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Abstract 

Background  Traditional agriculture is on the front line of climate change, being most impacted by the increase 
in the intensity and frequency of extreme events, such as floods, drought and rising temperatures. Local ecological 
knowledge is a recognized keystone of successfully managed socioecological systems, but loss of soil fertility, water 
scarcity, incidence of diseases and decreased production due to climate change are linked to the greater vulner-
ability experienced by traditional farmers. Plant biostimulants are natural products used to stimulate nutrient uptake 
and efficiency by crops, increase tolerance to abiotic/biotic stress and improve quality without negative impacts 
on the environment if obtained from renewed sources. Humic substances are some of the most used plant biostimu-
lants in agriculture and play a central role in plant adaptation.

Materials and methods  We reviewed and discussed a sample set of papers (n = 52) about humic substances to miti-
gate abiotic stress in crops using data basis from Web of Science (Clarivate Analytics), Scopus—IBM (International 
Business Machines Corporation), and Scielo (Scientific Electronic Library Online).

Results  The predominance of authors in the global south is notable, but it is not a coincidence, since this 
is where the effects of climate change will have the greatest impact. The mechanisms involved in the stress mitigation 
involve the activation of signaling factors, gene response induction, the accumulation of osmoprotective and anti-oxi-
dant compounds, the induction of antioxidative metabolism, ion homeostasis, membrane transport and adjustment 
of hormonal balance. The intriguing question is: how can a complex mixture of molecules affect so many distinct 
effects on plants responsible for plant adaptation?

Conclusions  The complexity of humic substances challenges our knowledge method, but supramolecular chemis-
try may provide answers that enable us to broaden our understanding of the plant defense mechanisms modulated 
by these substances.
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Graphical Abstract

Introduction
Small-scale producers represent 80% of global rural 
properties and produce more than 80% of the food 
consumed in developing countries [1]. They are on the 
front line of climate change [2], being most impacted by 
the reduction in crop productivity and other damages 
resulting from the increase in intensity and frequency 
of extreme events, such as floods, droughts, and frosts 
[3]. Extreme weather conditions have shaken the lives of 
small rural communities, a trend attributed to climate 
change and human actions (https://​news.​un.​org/​pt/​
story/​2021/​08/​17601​32). For example, high temperatures 
and lack of rainfall in the Alto Rio Negro region, in 
the west of Amazonas, have changed the centuries-
old practices of working in the fields, putting the food 
security of entire communities at risk (https://​www.​bbc.​
com/​portu​guese/​artic​les/​c6pjn​19jw9​xo). The intensity 
and frequency of extratropical cyclones have caused 
floods with devastating consequences for agricultural 
production in southern Brazil (https://​www.​bbc.​com/​
portu​guese/​artic​les/​c2qly​px3k1​wo). The planet is 
getting warmer, consequently so are the ocean waters, 

and El Niño is evolving. This combination is causing the 
atmospheric conditions that make meteorological events 
more intense.

Traditional family-based agriculture is more vulnerable 
to climate extremes. This, in turn, leads to greater 
poverty levels, food inflation and unemployment, posing 
serious risks to food and nutritional security, especially 
where agriculture is the most relevant economic activity 
[3]. In Brazil, 33 million people (15% of the population) 
is considered to be in serious food and nutritional 
insecurity in 2022, the majority of them living in rural 
areas [4]. The vulnerability is even more dramatic as 
traditional knowledge based on experience and on the 
observation of nature has been put to the test by ongoing 
climate change. Adapting traditional crops to unexpected 
impacts is an important achievement.

The frequency and severity of climate events 
increased plant performance constraints, reducing 
crop productivity and quality [5]. Nowadays, abiotic 
stresses in plants are the leading cause of severe yield 
losses ranging between 50 and 80%, depending on the 
crop and geographical location [6]. The intensification 

https://news.un.org/pt/story/2021/08/1760132
https://news.un.org/pt/story/2021/08/1760132
https://www.bbc.com/portuguese/articles/c6pjn19jw9xo
https://www.bbc.com/portuguese/articles/c6pjn19jw9xo
https://www.bbc.com/portuguese/articles/c2qlypx3k1wo
https://www.bbc.com/portuguese/articles/c2qlypx3k1wo
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of agricultural production is expected to increase 
productivity in affected areas [7]. However, agricultural 
intensification is among the main drivers of climate 
change and soil contamination, making food production 
both the culprit and the victim [8]. Innovative 
technologies are essential to reduce agricultural pressure 
on the environment by decreasing water use and 
chemical inputs, while maintaining productivity [9]. 
The debate around sustainable food production should 
include appropriate goals to favor an agroecological 
transition. Biological inputs play a prominent role in 
this context since they promote plant growth, improve 
crop productivity and potentially reduce damages 
from climate change, allowing reduced employment 
of agrochemicals and of products from non-renewable 
origins.

Plant biostimulants (PB) can be considered an 
environmentally friendly agronomic tool to enhance 
abiotic stress tolerance, address environmental concerns, 
and fulfil the need to develop sustainable agriculture 
[10]. Humic substances are one of the most used PB. 
They are part of a market that grows 10% per year, which 
is expected to make US$ 4.14 billion by 2025 (https://​
www.​grand​viewr​esear​ch.​com/​press-​relea​se/​global-​biost​
imula​nts-​market). Traditional knowledge about organic 
matter management allowed us to evolve from gatherers 
and hunters to drivers of social development [11]. In this 
regard, the use of humic substances (HS), a fraction of 
soil organic matter and organic residues, can enhance 
production, and this effect is significantly higher under 
stress conditions regardless of the sources of extraction 
[12, 13]. Humic products (HP) from renewable sources 
(e.g., raw materials from agro-industrial processing or 
animal husbandry) are highly bioactive and can be used 
to substitute commercial products based on coal, lignite 
or peat [14, 15]. Aspects related to the use of HPs to 
mitigate the effects of stress on plants will be addressed 
in this review.

