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Abstract 

Background Economic benefits for tobacco growers are closely linked to the quality of fermented cigar tobacco 
leaves (CTLs). This research focused on an in-depth examination of the microbial community and flavor compounds 
within CTLs, specifically analyzing the wrapper, binder, and filler components of a cigar. The primary objective 
was to unravel the complex relationship between the microbial composition and the resultant flavor profiles, thereby 
providing insights that could enhance the economic value of CTLs.

Results The study revealed distinct variations in flavor chemicals and microbiota across different sections of CTLs. 
Prominent species identified in the fermented CTLs included Corynebacterium, Pseudomonas, Staphylococcus, Aspergil-
lus, and Cladosporium. Bidirectional orthogonal partial least squares (O2PLS) analysis pinpointed five bacterial and four 
fungal species as key contributors to flavor compound formation. Additionally, an analysis considering Within-module 
and Among-module connectivity highlighted two bacterial and thirteen fungal genera as keystone species. The 
insights from Partial Least Squares Structural Equation Modeling (PLS-SEM) further underscored the influential role 
of fungal microorganisms in defining CTLs’ flavor profile.

Conclusions The research findings illuminate the intricate interplay between flavor chemicals and microbes 
in the traditional fermentation process of CTLs.
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Introduction
Cigars are traditionally composed of three main parts: 
the filler, binder, and wrapper, each possessing unique 
characteristics and roles that collectively define a cigar’s 
flavor, combustion properties, and appearance. The Filler 
constitutes the core of the cigar, determining its strength 
and primary flavors. The Binder encases the filler leaves, 
providing structural stability and adding layers of flavor. 
The Wrapper, as the cigar’s outermost leaf, plays a cru-
cial role in influencing the overall quality and smoking 
experience through its quality and appearance. Together, 
these components synergize to create the distinct fla-
vor profile and smoking experience of cigars. Therefore, 
to understand the multifaceted flavor characteristics of 
cigars, a comprehensive analysis of the wrapper, binder, 
and filler is indispensable. It is widely recognized that the 
quality of the wrapper, binder, and filler is closely linked 
to the cigar type, cultivation methods, harvest maturity, 
and processing techniques. Particularly, the fermentation 
process of cigar tobacco leaves is crucial for enhancing 
their quality. Initiated after harvesting and processing, 
this phase involves complex chemical and biochemical 
transformations within the leaf ’s organic compounds, 
facilitated by the combined action of inorganic elements, 

enzymes, and microorganisms. These transformations, 
catalyzed by inorganic elements such as iron (Fe) and 
magnesium (Mg), lead to the oxidation of organic mat-
ter in the presence of atmospheric oxygen [1]. This fer-
mentation harmonizes the leaf ’s chemical components, 
enhancing the overall quality. Fresh, unfermented CTLs 
often possess green, earthy, and woody odors, producing 
a harsh and irritating smoke. Conversely, the fermenta-
tion process significantly reduces the greenness and 
earthy odors, resulting in smoother, less irritating smoke. 
The leaves gain elasticity and improved combustibility. 
This improvement in physical properties, physicochemi-
cal characteristics, aroma, and smoking quality is a direct 
outcome of the fermentation process [2].

Different CTLs may harbor unique microbial commu-
nities, which are essential in driving their fermentation 
process [3]. These microbial activities, along with enzy-
matic catalysis and complex chemical reactions, lead to 
the breakdown of proteins and starch, generating flavor 
compounds like acids, ketones, aldehydes, and alcohols 
[4, 5]. These substances, particularly organic acids, and 
amino acids, act as flavor components or precursors in 
CTLs, while aromatic substances significantly impact 
tobacco quality and sensory characteristics [6]. For 
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instance, trimethylamine has been identified as a con-
tributor to the undesirable ammonia taste in cigars [7]. 
In the fermentation process, research has pinpointed 
benzaldehyde, noted for its almond and cherry aromas, 
as a key metabolite [8]. This parallels findings in fer-
mented foods, where microbial roles in flavor compound 
formation are well-documented [9] but less so in cigar 
tobacco leaf fermentation. A deeper understanding of 
these microbial communities and their contributions to 
flavor compounds is thus imperative. This knowledge will 
enhance our grasp of the fermentation process and aid in 
achieving consistency in the quality of fermented leaves. 
Analytical methods like bidirectional orthogonal partial 
least squares (O2PLS) modeling, and analyses of within-
module (Zi) and among-module (Pi) connectivity, along 
with PLS-SEM, are instrumental in this research. These 
methods have been effectively used in food fermenta-
tion and environmental microbiology. For instance, Guan 
et  al. [10] investigated microbial succession and flavor 
changes during suansun fermentation, identifying crucial 
microbes like Lactobacillus, Clostridium_sensu_stricto_1, 
Enterobacter, and Leuconostoc using O2PLS. Zhou et al. 
[11] studied the dynamics of pit mud microbial com-
munities in Baijiu fermentation, correlating them with 
key physicochemical factors and identifying significant 
OTUs related to pit mud aging through Zi and Pi analy-
sis. Additionally, Wang et al. [12] employed PLS-SEM to 
quantify the direct and indirect impacts and interactions 
of natural environments and human activities on wetland 
changes. However, there has been no extensive applica-
tion of O2PLS, Zi, Pi, and PLS-SEM to analyze the rela-
tionships among microorganisms, flavor compounds, and 
chemical components in tobacco fermentation samples.

