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Abstract 

In view of the fact that mulberry branch has not been effectively utilized and polysaccharide is one of the main 
active components in mulberry branch, this study aims to reveal the structure and immunomodulatory activity of its 
polysaccharide. A type of neutral polysaccharides, named mulberry branch polysaccharide‑2 (MBP‑2), was separated 
from mulberry branch using DEAE‑52 and Sephadex G‑100. As analyzed, they were mainly composed of glucose 
with a molecular weight of approximately 21.7 kDa. Methylation analysis demonstrated that MBP‑2 primary contained 
a → 4)‑α‑d‑Glcp-(1 → , α‑d‑Glcp‑(1 → and → 4, 6)‑α‑d‑Glcp‑(1 → structure, which was validated by nuclear magnetic 
resonance (NMR). In addition, cellular experiments indicated that MBP‑2 significantly enhanced the production of NO, 
TNF‑α and IL‑6 in RAW264.7 cells, unraveling the potential immunoregulatory activity of MBP‑2. Further analysis 
showed that MBP‑2 exerted their immunoregulatory activity mainly via binding with TLR4 to activate the downstream 
TRIF‑dependent signaling pathways.

Highlights 

1. A homopolysaccharide (MBP‑2) was purified from mulberry branch;
2. This study first reported the glucan polysaccharides from mulberry branch;
3. MBP‑2 had potent immunoregulatory activity;
4. MBP‑2 exerted immunoregulatory activity via the TRIF‑dependent signaling pathway.
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branch polysaccharides, and mulberry root bark polysac-
charides have a variety of biological activities, but most of 
the current evidence focuses on the antidiabetic activity 
of mulberry leaf polysaccharides and mulberry fruit poly-
saccharides [10, 11]. Mulberry branch polysaccharides 
(MBPs), as one of the main active ingredients in mul-
berry by-products, have preferable anti-tumor [12], anti-
oxidant [13], and hypoglycemic [14] activities. However, 
its immunoregulatory activity is rarely reported.

Immunity is the capability of host to resist harmful 
microorganisms (viruses, bacteria, etc.). [15]. Human 
immunity is classically divided into innate and adaptive 
components, where macrophages play vital roles [16]. In 
response to a certain stimulus or damage, macrophages 
release a series of pro-inflammatory factors, such as 
nitric oxide (NO), tumor necrosis factor (TNF) -α, and 
interleukin (IL) -6, thereby regulating the immunity of 
the organism [17]. Native polysaccharides are commonly 
used as immunoregulators given their activity to activate 
macrophages and low toxicity [18].

Introduction
Mulberry (Morus spp.) is a kind of cash crop widely 
planted in Asia [1]. Mulberry branch (Ramulus mori), 
a by-product of mulberry tree, has not been effectively 
utilized at present [2]. Modern studies have reported 
that mulberry branch is rich in multiple chemical com-
ponents, including polysaccharides [3], flavone [4], and 
alkaloids [1]. Jialing 20 is an artificial triploid mulberry 
variety widely planted in Southwest China. In previous 
studies, we analyzed the small molecular components 
of its branch extract [5] and identified its active compo-
nents that inhibit α-glucosidase [6] and butyrylcholinest-
erase [7]. However, there are few reports on the structure 
and activity of its polysaccharide.

Polysaccharides are a class of complex carbohydrates 
with a large molecular weight [8]. They are an assembly of 
monosaccharides linked together by glycosidic linkages 
and are widely found in plants, animals and microorgan-
isms [9]. It has been reported that mulberry leaf poly-
saccharides, mulberry fruit polysaccharides, mulberry 
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The present study focused on Jialing 20 mulberry 
branch polysaccharide (MBP) to perform structural char-
acterization and assessment for its potential immunoreg-
ulatory activity, so as to unravel more biological activity 
of MBP and help better utilize this biological resource.