Abiotic stress and humic substances
Under natural conditions, plants usually face different 
environmental stresses, such as drought, salinity, 
extreme temperatures, heavy metals, and UV radiation 
[5]. Previous studies have demonstrated the promising 
potential of HPs, as well as their functions and possible 
challenges to mitigate different abiotic stresses and 
improve quality and yield [10, 16, 17]. Table 1 summarizes 
the scientific reports found using the terms “humic”, 
“plant”, “heavy metals”, “salinity”, “drought”, “extreme 
temperature = heat/cold”, and “UV radiation”, published 
in the last 6  years (2018–2023). For this purpose, three 
data bases (Web of Science, Google Scholar and Scopus) 

were employed. The purpose of this bibliographic review 
was not to thoroughly explore the available databases 
but rather to provide a few examples on how HP can 
contribute to reduce abiotic stress damages.

General damage promoted by abiotic stress 
and general plant response
In general terms, all forms of biotic and abiotic stress 
promote the generation of reactive oxygen species 
(ROS). The production of ROS in cells under normal 
growth conditions is low (240 µM s−1 O2

− and a steady-
state level of 0.5 µM H2O2 in chloroplasts), but different 
stresses including drought, salinity, high CO2 concentra-
tion, heavy metals and nutrient deficiency can disrupt the 
cellular homeostasis, enhancing the production of ROS 
(240–720 µM s−1 O2

− and a steady-state level of 5–15 µM 
H2O2) [63]. The cellular response against the resulting 
oxidative stress is critical for plant growth and adaptation 
[64]. Oxidative stress generally occurs when the balance 
between the production of ROS and the quenching activ-
ity is upset by a stressful event. If the stress level reaches 
a threshold, the excessive accumulation of ROS will trig-
ger gene response, including programmed cell suicide 
pathways [65]. Stress-induced ROS production is part 
of a multilayered reduction/oxidation (redox) response 
system in which stress sensing and adaptation are syn-
chronized with plant metabolism and phytohormone 
pathways [64]. Moreover, any physical, chemical, or 
metabolic shock activates the plasma-membrane-bound 
NADPH oxidases and apoplastic peroxidases, leading to 
an oxidative burst. A complex anti-oxidant network has 
evolved in plant cells to scavenge ROS and regulate their 
levels according to the requirements of cell signaling. The 
main mechanism of stress tolerance modulated direct or 
indirectly by HS are shown in Box 1. Certain aspects of 
the following topics are discussed.

Box 1. Some of the general abiotic stress tolerance mechanisms induce 
by humic substances
-Activation of signaling factors;
-Gene response induction;
-Accumulation of osmoprotective and anti-oxidant compounds;
-Induction of antioxidative metabolism;
-Ion homeostasis and membrane transport;
-Adjustment of hormonal balance

Activation of signaling factors under stress: three 
masters cell messages are influenced by humic 
substances
Stress perception involves cell receptor activation, and 
the amplification of signal recruits second messen-
gers, so-called because they represent intracellular sig-
nals being translated from the primary external signal. 

https://www.grandviewresearch.com/press-release/global-biostimulants-market
https://www.grandviewresearch.com/press-release/global-biostimulants-market
https://www.grandviewresearch.com/press-release/global-biostimulants-market
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Table 1  Scientific reports published in the last 6 years (2018–2023) considering the attenuation effect of humic substances against 
different abiotic stress damage (drought, salinity, extreme temperature, UV-radiation and heavy metal toxicity)

Plant Assay Source Concentration range Application Summary of main effects Reference

Drought

 Fava beans (Vicia faba L.) F CP 10 kg ha−1 Soil Increased cell membrane stability, 
photosynthetic pigments, 
induction of osmoprotective 
activity (proline and catalase) 
and nutrient absorption

[18]

 Wheat (Triticum aestivum L.) F CP 60 kg ha−1 Soil Increase in grain productivity 
by approximately threefold

[19]

 Beet (Beta vulgaris) F CP 30 L ha−1 Soil Increased root length, root 
and shoot fresh mass, larger 
leaf area and sugar production 
per hectare

[20]

 Soybean (Glycine max L.) G HA 5 mg HA dm−3 Nutrient solution It triggered the anti-oxidant 
defense system and increased 
morphological characteristics, 
such as the plant’s fresh and dry 
matter of shoots and roots, as well 
as root length and height

[21]

 Maize (Zea mays L.) G HA 45 kg ha−1 Soil Increased productivity, 
photosynthetic parameters, 
Rubisco and ATP synthase activity, 
water use efficiency, nutrient 
availability in soil, soluble sugars, 
trehalose, proline, betaine, IAA 
and ABA

[22]

 Durum wheat (Triticum durum 
L.)

F CP NI Foliar spray 5% increase in grain yield 
under water stress

[23]

 Onion (Allium cepa var. Zargan) G HA 100 mg kg−1 Soil Increased concentration 
of soluble sugars and higher 
activity of antioxidant 
enzymes (peroxidase, catalase 
and superoxide dismutase)

[24]

 Potato (Solanum tuberosum) G CP 4.5 L ha−1 Soil Increased production of fresh 
tubers by 63.48% compared 
to control and improved 
photosynthesis parameters

[25]

 Rice (Oryza sativa L.) F CP 10 kg ha−1 Foliar spray Reduced oxidative damage 
caused by ROS, protecting 
the physiological processes 
of plants

[26]

 Millet (Pennisetum glaucum) F HA 4.5 L ha−1 Foliar spray Larger millet yield and reduced 
root-shoot ratio

[27]

 Maize (Zea mays L.) Lab HS 1% (v/v) Foliar spray Promoting anti-oxidant capacity 
and proline levels in plants, thus 
improving tolerance to water 
stress

[29]

 Pepper (Capsicum annuum) F HA 4.5 L ha−1 Soil Higher accumulation 
of aboveground part biomass 
of pepper, tomato and lettuce 
and acceleration of growth rates

[28]

 Melon (Cucumis melo L.) F HA 300 mg L−1 Substrate Promotion of the anti-
oxidant activity of enzymes 
superoxide dismutase, catalase 
and glutathione reductase

[30]

 Purple flower (Echinacea 
purpurea L.)