Past research has highlighted significant regional vari-
ations in microbial communities and flavor profiles of 
CTLs [5]. Despite this, there has been no comprehensive 
analysis of the bioinformatics characteristics and quality 
attributes of the wrapper, binder, and filler leaves from 
CTLs in Yunnan’s unified fermentation process. This 
study, therefore, zeroes in on CTLs from two emblem-
atic production areas in Yunnan–Mang City, Dehong 
Prefecture (DHMS) and Hani-Yi Autonomous County 
of Jiangcheng, Pu’er City (PEJC). It meticulously exam-
ines the physicochemical properties, flavor metabolites, 
and microbial composition of various types of CTLs 
post-fermentation. Utilizing O2PLS, Zi, and Pi, the study 
identifies functional genera in different CTL types and 
employs PLS-SEM modeling to explore the intricate rela-
tionships driving the interplay between chemical com-
ponents, microbial communities, and flavor compounds. 
The goal of this research is to delve into the core reasons 
for the distinct characteristics observed in different types 
of CTLs, particularly from the angles of microorganisms 

and characteristic metabolites. This investigation aims 
to provide a theoretical framework for enhancing the 
standardization and precise control in the fermentation 
of CTLs.

Materials and methods
Sample collection
In April 2023, a total of 90 fermented CTL samples were 
collected from the Ganzhuang Fermentation Center in 
Yunnan Province, China. This collection included 30 
samples from WR (Wrapper), 24 from BI (Binder), and 
36 from FI (Filler). The specifics of each sample, derived 
from different fermentation piles, are detailed in Addi-
tional file  1:   Table  S1. To ensure comprehensive and 
representative sampling, leaves were gathered from two 
distinct planting locations, DHMS and PEJC. The collec-
tion spanned five strategic points across the high, middle, 
and bottom layers of the fermentation heaps, as depicted 
in Additional file  1: Fig. S1. Samples from these three 
strata were amalgamated to form a single biological rep-
licate, aiming to encompass the full range of variation in 
the different samples. Post-collection, all samples were 
promptly frozen and pulverized in liquid nitrogen. They 
were then stored at two different temperatures, -20  °C 
and -80  °C, to preserve their integrity for subsequent 
chemical component analysis and DNA extraction.

Chemical components and color analyses
The color parameters of the WR, BI, and FI CTLs were 
quantitatively assessed using an SR-68 portable color-
imeter (D65 light source, 3nh, China). This device meas-
ured the L* value (lightness), and b* value (yellowness), 
and used a ± calibration plate. Each tobacco leaf sample 
underwent three measurements, with the average value 
representing its color. In studying the color differences 
among various CTLs, the overall color differences were 
calculated [13], with ΔL*, Δa*, and Δb* representing 
changes in lightness, redness, and yellowness, respec-
tively. According to perceptual thresholds, a ΔE* greater 
than 3 is distinguishable by the human eye, between 1 
and 3 is less discernible, and less than 1 is indistinguish-
able [14].

For protein content analysis, we adhered to the Chi-
nese National Standard GB/T 5009.5–2016, utilizing 
a Kjeldahl apparatus (Hanon Technologies CO., Ltd., 
Shandong, China). Total and reducing sugar levels were 
determined via ultraviolet spectroscopy (Shanghai 
Metash Instruments CO., Ltd., Shanghai, China). The 
starch content was ascertained using the iodine colorim-
etry method. Furthermore, an Elemental Analyzer (Flash 
Smart, Thermo Fisher, America) was employed to quan-
tify chemical elements, including carbon C, hydrogen 
(H), sulfur (S), and nitrogen (N), in the samples.
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Free amino acids (FAAs) analysis
Chen et al. [15] described an improved method for pro-
cessing samples to analyze FAAs. Initially, to eliminate 
any interference from proteins, they were precipitated 
using a sulfosalicylic acid solution. This involved mixing 
0.4 g of CTLs with 8 mL of 15% (w/v) sulfosalicylic acid 
solution. The mixture was then incubated at 4 °C for 1 h, 
followed by centrifugation at 7000 rpm for 15 min at the 
same temperature. For amino acid analysis, the superna-
tant was filtered through a 0.22 μm filter and then trans-
ferred to 1  mL vials for assessment using an automatic 
amino acid analyzer (S-433D, Sykam, Eresing, Germany). 
The detection of proline was carried out at a UV wave-
length of 440 nm, while the general detection wavelength 
for amino acids was set at 570  nm. Quantification was 
performed using an external standard method.