Materials and methods
Materials and reagents
DEAE-52 and Sephadex G-100 were purchased from 
Yuanye Bio-Technology Co., Ltd. (Shanghai, China). 
Lipopolysaccharides (LPS), TAK-242 and C29 were 
purchased from MedChemExpress Co., Ltd. (Mon-
mouth Junction, NJ, USA). Trifluoroacetic acid (TFA) 
was purchased from ANPEL Laboratory Technolo-
gies Lnc. (Shanghai, China). Monosaccharide standards 
(Arabinose, fructose, fucose, galactose, galacturonic 
acid, glucose, glucuronic acid, guluronic acid, mannose, 
mannuronic acid, rhamnose, ribose, and xylose) were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Dulbecco’s modified eagle’s medium (DMEM) was pur-
chased from Solarbio (Beijing, China). Fetal bovine 
serum (FBS) and Trypsin were purchased from Gibco 
(Grand Island, NY, USA). Cell Counting Kit-8 (CCK-8) 
was purchased from Nuoyang Biotechnology Co., Ltd. 
(Hangzhou, China). Griess reagent was purchased from 
Beyotime Biotechnology Co., Ltd. (Shanghai, China). 
TRIzol was purchased from Invitrogen (Carlsbad, CA, 
USA). PrimeScript™ RT Master Mix and SYBR Green™ 
Premix Ex Taq™ II were purchased from Takara (Kyoto, 
Japan). The Mouse TNF-α ELISA kit and IL-6 ELISA kit 
were purchased from Multi Sciences Co., Ltd. (Hang-
zhou, China).

The RAW 264.7 cells were obtained from the Type 
Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China).

Preparation of MBPs
Mulberry branch (Jialing20) was harvested and pre-
processed according to the previous literature [5]. Dried 
branch material was crushed, decolorized with metha-
nol, baked to remove residual methanol at 50  ℃, and 
dissolved in deionized water (m:v = 1:10, 2  h each for 3 
times) at 90 ℃. The supernatant was collected and con-
centrated under reduced pressure using the rotary evapo-
rator (Rotavapor R-100, Büchi, Flawil, Switzerland) at 
60 ℃. Anhydrous alcohol was added until 90% concentra-
tion, followed by precipitation overnight to obtain crude 
polysaccharides. Protein impurities in the crude poly-
saccharides were removed using the Sevag method [19]. 
Briefly, the crude sample, chloroform, and n-butanol 
were fully mixed at a volume ratio of 25:4:1 and centri-
fuged at 8000  r/min for 10  min. After repeating several 
times with the supernatant until there was no noticeable 

precipitation between two phases, the sample was con-
centrated under reduced pressure using the rotary evapo-
rator. Experimental MBPs were obtained by freeze drying 
to constant weight with the freeze dryer (Lab-1C-50E, 
Biocool, Beijing, China).

The MBPs (3 g) were dissolved in deionized water to a 
final concentration of 30  mg/mL and then loaded onto 
a cellulose DEAE-52 column (55 × 150  mm). Elution 
was performed with graded NaCl (0, 0.1, 0.2, 0.5, 1, and 
2 mol/L), and the eluate per 10 mL was collected by tubes 
and detected by the phenol–sulfuric acid method [20]. 
Corresponding elution curve was generated.

The main DEAE-elution fraction was processed for 
dialysis, followed by further purification with the Sepha-
dex G-100 column (16 × 800 mm). Elution was performed 
using deionized water, and the eluate per 10  mL was 
collected by tubes and detected by the phenol–sulfuric 
acid method. The equivalent fractions were pooled and 
marked as MBP-2.

Molecular weight determination
The average molecular weight of MBP-2 was analyzed 
by HPGPC [21] on an Waters 1515 instrument (Waters, 
USA) equipped with an Waters 2414 Refractive Index 
using a Waters Ultrahydrogel 500 column (7.8 × 300 mm, 
10 μm). The mobile phase was 0.1 mol/L sodium nitrate 
 (NaNO3) -deionized water solution. Isocratic elution 
was obtained at 1  mL/min flow rate. Calibration curve 
was drawn by using various standard polyethylene glycol 
(PEG), and the following equation was finally estimated: 
Log(Mw) = − 0.5603T + 12.973, R2 = 0.9993.

Monosaccharide composition analysis
Monosaccharide compositions were obtained by the 
high-performance anion-exchange chromatography 
(HPAEC) [22]. MBP-2 (5  mg) were dissolved in 2  mL 
3 mol/L trifluoroacetic acid (TFA), hydrolyzed at 120 ℃ 
for 2  h, blow-dried with nitrogen flow, washed with 
methanol, and dried. Methanol washing was performed 
three times to remove TFA, and then the sample was 
dissolved in deionized water. The content (%) of each 
monosaccharide was determined using monosaccharide 
standard curves (13 monosaccharide standards).