G HA 500 mg L−1 Substrate Increased antioxidant activity, 
total flavonoid content, 
chlorophyll a, and carotenoid 
content

[31]



Page 5 of 18Canellas et al. Chem. Biol. Technol. Agric.           (2024) 11:66 	

Table 1  (continued)

Plant Assay Source Concentration range Application Summary of main effects Reference

Salinity

 Quinoa (Chenopodium quinoa 
L.)

F HA 1% (v/v) Substrate Compared to the control, 
more significant plant height, 
dry matter, and fresh weight 
of quinoa plants

[32]

 Rice (Oryza sativa L.) G HA 100 mg L−1 Seed conditioning + soil It increased the production 
of ROS and the activity 
of antioxidant enzymes 
(peroxidase and catalase), 
and root growth

[33]

 Cotton (Gossypium hirsutum L.) G FA 450 kg ha−1 Substrate Improved leaf area index, stem 
diameter and plant height; 
also increased cotton seed yield 
by 6.22%

[34]

 Papaya (Carica papaya L.) G HA 3.5 mL L−1 Substrate It attenuated the deleterious 
effects of saline stress, promoting 
growth and improving 
the performance of papaya 
seedlings under moderate salinity 
(4 dS m −1)

[35]

 Rice (Oryza sativa L.) G HA 40 mg L−1 Foliar spray Reduction of Na+ toxicity 
by increasing the K+/Na+ ratio, 
regulating the concentration 
of osmolytes and increasing 
the activities of antioxidant 
enzymes

[36]

 Maize (Zea mays L.) G HA 50 mg L−1 Seeds Seed germination uniformity 
and maize seedling growth 
under saline conditions

[37]

 Wheat (Triticum aestivum L.) G HA 200 mg kg−1 Substrate Increase in wheat productivity [38]

 Papaya (Carica papaya L.) G HS 20 g kg−1 Substrate Increased CO2 concentration, 
transpiration rate, instantaneous 
water use efficiency, carboxylation 
efficiency and chlorophyll b 
content

[39]

 Terminalia arjuna F HA NI Substrate Increase of fresh biomass 
and photosynthetic parameters, 
such as chlorophyll a and b 
and carotenoids

[40]

 Maize (Zea mays) F HA 3.75 ton ha−1 Substrate Increased salt tolerance of corn 
roots, greater availability of soil 
nutrients and increased grain 
yield

[41]

 Garlic (Allium cepa L.) G HA 1.0 g kg−1 Substrate Increased the contents of some 
nutrients (K, Ca, N, P, Mg, Fe, Zn 
and B), reduced Na+ toxicity 
and increased plant growth

[42]

 Melon (Cucumis melo L.) F HA 21 L ha−1 Substrate More significant length, fresh 
and dry mass, chlorophyll 
(SPAD), fruit mass and increase 
in the content of foliar nutrients 
(N and K) and total soluble solids 
(TSS) on fruits while reducing 
the Na+ content of the leaves

[43]

Extreme temperature

 Arabidopsis thaliana Lab CP 860 mg L−1 Substrate Induction of heat stress tolerance 
gene expression, such as heat 
shock protein

[44]
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Table 1  (continued)

Plant Assay Source Concentration range Application Summary of main effects Reference

 Tomato (Solanum lycopersicum) Lab HA 500 mg L−1 Substrate Increased vegetative growth 
and chlorophyll fluorescence, 
anti-oxidant enzymes (APX, SOD, 
GSH and LPO) and the expression 
of genes, such as SlWRKY33b, 
SlHKT1 and SlATG5 related 
to thermal tolerance

[45]

 Coriander (Coriandrum sativum 
L.)

G HA 50 mg L−1 Substrate growth promotion 
and increase of anti-oxidant 
and osmoprotectants 
compounds, such as sugars, 
carotenoids, flavonoids, phenols 
and polyphenols, minimizing 
the effect on plants

[46]

Heavy metal toxicity

 Wheat (Triticum aestivum) F HA 40 mg Kg−1 Substrate Increase of 65.64 and 71.48% 
of fresh weight and dry weight 
in wheat, respectively, compared 
to the control where the plants 
were under Cd stress and did 
not receive HA treatment

[41]

 Water plant (Vallisneria natans) Lab HA 2 mg L−1 Substrate Increased growth effectively 
induced anti-oxidant responses 
and SOD, POX and MDA protein 
synthesis and alleviated toxicity 
by complexation with Cd and Pb 
metals

[47]

 Maize (Zea mays) F CP NI Substrate Increase of 44.20% in productivity 
compared to the control; 
decrease of Cd accumulation 
by 20.19%

[45]

 Rice (Oryza sativa L.) G CP 1% (p/p) Substrate Increase the activity of antioxidant 
enzymes, reduce Cd absorption 
and toxicity, and promote growth

[48]

 Dimorphotheca ecklonis G HA 200–400 mg L−1 Substrate Increase of growth parameters, 
photosynthetic pigments 
and total sugar content

[49]

 Strawberry (Fragaria spp.) G HA 5 mM Substrate Reduction of membrane 
permeability, leaf temperature, 
proline levels and lipid 
peroxidation, attenuating 
the effect of Cd toxicity

[50]

 Rice (Oryza sativa L.) G HS 200 mg C kg−1 Substrate Translocation of MeHg in rice 
tissues by 88.95%, decrease 
in grain accumulation by 28.43%

[51]

 Rice (Oryza sativa L.) G CP 1–4 g C kg−1 Substrate Decrease of Cd availability 
and in translocation factor, 
decreasing the accumulation 
of Cd in the grain