E‑nose analysis
The E-nose (PEN3, Airsense Analytics GmbH, Schwerin, 
Germany) was utilized to evaluate the aroma of tobacco 
leaf samples. For the analysis, 0.5  g of finely chopped 
and homogenized samples were placed in 20  mL head-
space vials at 60  °C for preheated 10  min. Post-heating, 
the samples were ready for testing. The E-nose probe 
underwent a cleaning cycle for 90 s, followed by a reset 
period of 5 s, and a pre-sampling phase of 5 s. The carrier 
gas flow during sampling was maintained at 400 mL/min, 
and each sample’s measurement duration was 150 s. The 
E-nose is equipped with ten different metal oxide sen-
sors, each sensitive to specific compounds: W5C detects 
alkane aromatic compounds; W1S is tuned to short-chain 
alkanes; W1W identifies sulfides and terpenes; W2S rec-
ognizes alcohols, aldehydes, and ketones; W2W is for 
organic sulfides and aromatic components; W3S is for 
long-chain alkanes; W1C detects aromatic compounds; 
W5S is sensitive to nitrogen oxides; W3C responds to 
aromatic ammonia; and W6S detects hydrogen presence.

HS–SPME–GC–MS analysis
For the extraction of volatile organic compounds (VOCs) 
from CTLs, Headspace Solid-Phase Microextraction 
coupled with Gas Chromatography-Mass Spectrom-
etry (HS–SPME–GC–MS) was employed. Following the 
methodology of Zheng et  al. [16], with slight modifica-
tions, 0.5  g of tobacco samples were placed in a 20  mL 
headspace vial. To the vial, 8 mL of saturated NaCl solu-
tion and 1 µL of phenylethyl acetate (128.75 µg/µL) were 
added, and the mixture was then heated in a water bath 
at 75  °C for 20 min. VOC extraction was performed for 
35 min using DVB-CAR-PDMS fibers (50/30 µm, Supelco 
Inc., Bellefonte, PA, USA). The extracted VOCs were 
analyzed using an Agilent 8890-7000D gas chromato-
graph-mass spectrometer system equipped with a fused 

quartz capillary column (Agilent, Santa Clara, CA, USA). 
The separation of target compounds was conducted on 
an HP-5MS column (30  m × 0.32  mm i.d., 0.25  µm film 
thickness; J&W Scientific, CA, USA) using helium as the 
carrier gas at a flow rate of 0.8 mL/min. The column tem-
perature was initially set at 60 °C for 2 min, followed by 
a temperature ramp to 180  °C at a rate of 3  °C/min for 
2 min. The temperature was further increased to 260 °C 
at 6 °C/min and held for 2 min. Mass spectrometry detec-
tion was performed over a range of 35–450 m/z with an 
ionization voltage of 70 eV.

Characterization of microbiota
Genomic DNA from all 90 samples was extracted using 
the HiPure Soil DNA Kits (Magen, Guangzhou, China). 
The DNA’s quantity and quality were assessed with a 
NanoDrop 2000 spectrophotometer (Thermo Scientific, 
USA). To identify various bacterial and fungal types, 
universal primers were employed for amplifying the 16S 
rRNA and ITS regions. The primer pairs 515F (5′-GTG 
YCA GCMGCC GCG GTAA-3′) and 806R (5′-GGA CTA 
CNVGGG TWT CTAAT-3′) were used for 16S rRNA, 
and ITS1F (5′-CTT GGT CAT TTA GAG GAA GTAA-3′) 
and ITS2 (5′-GCT GCG TTC TTC ATC GAT GC-3′) for 
the ITS region of fungi. The PCR conditions were as fol-
lows: initial denaturation at 95 °C for 2 min, 35 cycles of 
denaturation at 95 °C for 30 s, annealing at 60 °C for 45 s, 
and extension at 72  °C for 90  s, concluding with a final 
extension at 72  °C for 10  min. The PCR products were 
mixed and purified using the Qiagen Gel Extraction Kit 
(Qiagen, Germany). Sequencing libraries were prepared 
using the Illumina TruSeq® DNA PCR-Free Sample Prep-
aration Kit (Illumina, USA), following the manufacturer’s 
guidelines. Post library quality assessment, sequencing 
was performed on the Illumina NovaSeq platform using a 
250 bp paired-end run configuration.