The chromatography system was ICS-5000 (Ther-
mofisher Scientific, USA) equipped with Dionex™ Car-
boPac™ PA20 chromatographic column (3 × 150  mm, 
10  μm) (column temperature, 30  ℃; injection volume, 
5  μL; flow rate, 0.5  mL/min). Gradient elution was per-
formed using the mobile phase A (0.1 mol/L NaOH) and 
B (0.1  mol/L NaOH, 0.2  mol/L NaAc) and monitored 
with an electrochemical detector. The elution procedures 
were as below: 0–30 min, 5–20% B; 30–30.1 min, 20–40% 
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B; 30.1–45  min, 40% B; 45–45.1  min, 40–2.5% B; 45.1–
60 min, 5% B.

Fourier‑transform infrared (FT‑IR) spectroscopy
Samples were analyzed with the Nicolet iZ-10 FT-IR 
spectrometer (Thermofisher Scientific, USA) in the spec-
tral range (4000–500)   cm−1 using pressed KBr tablets 
[23].

Glycosidic linkage analysis
Methylation reaction
MBP-2 (1.1  mg) were dissolved in 500  μL anhydrous 
dimethyl sulfoxide (DMSO) and then successively incu-
bated with 1  mg NaOH (30  min) and 50  μL iodometh-
ane (1 h). Subsequently, 1 mL deionized water and 2 mL 
 CH2Cl2 were added to the solution and vortexed to mix. 
Centrifugation was performed to discard the upper aque-
ous phase. The procedure was repeated three times. 
The lower fraction  (CH2Cl2) was evaporated to dryness, 
added with 100 μL 2 mol/L TFA at 120 ℃ for 90 min, and 
evaporated to dryness again. Then, 50 μL 2 mol/L aque-
ous ammonia and 50 μL 1 mol/L  NaBD4 were added to 
mix and placed at room temperature for 2.5 h. The reac-
tion was terminated by addition of 20  μL glacial acetic 
acid, and the solution was then blow-dried with nitrogen 
flow.  CH3OH (250 μL) washing was performed twice, fol-
lowed by blow-dryness with nitrogen flow again. 250 μL 
acetic anhydride was added, vortexed to mix, and reacted 
at 100 ℃ for 2.5 h. Deionized water (1 mL, 10 min) and 
 CH2Cl2 (500  μL) were successively added and vortexed 
to mix. The lower  CH2Cl2 phase was collected and pro-
cessed for gas chromatography-mass spectrometry 
(GC–MS).

GC–MS
GC was performed using the Agilent 7890A GC system 
(Agilent Technologies, USA) with BPX70 chromato-
graphic column (0.25  mm × 30  m × 0.25  μm, SGE, Aus-
tralia), the parameters as follows: injection volume, 1 μL; 
splitting ratio, 10:1; high purity helium carrier gas; flow 
rate, 1  mL/min. The injection temperature was 260 ℃. 
The column temperature started from 140 ℃ (2 min) to 
230 ℃ (3 min) at a rate of 3 ℃/min.

MS was performed using the Agilent 5977B Quadru-
pole MS-Detection System (Agilent Technologies, USA) 
with the following parameters: electron bombardment 
ion source (EI); injection temperature, 230 ℃; quadru-
pole temperature, 150 ℃; mass scan range (m/z): 30–600.

Nuclear magnetic resonance (NMR) analysis
Purified MBP-2 (30  mg) were dissolved in 0.5  mL deu-
terated water  (D2O) and centrifuged. The supernatant 

was collected and lyophilized. After repeating this cycle 
three times, the lyophilized sample was dissolved in 
0.5  mL  D2O and then loaded on the Avance 500  MHz 
NMR spectrometer (Bruker, Germany) to determine the 
one- dimensional (1H-NMR, 13C-NMR) and two-dimen-
sional (1H-1H COSY, NOESY, HSQC, HMBC) NMR 
spectra[24].

Cell viability analysis
Cell culture
RAW 264.7 cells were cultured in complete Dulbecco’s 
modified Eagle medium (DMEM) (supplemented with 
10% FBS and 1% penicillin–streptomycin) in an incuba-
tor with a temperature of 37 ℃ and 5%  CO2.