[52]

 Rapeseed (Brassica napus L.) G HA 2000 mg kg−1 Substrate Increase in growth parameters, 
reduction in the content of heavy 
metals in roots and shoots, 
Reduction of CAT and APX 
enzyme activities and H2O2 
content in rapeseed

[53]

 Garden cress (Lepidium 
sativum)

G HS 7000 mg L−1 Substrate An increased fresh and dry 
weight of leaves and roots stem 
diameter and leaf area; reduced 
Cd absorption by 95% and Cl 
absorption by 80%

[54]
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Other signaling components interpret these intracel-
lular messengers further, resulting in the activation 
of downstream pathways that may have multiple out-
puts. The protein phosphorylation pathway activates 

transcription factors (TF), inducing the expression 
of stress-responsive genes [66]. Several intracellu-
lar signaling molecules are involved in stress signal 
transduction. Reactive oxygen species, cytosolic Ca2+ 

Table 1  (continued)

Plant Assay Source Concentration range Application Summary of main effects Reference

 Tea (Camellia sinensis L.) Lab HA 13.65 mg L−1 Nutrient solution Regulation of cell wall synthesis 
and strengthening of the anti-
oxidant system

[55]

 Wheat (Triticum aestivum) Lab HS 750 mg L−1 Nutrient solution Promotion of enzymes 
and non-enzymatic substances, 
including ascorbate–
glutathione cycle,, such as APX, 
monodehydroascorbate 
reductase, dehydroascorbate 
reductase and glutathione, 
in addition to increasing GSH/
GSSG indices

[56]

 Wheat (Triticum aestivum) Lab HA 750 mg L−1 Nutrient solution Promotion of SOD, CAT 
and NADPH-NOX oxidase 
enzymes and the ascorbate, 
glutathione and GSH/GSSG ratio

[57]

 Mastic (Schinus therebinthifolius) Lab HS 8.57 mM C L−1 Substrate Attenuation of iron toxicity. 
Development of root architecture, 
improving nutrient absorption 
and less iron accumulation 
in the biomass

[58]

 Triticale (Triticosecale wittm) Lab HÁ 500 mg L−1 Nutrient solution Reduction in the concentration 
of free amino acids; increase 
in conjugated and bound 
polyamine fractions; consequent 
reduction of oxidative stress 
caused by UV

[59]

 Pepper, tomato, watermelon, 
and lettuce

F HS 1% (v/v) Substrate Increased total biomass 
after transplanting, lower root/
shoot ratio and higher root length 
and surface area

[28]

 Arabidopsis thaliana Lab CP 860 mg L−1 Substrate Induction of expression of heat 
stress tolerance genes, such 
as HSP

[44]

 Tomato (Solanum lycopersicum) Lab HA 500 mg L−1 Substrate Increased vegetative growth 
and chlorophyll fluorescence, 
anti-oxidant enzymes (APX, SOD, 
GSH and LPO) and the expression 
of genes, such as SlWRKY33b, 
SlHKT1 and SlATG5 related 
to thermal tolerance

[60]

 Mungbean (Vigna radiata) F HA 60 kg ha−1 Substrate It increased the activity 
of antioxidant enzymes, 
the expression of genes 
related to water and salt 
stress, and the efficiency 
of the photosynthetic apparatus

[61]

 Maize (Zea mays) Lab HA 3.5–4 mM C L−1 Substrate Higher root fresh weight, CTA 
activity promotion, and proline 
content enhancement. Promotion 
of gene response expression

[62]

The search was done on Scopus, Google Scholar and the Web of Science database

F field, G greenhouse, Lab laboratory, L leonardite, P peat, C compost, VC vermicompost, S soil, HS humic substances, HA humic acids, FA fulvic acids, CP commercial 
products
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concentrations, cell pH changes and phytohormones 
are among them. HS interact with many of these mes-
sengers, indicating their involvement in a regulation 
process that we do not entirely understand.

ROS play important signaling roles in the early stages 
of the stress response, activating stress-responsive 
genes that encode enzymes in anti-oxidant biosynthesis 
or enzymes that directly detoxify reactive oxidative 
radicals, mitigating stress damage [67]. Reactive oxygen 
species are demonstrated to regenerate Ca2+ signals to 
short and long distances by coordinating Ca2+and ROS 
signals via Ca2+-dependent phosphorylation of NADPH 
oxidases [68]. Upon exposure to various environmental 
stimuli, the cytosolic Ca2+ concentration [(Ca2+)cyt] 
increases rapidly, reaching micromolar levels; the 
transient influx of Ca2+ generates unique signatures 
that initiate cellular responses to diverse developmental 
cues and environmental challenges [69]. Because 
high (Ca2+)cyt is cytotoxic, (Ca2+)cyt is recovered 
within a range of 50–200  μM by Ca2+-ATPases and 
H+/Ca2+−antiporters [73] Lee and Seo. Then, Ca2+ 
is sequestered into vacuoles through an H+/Ca2+ 
antiport system driven by the proton-motive force 
of the tonoplast H+-translocating ATPase [70]. Felle 
[71] showed that pH also could act as a signal and/
or a messenger of abiotic (changes in light intensity, 
drought, lack of oxygen) and biotic (presence of 
symbiotic partners or microbial attackers) factors. As 
a stress signal, pH involves transmembrane Ca2+/pH 
interaction as a general principle of cellular signaling 
following the first encounter with defense-related 
substances. Perception of stress receptor activates 
G-protein, inducing Ca2+ influx, elevating cytosolic 
Ca2+ activity with the following consequences described 
by Felle [71]: (1) Ca2+ activates anion channels–a 
fraction of the anions that leave the cells and depolarize 
the plasma membrane are organic acids, which bind 
protons and thus alkalize the apoplast, leading to other 
transporters modulation; (2) elevated cytosolic Ca2+ 
activates an NADH oxidase, contributing to cytosolic 
acidification and external alkalization; and (3) elevated 
cytosolic Ca2+ and decreased pH are involved in gene 
activation.