Bioinformatics and statistical analyses
The raw data from the Illumina platform were processed 
using FASTP (version 0.18.0) [17] with specific criteria: 
1) Reads containing unknown nucleotides (N) ≥ 10% 
were removed; 2) Reads with bases having a Phred quality 
score ≤ 20 comprising ≥ 50% of the read were removed; 
3) Reads containing adapters were deleted. The result-
ing clean reads were then assembled with FLASH (ver-
sion 1.2.11) [18], setting a minimum overlap of 10 bp and 
a maximum mismatch rate of 2%. Following the filtering 
criteria from the literature [19], low-quality tags were 
removed to obtain high-quality clean tags. Adhering to 
the tags quality control process of Qiime [20], tags were 
truncated and filtered based on length. UPARSE (version 
9.2.64) [21] grouped clean tags into operational taxo-
nomic units (OTUs) with a similarity threshold of ≥ 97%. 
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The UCHIME algorithm [22] was employed for chimera 
detection in tags. Post chimera filtering, the effective 
tags were used for OTU abundance statistics and further 
analyses. For fungal identification, the UNITE database 
was utilized, while for bacterial identification, the Silva 
database was employed. Qiime [20] (version 1.9.1) calcu-
lated the ACE and Shannon indices for alpha diversity in 
the microbial community. The Wilcoxon rank-sum test 
was conducted to evaluate the significance of diversity 
differences between groups. The Vegan package in R lan-
guage was used for principal coordinates analysis (PCoA) 
based on (un)weighted Unifrac, Jaccard, and Bray–Curtis 
distances [23] (version 2.5.3). The top ten species’ relative 
abundances were estimated using the largest abundance 
ranking method. LEfSe analysis determined differences in 
species abundance, with the LDA threshold set at 2.5 for 
both bacteria and fungi. OTUs were subjected to a two-
condition filter [24]: only those found in over 30% of sam-
ples and with a relative abundance greater than 0.1% were 
retained. This filter yielded 12 bacterial and 28 fungal 
OTUs (Additional file 1: Table S2) for network construc-
tion. The final network comprised 246 edges (|r|> 0.6, 
p < 0.05) (Additional file 1: Table S3). Within-module con-
nectivity (Zi) and among-module connectivity (Pi) were 
utilized as metrics. OTUs were classified into four cat-
egories based on Zi and Pi values: peripherals (Zi ≤ 2.5, 
Pi ≤ 0.62), connections (Zi ≤ 0.25, Pi > 0.62), module hubs 
(Zi > 2.5, Pi ≤ 0.62), and network hubs (Zi > 2.5, Pi > 0.62)  
[24]. Gephi (version 0.10.1) visualized the correlation 
network. MetaboAnalyst conducted a partial least-
squares discriminant analysis (PLS-DA) on the dataset. 
O2PLS analysis, using OmicsPLS [25], selected species 
associated with flavor chemicals. The vegan package 
’cca’ analyzed interactions between bacteria, taste com-
pounds, and fermentation chemical components. PLS-
SEM [26, 27] explored how CTLs’ chemical component 
characteristics mediate microbial diversity and key core 
species, affecting metabolic product changes. PLS-SEM, 
a data analysis approach, uses a latent variable to summa-
rize observed variables and assumes linear correlations 
between latent variables [26]. Path coefficients and R2 
values were estimated, and fit indices like SRMR, d_ULS, 
and d_G evaluated the models. Acceptable PLS model 
values are SRMR < 0.08, d_ULS < 0.95, and d_G < 0.95 
[28]. Models were built using SmartPLS (version 4.0.9.2.), 
and SPSS Statistics (version 27) conducted all statistical 
analyses.

Accession numbers
The raw sequencing data were deposited in the Genome 
Sequence Archive at the China National Center for Bio-
information, under the BioProject IDs PRJCA022549 
and PRJCA022550. The associated BioSample accession 

numbers for these submissions are subSAM116878 and 
subSAM116879.

Results
Chemical components and color analysis
Additional file  1: Fig S2, utilizing proportions and con-
centrations of chemical components, compares the con-
tent of total sugar, reducing sugar, starch, protein, and 
elements C, N, H, and S in three categories of CTLs sam-
ples: WR, BI, and FI. The analysis revealed that the pro-
tein content (26.32 g/100 g) and N content (4.46%) in WR 
were notably higher than in BI (23.52 g/100 g and 3.98%) 
and FI (22.58 g/100 g and 3.92%). However, the composi-
tion of other chemical components was relatively homog-
enous across the groups. Furthermore, there were no 
significant differences in color values L*, a*, b*, and △E* 
as shown in Additional file 1: Table S4.