CCK‑8 assay
RAW 264.7 cells were inoculated into a 96-well plate at 
5 ×  104 cells/well and cultured overnight in a 37 ℃ incu-
bator with 5%  CO2. Subsequently, MBP-2 at different 
concentrations (1, 10, 50, 100, 200, 400, and 800 μg/mL) 
were added. 1 μg/mL LPS was added as positive control, 
while MBP-free medium of equal volume was added as 
blank control. After 24  h of incubation, CCK-8 method 
was performed with the optical density at a certain wave-
length calculated. Cell survival rate was correspondingly 
obtained.

NO assay
RAW 264.7 cells were cultured in mediums contain-
ing MBP-2 at different concentrations (50, 100, 200, and 
400  μg/mL). The supernatant was collected after 24  h, 
and NO level was determined at 540 nm using an assay 
kit (Beyotime Biotechnology, Shanghai, China). 1  μg/
mL LPS was added as positive control, while MBP-free 
medium of equal volume was added as blank control.

RT‑qPCR
RAW 264.7 cells were inoculated into a 12-well plate 
(1 ×  106 cells/well) and cultured overnight in an incu-
bator with 5%  CO2 and a temperature of 37 ℃. MBPs 
at different concentrations (50, 100, 200, and 400  μg/
mL) were added to the cells. 1 μg/mL LPS was added as 
positive control, while MBP-free medium of equal vol-
ume was added as blank control. Each group contained 
3 replicates. After 24  h, total RNA was extracted using 
Trizol according to the instructions and reversely tran-
scribed into cDNA with the PrimeScript™ RT Master 
Mix (Takara, Kyoto, Japan). The cDNA was amplified 
by the PCR kit (TaKaRa), and RT-qPCR was performed 
using the Mastercycler (Eppendorf, Hamburg, Germany). 
GAPDH was used as the internal reference. Primer infor-
mation was detailed in Table 1.
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Examination of cytokine (IL‑6, TNF‑α)
RAW 264.7 cells were inoculated into a 12-well plate at 
1 ×  106 cells/well and cultured overnight in a 37 ℃ incu-
bator with 5%  CO2. Subsequently, MBP-2 at different 
concentrations (1, 10, 50, 100, 200, and 400 μg/mL) were 
added. 1 μg/mL LPS was added as positive control, while 
MBP-free medium of equal volume was added as blank 
control. Each group contained 3 replicates. After 24  h, 
the cell suspension was centrifuged at 1000×g for 10 min. 
The supernatant was collected and processed for deter-
mination of IL-6 and TNF-α levels using the ELISA kit 
(Multi Sciences).

The effect of MBP-2 on the production of IL-6 and 
TNF-α by RAW 264.7 cells was explored using TAK-242 
(TLR4 inhibitor) and C29 (TLR2 inhibitor). Cell culture 
and cytokine examination were performed with the fol-
lowing grouping strategy: Blank control (Ctrl group), 
TAK-242 inhibitor group (TAK group), C29 inhibitor 
group (C29 group), MBPs group (MBP-2 group), and 
inhibitor + MBPs group (TAK + MBP-2, C29 + MBP-2, 
and TAK + C29 + MBP-2 group). Concentration of each 
reagent was 10  μg/mL for MBP-2, 1  μM for TAK-242, 
and 50 μM for C29. MBPs were added 1 h after addition 
of inhibitors. Each group contained 3 replicates.

Statistical analysis
One-way analysis of variance (ANOVA) with multiple 
comparisons (Bonferroni’s correction) (> 2 group studies) 
was applied to identify differences among groups (Graph-
Pad Pro Prism 8.0). P value less than 0.05 was considered 
statistically significant.

Results and discussions
Purification, molecular weight, monosaccharide 
composition, and FT‑IR spectrum of MBP‑2
As shown in Fig.  1A, the main DEAE-elution fraction 
comprised the majority of crude MBPs, marked as MBP-
1. The MBP-1 was dialyzed using a 3  kDa dialysis bag, 
and the glucan gel-purified sample was labelled as MBP-2 
(Additional file 1: Fig. S1).