The multiple messengers act simultaneously to activate 
stress signaling, and the most studied ones (ROS, Ca2+ 
and pH) can be influenced by the exogenous application 
of HS. Previous works have shown that HS can induce 
stress alleviation, promoting ROS accumulation 
and metabolism [16, 74, 75]. Applying HA extracted 
from vermicompost to rice seedlings increased the 
concentration of both H2O2 and O2

− in specific root 
zones, accompanied by increased activity and gene 
expression of the main enzymes involved in ROS 

metabolism [74]. Rice root seedlings exposed to humic 
acids (HA) showed a clear peak of Ca2+ influx in the 
same root zone of H+ efflux coupled with very large anion 
exudation [76], unveiling evidence that HS influence 
H+-Ca2+ cell signaling. Phosphokinase Ca2+ dependent 
activity was monitored using differential gene expression, 
while voltage gate Ca2+ channels were also overexpressed 
in the presence of HP [76]. Moreover, Zandonadi et  al. 
[77] showed that HA induce a concerted plasmalemma 
and tonoplast H+ pumps activation in a typical control 
of cell electric environment mediated by phytohormones. 
Direct evidence of cytoplasmatic pH changes induced 
by HP was obtained by Baia et  al. [78] using a specific 
cytosolic pH (pHcyt) dye. The pHcyt was changed as a 
typical short chain organic acid stress triggered by HA.

The immediate consequence of stress signal 
transduction by secondary cell messengers is the 
activation of TF for stress gene response codification. 
The main TF related to abiotic stress response can be 
oversimplified into two categories: (1) Abscisic acid 
(ABA)-dependent including myeloblastosis oncogene 
(MYB) and myocytomatosis oncogene (MYC) regulon, 
ABA-responsive element binding protein (AREB) and 
ABA-binding factor (ABF) and (2) ABA-independent 
TF including NAC (NAM, ATAF1/2, and CUC2) family 
a plant-specific transcription factor  involved in multiple 
abiotic-stress responses and zinc-finger homeodomain 
(ZFHD) regulon [79]. All these TF were induced in 
the maize seedlings treated with HA isolated from 
vermicompost [80]. Therefore, plants treated with HA 
showed high-stress response genes (drought, salinity, 
extreme temperature, heavy metals and pathogen 
response) transcription even without these stressors 
[62]. We do not know exactly how this occurs, but it is 
possible to offer certain explanations. Perhaps the most 
convincing one, because it is general and integrative, is 
the fact that HS can emulate the action of various plant 
hormones [81, 82], working as a key regulatory hub in 
plant responses integrating hormonal signaling and stress 
response pathways [80]. The following section provides 
examples of plant stress responses modified by HS.

Induction of low‑molecular‑weight anti‑oxidant 
metabolites by humic substances
Plants accumulate large amounts of low-molecular-
weight, anti-oxidant metabolites, such as ascorbate, 
glutathione, and tocopherol, and they have an extensive 
network of enzymatic anti-oxidants, such as superoxide 
dismutases, ascorbate peroxidases (APX), catalases, 
glutaredoxins (GRXs) and peroxiredoxins [83]. The 
evolution of this complex oxidant (ROS)/anti-oxidant 
network allows flexible control of cellular ROS levels. 
Tocopherol detoxifies ROS produced during oxidative 
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stresses and its biosynthesis take place through different 
pathways: the methylerythritol 4-phosphate, the 
shikimate (SK) and tocopherol-core pathways that are 
regulated by different enzymes [84]. The SK pathway 
is significantly modulated by HP, as demonstrated by 
Schiavon et al. [85]. Plants treated with HP showed high 
content of tocopherol and ascorbate [86, 87].

Lipid peroxidation is one of the most explored 
outcomes of ROS on membrane structure and function, 
and anti-oxidant metabolites protect the membrane by 
inhibiting lipids peroxidation [88]. Ascorbate (AsA) plays 
a vital role in stress physiology, especially in protecting 
lipids peroxidation [89]. It was observed that total AsA 
content was higher in plants treated with HA [57]. 
Ascorbate also maintains the membrane-bound anti-
oxidant α-tocopherol in the reduced state [90]. The 
non-protein, water-soluble and low molecular weight 
tripeptide thiol glutathione (GSH; α-glutamyl cysteinyl 
glycine) plays a pivotal role in minimizing cellular 
dysfunction arising through stress-induced redox 
perturbation. Successive oxidation and reduction of Asa, 
glutathione and NADPH would enhance the potential 
scavenging of H2O2 generated through photooxidative 
stress in the chloroplast. These reactions are collectively 
called the ascorbate–glutathione cycle [91]. Increased 
activation of superoxide dismutase (SOD), catalase 
(CAT) and NADPH-oxidase (NOX) enzymes and 
ascorbate, glutathione (GSH) and GSH/GSSG ratio 
(The ratio of reduced GSH to oxidized GSH: GSSG) was 
observed in the presence of HA under Cd stress [57].