FAAs and E‑nose analysis
The CTLs contained seventeen FAAs, categorized based 
on flavor characteristics into umami, sweet, bitter, and 
salt-taste groups. The total concentrations of these 
amino acids varied from 0.30 to 148.03  mg/g. Umami 
amino acids were predominant, constituting about 80% 
of the total free amino acids. The levels of sweet and bit-
ter amino acids were comparable, each accounting for 
approximately 10% and 8% of the total free amino acids, 
respectively (Additional file  1: Table  S5). The amino 
acid composition of the samples was generally similar, 
with aspartic acid (Asp) and glutamic acid (Glu) being 
the most abundant, while cysteine (Cys) and tyrosine 
(Tyr) had lower contents (Fig. 1A). Asp and Glu, exceed-
ing the taste thresholds of 1.0 mg/g and 0.3 mg/g, were 
identified as key contributors to umami flavor. The taste 
active value (TAV) of Asp and Glu for the three types of 
CTLs was calculated as 4.40, 4.28; 4.12, 2.85; 1.95, and 
1.97, respectively (Additional file  1: Table  S6). TAV < 1 
compounds are typically thought to have little taste con-
tribution in food, thus Asp and Glu contributed to the 
umami taste of all samples, while other amino acids did 
not (Fig.  1D). PLS-DA revealed no distinct differentia-
tion in amino acid concentrations among WR, BI, and 
FI CTLs (Fig. 1B). However, variable importance in pro-
jection (VIP) scores ≥ 1.0 identified Glu, Ser, and Asp as 
the most discriminative amino acids (Fig. 1C, Additional 
file  1: Table  S7), indicating their significant role in CTL 
flavor. The E-nose system, showed nearly identical radar 
images for WR, BI, and FI across sensors W3S, W1C, 
W3C, W6S, and W5C, with relatively low signal inten-
sity. This suggests minimal production of aromatic com-
pounds, ammonia substances, and short-chain alkanes 
in fermented CTLs (Fig. 2A). The W2S sensor indicated 
modest signal intensity but varied between samples, 
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implying differences in alcohols, aldehydes, ketones, 
ethers, and other compounds throughout different types. 
W2W, W1W, and W1S sensors showed slightly higher 
signals, but without significant difference, suggesting the 
presence of certain organic sulfides in CTLs. The W5S 
sensor’s signal strength varied significantly for WR, BI, 
and FI, highlighting nitrogen oxides as differentiators of 
CTL types (Fig.  2C). The PCA diagram reveals that the 
cumulative variance contribution rate of PC1 (89.5%) and 
PC2 (7.1%) amounts to 96.6% (Fig. 2B). This suggests that 
the primary components effectively represent the over-
all flavor distribution of each sample. A partial overlap 
between the WR and FI samples on the PCA plot implies 
a similarity in their flavor profiles. Additionally, the close 
positioning of the BI sample to the WR and FI indicates a 
high degree of flavor resemblance among them. This sim-
ilarity is attributed to the processing practices of binder 
CTLs; in production, some BI leaves are often selected 
from the WR and FI batches. While the E-nose system 
proficiently captures the overall fragrance characteris-
tics of the samples, it falls short in pinpointing specific 
changes in individual taste chemicals before and after 
treatment. To address this, further analysis using GC–
MS is necessary for a more detailed understanding of the 
flavor compounds.

Qualitative analysis of VOCs by HS–SPME–GC–MS
In the analysis of VOCs in three different types of CTL 
samples, a total of 90 compounds were identified. A 
detailed list of these compounds, along with their CAS 
numbers, names, and VIP values, is provided in Addi-
tional file  1: Table  S8. To discern any significant dif-
ferences in the volatile profiles among the various CTL 
types, PLS-DA was conducted. The resulting PLS-DA 
model (Fig.  3A) exhibited a good fit with R2 = 0.73 and 
predictive accuracy of Q2 = 0.44, indicating that the 
VOCs could be effectively classified into three distinct 
categories (Fig.  3B). This classification was reliable for 
both the training and testing data sets. Additionally, a 
permutation test confirmed that the models were not 
overfitted (Fig. 3C). Each compound was assigned a VIP 
score, which quantifies its contribution to the separation 
of the groups. A higher VIP score implies a more signifi-
cant role in distinguishing between groups. As shown in 
Fig.  3D, ten VOCs-Methyl phenyl acetate, γ-Cadinene, 
( +)-Cuparene, 3-Methylundecane, Megastigmatrienone-
A, Thujopsene, 2,6,6-Trimethyl-1,3-cyclohexadiene-1 
carboxaldehyde, Heptadecane, Myosmine, and 3-Meth-
ylpentadecane-had VIP scores greater than 1.5. These 
compounds were considered to be substantially differen-
tiating factors among the three CTL groups. The majority 

Fig. 1 The free amino acids in CTLs from different types. A Heatmap and hierarchal clustering of amino acids content in CTLs. The horizontal 
axis represents the group name, and the vertical axis represents the amino acid name. The color gradient within each color block indicates 
the abundance variation of the respective amino acids in the sample. Bitter, Salt, Sweet, and Umami represent different tastes. B PLS-DA analysis 
for amino acid content in CTLs. C The VIP value associated with PLS-DA analysis for amino acids content in CTLs from WR, BI, and FI. D The TAV 
analysis for amino acids content in CTLs
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of these substances were predominantly enriched in BI 
and FI, while their concentration in WR was compara-
tively lower.