As analyzed by HPGPC (Fig.  1B), a single symmetric 
peak occurred at around 21.5  min, suggesting favorable 
homogeneity of the MBP-2. Further molecular weight fit-
ting analysis demonstrated its number averaged molec-
ular weights (Mn) as 15.3  kDa and weight-averaged 
molecular weights (Mw) as 21.7  kDa, and the Mw was 
smaller than the previous report [10, 25].

The ion chromatogram of monosaccharide composi-
tion of the MBP-2 was shown in Fig. 1C. Glucose was the 
main monosaccharide, indicating the potential glucan 
structure of the MBP-2. There was a distinct difference 
from the previous report in terms of the monosaccharide 
composition of MBPs [10, 25].

As displayed in FT-IR in Fig. 1D, a broad and intense 
absorption peak for stretching vibration of O–H 
appeared at 3431   cm−1, while an absorption peak for 
stretching vibration of C–H as the characteristic peak of 
saccharides appeared at 2926   cm−1[26]. The absorption 
peak at 1634  cm−1 was attributed to the stretching vibra-
tion of C–O [27]. The appearance of an absorption peak 
at 931   cm−1 demonstrated asymmetric stretching vibra-
tion of the pyranose ring of d-glucose [28]. Besides, the 
stretch peak was at 849  cm−1, demonstrating α-glycosidic 
linkage [29]. Thus, the MBP-2 might be composed of 
d-glucose and α-glycosidic linkages [30]. No distinct 
peak were noticed at 1730   cm−1 and 1240   cm−1, which 
implied the absence of uronic acid [31, 32], consistent 
with the monosaccharide composition analysis.

Methylation analysis
GC–MS was performed following methylation reactions, 
and the total ion chromatogram was shown in Addi-
tional file  1: Fig. S2. Peak analysis demonstrated that, 
there were three main peaks (peak 1, 2, and 3) with the 
retention time of 8.87, 14.12, and 18.27 min, and the rela-
tive molar amount of 11.4%, 78.5%, and 6.75%, respec-
tively (Table 2). The primary fragments pointed out that 
the MBP-2 sample was mainly composed of a back-
bone linked by → 4)-α-d-Glcp-(1 → and contains α-d-
Glcp-(1 → and → 4, 6)-α-d-Glcp-(1 → (Additional file  1: 
Fig. S3).

NMR analysis
NMR was performed to further characterize the struc-
ture of saccharide subunits of MBP-2. The major hydro-
gen signals of MBP-2 varied between δ 3 and 5.5  ppm 
in 1H-NMR (Fig.  2A) while between δ 60 and 105  ppm 
in 13C-NMR (Fig.  2B). Usually, most of the α-anomeric 
protons vary between 5–6  ppm and the β-anomeric 
protons vary between 4–5 ppm [33]. Here, an anomeric 
proton signal appeared at δ 5.3  ppm in 1H-NMR, dem-
onstrating an α-configuration. In the meantime, an ano-
meric carbon signal appeared at δ 99.6 ppm in 13C-NMR. 

Table 1 Primer sequences conditions for RT‑qPCR primers

Gene Forward Reverse

iNOS GTT CTC AGC CCA ACA ATA CAAGA GTG GAC GGG TCG ATG TCA C

IL-1β GGT GTG TGA CGT TCC CAT TA ATT GAG GTG GAG AGC TTT CAG 

IL-6 TAG TCC TTC CTA CCC CAA TTTCC CGC ACT AGG TTT GCC GAG TA

MCP-1 TCG CTC TGC TTG CTG CCA TTC ACG TCC TGA TCC TCT GCC TGTG 

GAPDH AAC AGG GTG GTG GAC CTC AT GGG ATA GGG CCT CTC TTG CT
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Both signals were attributed to the H1 and C1 signals 
of → 4)-α-d-Glcp-(1 → [34]. According to the relative 
intensity, the residues were labelled as A, B, and C from 
high to low. The results of GC–MS showed that residue 
A had the highest intensity as 78.5%. Correspondingly, 
residue A had the strongest signals in 1H-NMR and 
13C-NMR, and the signals at δ 3.9, 3.78, 3.77, 3.58 ppm, 
except δ 5.34 ppm, all could be attributed to the hydro-
gen signals of residue A. Similarly, the signals at δ 99.6, 