Promotion of compatible solutes biosynthesis
The availability of water for its biological roles as a 
solvent and a transport medium, an electron donor in 
the Hill reaction, and an evaporative coolant, is often 
impaired by environmental conditions. Although 
plant species display varying degrees of sensitivity to 
reduced soil water potential, low temperature or high 
salinity, it is assumed that all plants, at some level, have 
encoded capability for stress perception, signaling and 
response [92]. Osmoprotectants or compatible solutes 
are small molecules that act as osmolytes and help 
organisms survive extreme osmotic stress [93]. The main 
compatible solutes induced by stress include proline, 
citrulline, glycine betaine, 3-dimethylsulfoniopropionate, 
monosaccharide (fructose), sugar alcohols (mannitol 
and pinitol), and di- and oligo-saccharides (sucrose, 
trehalose and fructan) [94]. Metabolic acclimation via the 
accumulation of compatible solutes is often regarded as a 
primary strategy for the protection and survival of plants 
under abiotic stress [94]. Compatible solutes contribute 
to stress tolerance by acting as osmoregulators, since their 
high solubility in water substitutes for water molecules 

released from leaves. In some cases, compatible solutes 
act as active oxygen scavengers or thermostabilizers 
[95]. The reports showing proline accumulation in plants 
treated with HS are abundant and mainly related to 
drought and salinity [96–105]. Additional changes that 
HS promotes on the carbohydrate profile include the 
production of non-reducing sugar trehalose [86], whose 
concentration increases under abiotic or biotic stress, 
acting in the cell osmoregulation [106] Hassan et  al. 
Aguiar et al. [103] also observed changes in carbohydrate 
profiles in sugarcane treated with HA after drought 
stress using a metabolomic approach. Three compounds 
linked to ascorbate metabolism–catabolism (vitamin 
C), threonic, isothreonic and oxalic acids, were also 
observed in greater concentrations in both maize and 
sugarcane leaves treated with HA in the presence of 
plant-growth-promoting bacteria [87]. The pathways by 
which ascorbate is catabolized to form oxalic, threonic 
and isothreonic acids have been previously reported, as 
well as their roles in many aspects of redox control and 
anti-oxidant activities in plant cells [104].

Activation of enzymatic anti‑oxidant metabolism
Superoxide is scavenged via the disproportionation reaction 
catalyzed by SOD that produces hydrogen peroxide. Three 
major types of SOD differ mainly in their prosthetic metals: 
Cu/Zn, Mn, and Fe. Plants usually have a Cu/ZnSOD in the 
cytosol, an MnSOD in the mitochondria, and Cu/Zn and/or 
FeSOD in the chloroplast [105].

Hydrogen peroxide, for the most part, is scavenged by 
either CAT (H2O2 + H2O2 → O2 + 2H2O) or peroxidase 
(H2O2 + AS2 → 2H2O + AS). The peroxidative mecha-
nism generally requires a reductant in chloroplasts, and 
the cytoplasm is ascorbate. The APX is part of the ascor-
bate–glutathione cycle, which involves successive enzy-
matic oxidations and reductions of Asa, glutathione and 
NADP. Enzymatic anti-oxidants, such as SOD, CAT and 
glutathione peroxidase (GPX) are designed to minimize 
the concentration of H2O2 and superoxide and induced 
by different stress [106].

Cordeiro et al. [72], using a specific fluorescent dye for 
cell H2O2 detection, observed that root maize seedlings 
treated with HA increased their ROS content, stimulating 
gene expression of CAT, thus resulting in increased activ-
ity of this enzyme and minimizing the oxidative effect of 
ROS. The induction of ROS production and the conse-
quent enhancement of enzymatic anti-oxidant metabo-
lism by HA were further observed by García et  al. [16]. 
Aguiar et al. [103] submitted sugarcane to water restric-
tion and, immediately after, observed during the rehy-
dration period that the activity of anti-oxidant enzymes 
CAT, SOD and APX remained higher in leaf and root tis-
sues of HA-treated plants, when compared to the control 
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plants. Humic acids can protect lipids from peroxidation, 
one of the most dangerous ROS cell effects, by activating 
an anti-oxidant enzyme protection system [75]. Under 
salt stress conditions, applying HA increased antioxi-
dant enzyme activities. Foliar and soil + foliar application 
increased SOD and glutathione reductase (GR) activities, 
and decreased CAT and APX activities in beans [107].

Ion homeostasis and membrane transport
The intracellular ion homeostasis disruption causes oxida-
tive stress in plants. Maintaining ion homeostasis requires 
an electrophysiological adjustment that can be sustained by 
plasma membrane (PM) proton pump stimulation. Figure 1 
summarizes the ion homeostasis and the modifications on 
membrane transport induced by HA, shown by Souza et al. 
[108]. Activation of PM H+-ATPase by HP improves the 
electrochemical proton gradient that drives ion transport 
across cell membranes [109], modulating the cellular elec-
trical environment and ion fluxes [76, 110]. According to 
Khaleda et  al. [111], Na+ can be removed from cytosol by 
efflux systems, such as Na+/H+ antiporters, which transport 
Na+ across the PM and the Salt-Overly Sensitive (SOS) path-
way. Na+ that enters the root cell and is transported to leaf 
tissue must be compartmentalized in the vacuole to avoid 
cytosolic accumulation. This process is mediated by the vac-
uolar Na+/H+ antiporter, NHX, which moves Na+ into the 
vacuole in exchange for H+.

High-affinity potassium transporter (HKT) fam-
ily members recover Na+ from the xylem to reduce its 

transport or accumulation in the shoot. It has also been 
reported that HA promoted the activity of HKT1 trans-
porters helping Arabidopsis to survive salt effects [111]. 
However, a large part of the machinery responsible for 
ion homeostasis is recruited by the HA treatment even 
without the absence of Na+ at toxic levels [108].

Hormonal balance
The ROS production and signaling are integrated with the 
action of auxin (AUX), brassinosteroids (BRA), gibberellins 
(GIB), ABA, ethylene (ET), strigolactones (SLS), salicylic 
acid (SA) and jasmonic acid (JA) in the coordinate regula-
tion of plant growth and stress tolerance [114]. The multiple 
points of reciprocal control and integration nodes involve 
Ca2+-dependent processes and mitogen-activated protein 
kinase phosphorylation cascade [114]. Plant hormones are 
vital in linking gene transcription to stress response. Humic 
substance’s hormone-like activity has been documented in 
great detail [81]. Molecules released from humic superstruc-
tures may then access cell membranes and induce different 
physiological responses, such as hormone auxins AUX, GIB, 
CK (cytokinins), alkamides (ALK), nitric oxide (NO), ABA 
and ET [115–123]. However, it is possible that, in addition 
to the presence of chemical homologues to plant hor-
mones present in the more than 10,000 molecules in the 
humic supramolecules, the exogenous application of HS 
changes the plant hormonal balance, by acting as a key 
regulatory hub in plant responses, integrating hormonal 
signaling and response pathways.