Microbiota diversity and microbial community 
composition analysis
To assess the diversity of microbial communities in dif-
ferent types of CTLs, the ACE and Shannon indices 
were employed. For bacterial communities, WR exhib-
ited a higher diversity compared to BI and FI, although 
the difference was not statistically significant (p > 0.05) 

(Additional file  1: Fig. S3A, B). Conversely, the fungal 
community in BI showed greater diversity than in WR 
and FI, but again, the difference was not statistically sig-
nificant (p > 0.05) (Additional file 1: Fig. S3E, F). In terms 
of bacterial OTUs, the WR, BI, and FI samples contained 
37, 32, and 34 OTUs, respectively. Among these, 22 
OTUs were common to all three types, while the unique 
OTUs for WR, BI, and FI were 13, 6, and 6, respectively 
(Additional file  1: Fig. S3C). Fungal analysis identified 
177, 206, and 175 OTUs in WR, BI, and FI samples, 
respectively. There were 101 OTUs shared across the 

Fig. 2 A E-nose radar of different types of CTLs. B The PCA plots of sensory evaluation of CTLs in different types. C Changes of E-nose W1C, W5S, 
W3C, W6S, W5C, W1S, W1W, W2S, W2W, W3S sensor signal response of CTLs in different types
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three types, with 34 unique to WR, 51 to BI, and 34 to 
FI (Additional file 1: Fig. S3G). However, PCoA based on 
Aitchison dissimilarity revealed that the bacterial and 
fungal community structures of WR, BI, and FI were 
highly similar and did not exhibit any significant separa-
tion characteristics (Additional file  1: Fig. S3D, H). This 
suggests a high degree of overlap in the microbial com-
munities among the three types of CTLs.

In the bacterial community of CTLs, Actinobacteriota 
emerged as the most abundant phylum, representing over 
45% of the total (Fig. 4A). At the genus level, Corynebac-
terium (54.30% in WR, 54.68% in BI, and 45.55% in FI) 
and Pseudomonas (18.30% in WR, 17.28% in BI, and 
25.71% in FI) were the most prevalent across all groups 
(Fig. 4B). In the fungal community, the phyla Ascomycota 
and Basidiomycota dominated, collectively accounting 
for over 98% of the total abundance (Fig. 4C). Aspergillus 

was the leading genus in all samples, comprising 45%-
58% of the total. Notably, Aspergillus and Cladosporium 
together accounted for 57.50%, 44.91%, 57.91%, and 
26.33%, 34.27%, and 22.47%, respectively, in the different 
CTL types (Fig. 4D). This analysis highlights the diversity 
and distinctiveness of the microbial communities present 
in the different types of CTLs.

Identification of core microbiota genera
LEfSe analysis was used to identify distinct micro-
biota in the three CTL types. At the genus level, Sphin-
gobacterium, Sediminibacterium, Flavisolibacter, and 
Parabacteroides were identified in WR; Massilia and 
Bacteroides in BI; and Pseudomonas, Mesorhizobium, 
Luteibacter, Bacillus, and Porphyromonas in FI (Fig. 5A, 
B, Additional file  1: Table  S9). For fungi, biomarkers at 
the genus level included Alternaria and Candida in WR, 

Fig. 3 A PLS-DA scores plot the volatile components in the CTLs from three different types. B Cross-validation; C Permutation test. D VIP scores plot 
of the volatile metabolites in the CTLs with VIP > 1.0 compounds in three different types
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and Trichomonascus, Penicillium, and Eichleriella in BI 
(Fig.  5C, D). The flavor substances were considerably 
influenced by starch as well as the combination of other 
chemical components, as demonstrated in Fig. 6 and sug-
gested by the canonical correspondence analysis (CCA) 
(Fig. 6A). We discovered that starch and H were impor-
tant variables in bacterial community makeup (Fig. 6B). 
While starch, total sugar, and H were important factors 
determining the makeup of fungal communities (Fig. 6C). 
OTU000044 (Stenotrophomonas) and OTU000037 (Ter-
ribacillus) were positively correlated with starch, whereas 
OTU000019 (Staphylococcus) was negatively correlated 
with starch. Additionally, OTU000019 showed a positive 
relationship with H and OTU000037 showed a negative 
relationship with H (Fig.  6B). In contrast, many OTUs 
were positively correlated with starch and total sugar 
coupled with OTU000001 (Aspergillus), OTU000021 
(Aspergillus) and OTU000023 (Wallemia) were nega-
tively correlated with starch and total sugar. Besides, 