76.8, 73.3, 71.6, 71.2, and 60.5  ppm in 13C-NMR were 
carbon signals of residue A. Based on the cross-peak sig-
nals in 1H-1H COSY, the hydrogen signals of residue A, 
including H1, H2, H3, H4, and H5, were δ 5.34, 3.55, 3.91, 
3.61, and 3.77  ppm, respectively (Fig.  2C). While based 
on the cross-peak signals in HSQC, the carbon signals 
C1, C2, C3, C4, and C5 were, respectively δ 99.56, 71.58, 
73.29, 76.81, and 71.24 ppm (Fig. 2F). The chemical shifts 
of H6a/6b (δ 3.79, and 3.54 ppm) and C6 (δ 60.51 ppm) 

Fig. 1 Elution profile on DEAE‑52 column (A). HPGPC spectrum of MBP‑2 (B). Ion chromatography profile of MBP‑2 (C). FT‑IR spectrum of MBP‑2 (D)

Table 2 Methylation analysis for MBP‑2

Time (min) Major mass fragments (m/z) Deduced residues Molar ratio

8.87 239.19, 205.11, 162.08, 145.08, 118.05, 102.06, 87.04 T‑Glc(p) 1

14.12 233.09, 162.07, 118.06, 87.05 4‑Glc(p) 6.88

18.27 261.09, 231.07, 201.06, 142.05, 118.05, 102.06, 59.04 4, 6‑Glc(p) 0.59
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were also obtained from HSQC. The downfield shift 
of C4 also indicated that the residue A was → 4)-α-d-
Glcp-(1 → . The above results were also supported by pre-
vious reports [35, 36].

As for residue B, the signals of H1, H2, H3, H4 and H5 
were obtained from the 1H-1H COSY (Fig.  2C), which 
was δ 4.91, 3.54, 3.88, 3.36, and 3.77  ppm, respectively. 
The chemical shifts of H6a/6b were supported by HSQC 

Fig. 2 1H‑NMR (A), 13C‑NMR (B), 1H‑1H COSY (C), NOESY (D), HMBC (E) and HSQC (F) spectrum of MBP‑2
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spectrum (Fig. 2F). All the 13C chemical shifts of residue 
B were also obtained from HSQC. Relative to A–C4, B–
C4 did not develop downfield shift given the absence of 
substituents at the C4 site, consistent with the previous 
literature [37]. The chemical shift of residue C signals and 
corresponding attributes were obtained using the same 
method and shown in Table 3.

HMBC spectrum can display the inter-residue con-
nectivities with glycosidic bonds. As shown in Fig.  2E, 
there were cross-peaks between A–H4 (3.36  ppm) 
and A–C1 (99.56  ppm), and between A–H1 (5.34  ppm) 
and A–C4 (76.81  ppm), demonstrating a → 4)-α-d-
Glcp-(1 → 4)-α-d-Glcp-(1 → (i.e., 4A1 → 4A1) structure. 
The cross-peaks between A–H1 (5.34  ppm) and C–C4 
(76.72  ppm) and between C–H4 (3.90  ppm) and A–C1 
(99.56  ppm) indicated a → 4)-α-d-Glcp-(1 → 4, 6)-α-d-
Glcp-(1 → 4)-α-d-Glcp-(1 → (i.e., 4A1 → 4, 6C1) structure. 
The cross-peaks between A–H4 (3.61  ppm) and C–C1 
(99.94  ppm) implied a → 4, 6)-α-d-Glcp-(1 → 4)-α-d-
Glcp-(1 → (i.e., 4A1 → 4, 6C1) structure. The cross-signals 
between B-H1 (4.91  ppm) and C–C6 (69.32  ppm) sug-
gested a α-d-Glcp-(1 → 6, 4)-α-d-Glcp-(1 → (i.e., B1 → 6, 
4C1) structure.

In the NOESY spectrum (Fig.  2D), the cross-peaks 
between A (H1) and A (H4), except for the existing sig-
nals in 1H-1H COSY, further demonstrated the pres-
ence of the 4A1 → 4A1 structure, while the cross-peaks 
between A (H1) and C (H4) indicated the 4A1 → 4, 6C1 

structure. Additionally, the glucose at positions 1 and 5 
formed a ring, resulting in cross-peaks between A (H1) 
and A (H5) and between B (H1) and B (H5). The results 
were in line with the results of HMBC. Combining the 
above findings, the structure of MBP-2 might be charac-
terized as that in Fig. 3.

