding explains 
the selective  Ca2+ binding with specific organic compo-
nents, promoting organo-Ca complex formation in arable 
soils [107, 108]. The variation in the DOM chemical com-
position was most strongly attributed to the basic soil 
properties, as well as to the Ca and Mg forms, demon-
strating the major influences of these factors on soil phys-
iochemical properties. Zhang et al. [14] found that stable 
C-containing groups were positively related to available 
Ca and Mg contents. This finding is, indeed, in line with 
that revealed in our study, showing that exchangeable 
cations are responsible for the microbial utilization and 
transformation of stable groups [109].
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Conclusions
Our study demonstrated that the chronosequence of 
wolfberry plantations in the arid areas of Northwest 
China changed the quantity and chemical composition 
of soil DOM. Long-term planting of wolfberry increased 
the contents of SOM and DOM in soil, and decreased the 
content of aromatic compounds and molecular weight 
of DOM. The fluorescence components of DOM were 
mainly fulvic acids and the exchangeable  Ca2+ contents 
enhanced the enrichment of stable components in soil 
DOM. In summary, this study has better understood 
the changes of soil DOM and its influencing factors 
under different land use types or planting years of wolf-
berry. Long-term planting of wolfberry can promote soil 
nutrient accumulation, increase the degree of humifica-
tion and stability of DOM, and thus increase soil carbon 
sequestration potential. However, future studies on the 
relationship between DOM contents, DOM components, 
and microbial activities under wolfberry planting are 
required.
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