Fig. 1  NaCl stress-signaling pathways and interactions with humic acids. Enzymes or transcripts in cyan were evaluated by Souza 
et al. The influence of HA on V-ATPase and H-PPase was described by Zandonadi et al. [77] and Ca2 + (cyt) pulse, voltage gate Ca2 + channel 
and Ca2 + -dependent protein kinases (CDPK) activity by Ramos et al. [76]. The HKT1 transporter was evaluated by Khaleda et al. [111], and TOR 
expression by Trevisan et al. [112] and Canellas et al. [113]. Figure 1 was adapted from reference 117
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Stress-induced changes in growth are regulated by phy-
tohormones, such as ABA and ET, which control ROS 
production and function through synergistic or antago-
nistic interactions [64]. Despite the relatively large num-
ber of research reporting the hormonal effect of HP, there 
is a gap between the analysis of the hormone balance 
induced by HP and the anti-stress response. For example, 
AUXs, CKs, Gas, ET, ABA and SLS balance regulate the P 
starvation response, one of the most limiting nutritional 
stresses in highly weathered soils. Their interaction with 
HP was mentioned by Jindo et  al. [124]. Olaetxea et  al. 
[125] found significant increases in ABA root concentra-
tion in seedlings treated with HA, showing that the HA-
mediated enhancement of root hydraulic conductivity 
and shoot growth depended on ABA signaling pathways. 
The AUX-like effect is HS’s most well-known phyto-
hormonal behavior. It has been examined in the litera-
ture for over half a century [126], indicating that abiotic 
stress can alter AUX metabolism. According to Potters 
et  al. [127], stress can impact various aspects of auxin 
homeostasis, including AUX redistribution via effects on 
the expression of PIN genes, which mediate polar auxin 
transport. Abiotic stresses can also impede AUX trans-
port by altering the pH in the plant apoplast or by alter-
ing the concentrations of phenolics, such as quercetin 
and kaempferol, which can act as endogenous inhibitors 
of auxin transport. A higher transcriptional level of PIN 
genes was found in plants treated with HA [110].

Concluding remarks
Stresses in plants caused by salt, drought, temperature 
and toxic compounds are the reason behind reduced 
crop yields. Plants respond to these abiotic stresses 
partly by activating the expression of stress-responsive 

genes, increasing tolerance. Based on the literature, it is 
clear that HS may contribute to plant adaptation to abi-
otic stresses. How can this happen? We still do not fully 
understand how this occurs, but the results from research 
carried out in recent years, it is possible to see clarity in 
the middle of the fog. We can simplify the responses of 
plants to HS and abiotic stresses in a typical physiological 
response that includes increased generation of ROS (1), 
the promotion of proton pump activities (2) and changes 
in plant hormonal balance (3). All of these master vari-
ables can act as cell signals that induce other secondary 
messengers, such as changes on (Ca2+)cyt (4), promot-
ing a downstream phosphorylation cascade triggered by 
Ca2+-dependent protein kinases (CDPK) (5), resulting in 
gene response by activation of TF (6). These steps may be 
modified by applying HS (Fig. 2).

When it comes to the general response of the plant to 
stress and the involvement of HS in these adaptations, 
the primary focus is the maintenance of cellular 
homeostasis, more specifically, the redox balance in the 
case of different abiotic stresses that have the generation 
of ROS in common. Regarding this balance, Lamar [136] 
draws attention to an interesting aspect:

“HS possess pro-oxidants (i.e., quinone moieties), 
in addition to anti-oxidants (phenolic hydroxyls) 
within their chemical structures, which allow them 
to take part in redox reactions. Thus, the ability of 
HS to enhance plant growth may, in part, be redox-
based and be influenced by the ratio of pro- to anti-
oxidants in the HS chemical structure. Pro-oxidant 
moieties could be involved in ROS production 
leading to apoplastic oxidative bursts. In contrast, 
the anti-oxidant moieties (i.e., polyphenolics) 
could moderate the oxidative burst in addition 

Fig. 2  Humic products can act as elicitors and induce: (1) the production of reactive oxygen in species [16, 72, 74, 75]; (2) activity of proton pumps 
[128–135] and (3) hormonal activities [80, 81]. The first signals are amplified by secondary messengers, with the calcium pulse in the cytoplasm [4] 
being among the primary ones [76], triggering a cascade response [5], the most common of which being phosphorylation of proteins that activate 
transcription factors (TF, 6)
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to the plant upregulating its anti-oxidant system 
to counterbalance the overproduction of ROS 
and re-establish redox homeostasis, protection of 
membranes, proteins and nucleic acids resulting 
in stress tolerance or enhanced growth and 
productivity”.

The determination of the mode of action and 
the efficiency of HS as a plant-growth promoter is 
rendered difficult due to the complex nature of their 
components. The HS have multiple biological activities, 
affecting various metabolic processes simultaneously. 
The chemical nature of HS was unveiled by Piccolo 
and collaborators, describing it as the supramolecular 
association of thousands of molecules held together 
by predominantly weak and hydrophobic forces. The 
total dissection of humic composition was assessed 
by the sequential chemical fractionation proposed by 
Nebbioso and Piccolo [137], named as “humeomic”. If the 
inventory of each molecular component allows detailed 
knowledge about the composition, the biological activity 
seems to result from the interaction between them in a 
solution. In a seminal work [138], Piccolo indicates that 
the reactivity of HS in the environment is a product of 
the acid functional groups (OH and COOH) and of 
the balance between the amount of hydrophilic and 
hydrophobic components. Spectroscopic methods such 
as nuclear magnetic resonance and infrared can obtain 
these characteristics. The lateral root induction and 
activity of PM H+-ATPase were significantly corelated 
with the hydrophobic/hydrophilic carbon ratio [139, 
140]. In addition, the progressive removal of the humic 
components using sequential chemical fractionation 
showed that, when strongly bound components were 
removed by breaking the ester and ether bonds, the 
humic residues lost their ability to induce the like-auxin 
activity (DR5::GUS) and lateral root emergence [141].