Currently, glucan polysaccharides have been only 
reported in the root of white mulberry, while they are 
starchy polysaccharides with low water solubility [38]. 
The present study, for the first time, identified glucan pol-
ysaccharides from mulberry branch, which are water-sol-
uble and worthy of further development and utilization.

Immunoregulatory activity
Cell survival and NO content
To assess the safety of MBP-2, CCK-8 was performed 
to detect the viability of RAW 264.7 cells treated with 
MBP-2 (1–800 μg/mL) (Fig. 4A). The result demonstrated 
that MBP-2 at a low concentration (1–10  μg/mL) sig-
nificantly promoted the proliferation in RAW 264.7 cells 
(P < 0.05). Besides, the cell proliferation decreased when 
the concentration of MBP-2 increased, and the decline 
was extremely significant upon 800  μg/mL (P < 0.01). 
Thus MBP-2 at 400  μg/mL was selected as the highest 
concentration in further analysis.

NO is an important molecular messenger that can 
mediate a series of host-defense functions executed by 
activated macrophages. In addition, it is also a type of 

Table 3 1H and 13C NMR chemical shifts of MBP‑2 recorded in  D2O

Glycosyl residues H1/C1 H2/C2 H3/C3 H4/C4 H5/C5 H6a,b/C6

A  → 4)‑α‑d‑Glcp-(1 → 5.34 3.55 3.91 3.61 3.77 3.79 3.54

99.56 71.58 73.29 76.81 71.24 60.51

B α‑d‑Glcp-(1 → 4.91 3.54 3.88 3.36 3.77 3.89 3.37

98.58 71.7 73.29 69.32 76.71 60.51

C  → 4,6)‑α‑d‑Glcp-(1 → 5.34 3.59 3.89 3.90 3.78 3.38

99.94 71.66 73.33 76.72 71.27 69.32

Fig. 3 Chemical structural of MBP‑2
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cytotoxic agent with immunoregulatory activity [39]. To 
explore the potential immunoregulatory activity of MBP-
2, the NO produced by RAW 264.7 cells was examined. 
As shown in Fig.  4B, MBP-2 at 50–400  μg/mL remark-
ably activated the production of NO by RAW 264.7 cells, 
consistent with the positive control (LPS). This suggested 
that MBP-2 might have immunostimulatory effects.

Expression of relevant cellular genes
Inducible nitric oxide synthase (iNOS) can act through 
NO synthesis [40]. The immunoregulatory activity of 
native products is largely attributed to their capabil-
ity of inducing multiple chemokines (e.g., MCP-1) and 
cytokines (e.g., TNF-α, IL-6) [41, 42]. This study analyzed 
the effect of MBP-2 on expression of relevant genes in 
RAW 264.7. It was found that MBP-2 at 50–400 μg/mL 
significantly stimulated the expression of iNOS in RAW 
264.7 cells (Fig.  5A), consistent with the positive con-
trol (LPS) and NO production trend (Fig. 4B). The result 
indicated that MBP-2 could activate the cellular defense 
functions by up-regulating iNOS expression and induc-
ing NO synthesis. Moreover, MBP-2 also led to distinct 
up-regulation of IL-1β, IL-6, and MCP-1 gene in RAW 
264.7 cells (Fig. 5B–D), thereby exerting its immunoregu-
latory activity.

Cytokine level
Cytokine is a class of bioactive macromolecular pro-
teins that are produced upon an external stimulus to 
immune cells and play an important role in regulating 
the body’s immunity and inflammatory response [43, 
44]. Pro-inflammatory cytokines TNF-α and IL-1β can 
act on macrophages to enhance immune responses and 
induce the expression of other immunoregulatory factors 

[45]. The current study found that MBP-2 significantly 
elevated the expression of TNF-α and IL-6 (Fig.  6A, B), 
thereby exerting its immunoregulatory activity.