OTU000001, OTU000021, and OTU000023 showed a 
positive relationship with H, and other OTUs were nega-
tively correlated with H. Starch and total sugar exhib-
ited an opposite correlation trend with H. (Fig. 6C). We 
built an O2PLS model to study the link between bacte-
ria and flavor metabolites. We discovered five bacte-
rial OTUs that significantly influenced the flavor profile, 
namely OTU000037, OTU000164 (Brevundimonas), 
OTU000007 (Corynebacterium), OTU000044, and 
OTU000080 (Massilia) (Fig.  6E), which were consistent 
with the findings from the genus-level analysis (Fig. 4B). 
Myosmine, 3,7,11-Trimethyl-1-dodecanol, Heptade-
cane, 2,6,10,14-Tetramethylpentadecane-Norphytane, 
and Durene were the flavor compounds most impacted 
by the bacterial microbiota (Fig. 6D). The analysis of rela-
tive abundance further demonstrated that Corynebacte-
rium held a relatively high dominant position in all the 
samples (Fig.  6F). Additionally, we discovered that the 
fungal genera OTU000052 (Golubevia), OTU000105 

Fig. 4 Analysis of microbial community composition in CTLs from different types. The relative abundance of bacterial taxon at A phylum and C 
genus level, respectively. The relative abundance of a fungal taxon at B phylum and D genus level, respectively
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(Bulleromyces), OTU000021, OTU000041 (Aspergillus) 
and OTU000117 (Candida) were highly linked to the fla-
vor components (Fig. 6H), particularly Tridecane, Thujo-
psene, ( +)-Cuparene, Cedrol and Octadecane (Fig. 6G). 
Notably, the dominant taxon Aspergillus occupied a 
dominant position in samples of different types of CTLs 
(Fig. 6I).

In fermented CTLs, the network of prokaryotic and 
eukaryotic communities was divided into four separate 
modules (Fig.  7A): Module 1, Module 2, Module 3, and 
Module 4. Module 1 included 13 OTUs, Module 2 had 9 
OTUs, Module 3 included 9 OTUs, and Module 4 had 2 
OTUs (Additional file 1: Table S10). It was discovered by 
computing the Zi and Pi that OTU000027 (Module1, 
Cumuliphoma), OTU000043 (Module1, Golubevia), 
OTU000016 (Module1, Septoria), OTU000054 (Mod-
ule1, Nicotiana), OTU000073 (Module1, Hannaella), 
OTU000099 (Module1, Sarocladium), OTU000112 (Mod-
ule1, Hannaella), OTU000001 (Module2, Aspergillus), 
OTU000014 (Module2, Aspergillus), OTU000023 (Mod-
ule2, Wallemia), OTU000071(Module2, Trichomonascus), 
OTU000053(Module2, Aspergillus), OTU000019 (Mod-
ule3, Staphylococcus), OTU000080 (Module3, Massilia), 

OTU000097 (Module3, Lepista), OTU000117 (Module3, 
Candida), OTU000098 (Module3, Phaeosphaeria) and 
OTU000111 (Module3, Schizophyllum) functioned as 
network connections (Fig.  7B, C). These microbial gen-
era were believed to play an important role in prokaryotic 
community interactions and evolution. Notably, among 
the 15 identified microbial genera, 13 belong to fungi, with 
only 2 being bacterial genera. This showed that fungi may 
be more important in the microbial network than bac-
teria (Fig.  7D–F). The number and composition of the 
various modules differed significantly. When it came to 
abundance, the connectors in Module 1 displayed a low 
abundance in some CTL samples of WR, BI, and FI, inter-
estingly, all these samples originated from the same plant-
ing area (DHMS). Module 2 exhibited a low abundance in 
certain CTL samples of WR, BI, and FI, and these samples 
all came from another planting area (PEJC). In contrast, the 
total abundance of Module 2 was found to be high across 
all samples. In Module 3, bacterial genera were the domi-
nant microorganisms in CTLs, but the relative abundance 
of fungal microorganisms was lower. Overall, Staphylococ-
cus and Massilia were consistently prevalent among the 
bacterial taxa (Fig.  7F). Notably, the relative abundance 