However, these capacities were retained in the free or 
weakly bound molecules [141]. These findings confirm 
that auxin-like activity in HP is associated with complex 
hydrophobic structures. The control of these processes 
seems to be regulated by root exudation, which is 
significantly larger in plants treated with HA [142]. 
This process is typical of interaction between complex 
systems, in which the components interact producing 
new reactions that encourage the release of bioactive 
compounds to plant use and the thermodynamic 
stabilization of the suprastructure. Other characteristics 
can be used to map the relationship between HS and 
plant traits, such as Lamar’s electron shuttling capacity 
[136]. In this way, the bioactivity of HS can be put in 
the perspective of Yakhin et  al. [143], who defined 
a biostimulant as a product of biological origin that 

improves plant productivity as a consequence of the novel 
or emergent properties of the complex of constituents 
and not as a sole consequence of the presence of essential 
plant nutrients, plant growth regulators, or plant 
protective compounds. This may be considered odd by 
those who are used to describing biological mechanisms 
as machines that achieve specific targets and goals.

The concept of emergence, introduced by the definition 
of Yakhin et al. [143], was questioned by du Jardin et al. 
[144], who proposed the following issue:

“What do we know about the underlying 
mechanisms of action and how relevant are the 
concepts of emergence and interaction to explain 
biostimulation of plants? Little experimental 
evidence is available to address this question”.
According to du Jardin et al. [144]:
“Data should be generated which would 
demonstrate that a plant biostimulant product is 
a holistic and unitary system of molecules, i.e. that 
the biostimulatory effect cannot be reproduced by 
any possible combination of its constituents unless it 
reconstitutes the complete mixture”.

Data from research [145] showed that the simplification 
of chemical complexity did not represent a loss of 
bioactivity until an indefinable chemical level. In other 
words, in the 1980s and 1990s, the pharmacological 
approach using chemical inhibitors did not allow 
definitive answers; the omics approach from the 2000s 
shuffled the cards showing a much more holistic response 
in plants than expected, creating effort to give practical 
meaning to the paradigm break proposed by Piccolo 
[138] concerning the conformation of HS in solution. 
The self-assemble driving force to the supramolecular 
arrangement of HS is the decrease in the total surface 
area of small molecules with amphiphilic character 
exposed to water. This surface decrease releases the water 
molecules from an energetically unfavorable contact with 
the hydrophobic part. As a result, a global increase in 
entropy due to the release of water molecules makes the 
process thermodynamically favorable.

Spontaneous formation of local order assisted (humic 
aggregate) by an entropy increase and the formation of 
more or less spherical compartments in microphases 
(with internal hydrophobic phase) resemble the 
dissipative structures originally described by Prigogine 
[145]. The surfactant behavior of HS promotes the 
aggregation in water in a spontaneous and initially slow 
manner, which can become faster over time, since a larger 
layer on the active surface facilitates the aggregation of 
newly added components. The humic supra-aggregated 
in the solution can be considered as dissipative structures 
and described as islands of order surrounded by a sea 
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of disorder with the maintenance or even an increase 
of order at the expense of greater disorder in the 
surrounding environment. These islands can be modified 
by mass and energy from the external environment, 
such as the exudation of low molecular-weight organic 
acids, as shown by Piccolo [138]. Considering these 
structures as complex chemical systems operating out of 
equilibrium, their characterization presents an inherent 
difficulty. Instead of the classic determination of structure 
(of which a convincing model has never been reached), 
the objective is to map relationships and to study 
patterns, that is, to abandon the quantitative approach 
to qualitative analysis, to change the perspective from 
structure to process analysis, from interactions with the 
environment and with the plant.

In this perspective, the characterization of the 
relationship between hydrophilic and hydrophobic 
components [139] makes sense for the evaluation of the 
environmental reactivity of HS, as originally shown by 
Piccolo [138]. Reactivity can be understood as a result of 
the organization process resulting from the aggregation 
of humic matter in a macroscopic set. They are, therefore, 
not sensitive to microscopic details. It is a collective state 
with ordered behavior in large samples but imprecise on 
a small scale. Large samples make it possible to evaluate 
emerging phenomena; that is, it is at the macro level 
that the principles of the supramolecular organization 
gain relevance; self-organization is a process through 
which a system comes to exhibit global-scale patterns 
and structures that emerge from the numerous local 
interactions between its components. The pattern is 
an emergent property of the system and not imposed 
on the system by an outside influence. The constitution 
of an ordered system through self-organization is 
understood as a primary tendency of complex systems, 
in contrast to the former emphasis on the degradation 
of order associated with the entropy principle. The 
self-organization of humic matter in supramolecular 
arrangement requires a review of the humification 
theory, which has already been done by Piccolo et  al. 
[146, 147].

However, considering the physiological aspects of 
humic matter and its relevant aspects in mitigating plant 
abiotic stress damage, many questions can be made. 
Among them, one could consider the supramolecular 
arrangement as a set of chemical compounds whose 
key to accessing the various bioactive compartments 
would lie with the plant and its system for recognizing 
the environment. The organization pattern of the humic 
arrangement, described by the hydrophilic/hydrophobic 
ratio and the electron shuttling capacity [136], could be 
used as behavior descriptors of suprahumic properties? A 

consistent answer is not available at the time, but the HS 
remains as a tool used by many farmers to mitigate plant 
stress.
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