The above findings demonstrated favorable immu-
noregulatory activity of MBP-2. It was reported that the 
immunoregulatory activity of MBPs might be attributed 
to their (1 → 4)-α-d-glucan backbone [46]. The immu-
noregulatory polysaccharides from traditional Chinese 
medicines have been applied in development of vaccines 
as adjuvants to promote the immune response of the 
body [47, 48]. Therefore, the MBP-2 may have the poten-
tial to be used as vaccine adjuvants.

The secretion of cytokines (IL-1β and TNF-α) can be 
mediated by multiple signals, among which Toll-like 
receptor (TLR) is the most significant [49]. Native poly-
saccharides can modulate immune cell functions in vitro 
by interactions with immunoreceptors, such as TLRs 
[50]. To investigate the mechanism underlying the immu-
noregulatory activity of MBP-2, this study selected C29 
and TAK-242 for analysis. C29 is a TLR2 inhibitor that 
can block hTLR2/1 and hTLR2/6 signals [51]. TAK-242, 
also known as Resatorvid, is a selective inhibitor of TLR4 
signal transduction that can down-regulate the expres-
sion of TLR4 downstream signaling molecule Myeloid 
differentiation factor 88 (MyD88) and TIR-domain-con-
taining adaptor inducing interferon-β (TRIF) [52, 53]. 
As analyzed, TAK-242 dramatically suppressed the pro-
duction of IL-6 (P < 0.01), and the IL-6 level was not sig-
nificantly different with that of the Ctrl group (Fig. 6C). 
The result suggested that TAK-242 can inhibit the immu-
noregulatory activity of MBP-2. In addition, IL-6 produc-
tion was also decreased by C29, but the effect was largely 
different with that of the Ctrl and TAK groups (P < 0.01). 
Similar results were obtained for TNF-α (Fig. 6D). How-
ever, there was a large difference between the Ctrl and 

Fig. 4 Effect of MBP‑2 on cell viability (A) and NO production (B) of RAW 264.7 cells. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 compared to Ctrl
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TAK groups when the MBP-2 concentration was too high 
or the concentration of inhibitors was too low, which 
might be due to the large stimulating effect of 10  μg/
mL MBP-2 on TNF-α production. In general, the trend 
for IL-6 and TNF-α production was similar, and the 
TAK-242 was more potent than C29 in inhibiting their 
production (P < 0.01). Collectively, MBP-2 may exert 
its immunoregulatory activity via TLR4, during which 
TLR2-related pathways are potential participants.

Research has revealed that TLR2 regulates down-
stream mitogen-activated protein kinase (MAPK) and 
nuclear factor kappa-B (NF-κB) via MYD88-dependent 
pathways, thereby playing its immune-stimulating effect. 
Except the MYD88-dependent pathways, TLR4 can also 
play its role through the TRIF pathway [54]. The cur-
rent study found that the TLR4 inhibitor, TAK-242, had 
more significant suppressive effect on cytokine produc-
tion in cells treated with MBP-2, as compared to the 
TLR2 inhibitor C29, indicating that MBP-2 acted mainly 
via the TRIF-dependent pathways while the MYD88 
pathways might also make some contributions. Since 

the immunoregulatory activity of MBPs has been rarely 
reported, further studies are required.

Conclusion
The present study obtained the main neutral sugar, 
named MBP-2, from mulberry branch through Sepha-
dex G-100 gel purification. Their molecular weight is 
around 21.7  kDa, and they are mainly composed of a 
backbone linked by → 4)-α-d-Glcp-(1 → and contains 
α-d-Glcp-(1 → and → 4, 6)-α-d-Glcp-(1 → . MBP-2 can 
significantly enhance the NO release from RAW 264.7 
cells and exert their immunoregulatory activity via 
increasing the mRNA expression of relevant inflam-
matory factors (IL-6 and TNF-α) and promoting their 
release. With reference to the mechanism, we specu-
lated that MBP-2 exert the immunoregulatory activity 
mainly via the downstream TRIF-dependent signaling 
pathways activated by TLR4 receptors. This study, for 
the first time, reported the glucan polysaccharides from 
mulberry branch and their immunoregulatory activ-
ity, providing new insight into the pharmacological 

Fig. 5 mRNA levels of iNOS (A), IL‑1β (B), IL‑6 (C) and MCP‑1 (D) as determined by RT‑qPCR. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 compared to Ctrl
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activity of mulberry branch and its development and 
utilization.
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