Fig. 5 Lefse Analysis of microbial community differences in different CTLs. A The bacterial biomarker of different CTLs. B Relative abundance 
at the genus level of bacteria screened in WR, BI, and FI. C The fungal biomarker of different CTLs. D Relative abundance of fungal genus levels 
screened in WR, BI, and FI
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of Staphylococcus was generally higher in WR, BI, and FI 
samples from DHMS compared to those from PEJC. In 
WR, BI, and FI, the relative abundance of Staphylococcus 
was highest in FI (15.21%), followed by WR (14.51%) and BI 
(12.36%). Conversely, Massilia showed an opposite pattern, 
with its relative abundance being highest in BI (0.82%), fol-
lowed by WR (0.72%), and lowest in FI (0.44%). Among the 
fungal genera (Fig. 7D, E), all connectors in Module 1 and 
Module 2 were composed entirely of fungal genera, with 
Aspergillus, Golubevia, Cumuliphoma, Wallemia, Septoria, 
Trichomonascus, and Hannaella dominating in all samples, 

consistent with the dominant genera identified in Fig. 4D. 
Therefore, the fungal genera in Module 1 and Module 2 
may bear greater responsibility for the stability and char-
acteristic changes of the microbial interaction network and 
are likely key core species of significance in the fermenta-
tion of CTLs.

Association among chemical components, core microbiota 
genera, and VOCs in CTLs
Following LefSe analysis, O2PLS screening, and the cal-
culation of Zi and Pi values, 8 bacterial genera and 9 

Fig. 6 Correlation analysis of physicochemical profiles, microbial communities, and flavor compounds in CTLs from different types. A CCA 
analysis between flavor compounds and physicochemical profiles. B CCA analysis between bacterial OTU and chemical components. C CCA 
analysis between fungal OTU and chemical components. D O2PLS analysis between bacteria OTU and flavor compounds. E O2PLS analysis 
between bacteria OTU and flavor compounds. F O2PLS screening of bacterial genus abundance highly correlated with metabolome. G O2PLS 
analysis between fungi OTU and flavor compounds. H O2PLS analysis between fungi OTU and flavor compounds. I O2PLS screening of fungal 
genus abundance highly correlated with metabolome
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fungal genera were identified as dominant marker core 
genera. These were then correlated with the chemical 
components’ properties using the Mantel test (Addi-
tional file 1: Table S11). The heat map demonstrated that 
the protein and starch were the most interconnected 
chemical components (Fig.  8A, B). Additionally, the 
Mantel test revealed more highly significant physico-
chemical influences on fungal microorganisms (Fig. 8B). 
Surprisingly, N, C, C/N, and reducing sugar did not 
affect any of the microbial strains. To further clarify the 
impact of chemical components on microbial diversity 
and genus composition, PLS-SEM was performed. This 
analysis investigated the direct and indirect correlations 
between chemical components, fungal diversity, fungal 
genus, and flavor metabolites (Fig.  8C, D). After mul-
tiple iterations of the algorithm, it was determined that 
there were no significant path relationships between N, 
C, C/N, reducing sugar, and total sugar with bacterial 
diversity and bacterial genus. Therefore, bacterial diver-
sity and bacterial genus were excluded from the analysis 
to enhance the model’s rationality. The main parameters 
used in PLS-SEM indicated that the final model was rea-
sonable, with predictions closely aligning with actual 
results (SRMR = 0.052, 0.061; d_ULS = 0.150, 0.393; and 

d_G = 0.599, 0.337). Starch exerted the strongest posi-
tive and significant effect (p < 0.05) on both fungal diver-
sity and fungal genus. Protein had a significant negative 
impact on fungal diversity (p < 0.05) but a positive, albeit 
non-significant, effect on the fungal genus. The Ace, 
Chao, Shannon, and Sobs indices could explain most 
of the variation in fungal diversity, with  R2 values being 
0.979, 0.988, 0.913, and 0.990, respectively. Among the 
selected 9 fungal genera, Aspergillus, Candida, and Han-
naella could explain most of the variation in the fungal 
genus, with  R2 values of -0.851, 0.855, and 0.922, respec-
tively. Additionally, fungal diversity and fungal genus had 
a direct impact on flavor metabolites. Fungal diversity 
showed a significant positive effect on alkenes and n-het-
erocyclic carbenes, while fungal genus had a significant 
positive effect on alcohols and n-heterocyclic carbenes. 
Therefore, overall, starch is the most influential chemical 
component. It positively affects the abundance and diver-
sity of fungal microbial genera, which in turn directly 
impacts flavor metabolites. Thus, in practical production, 
altering the starch content in cigar fermentation CTLs 
might be a strategy to regulate microbial community 
changes and consequently alter the flavor quality charac-
teristics of CTLs.

Fig. 7 A Network observed between the 33 OTUs (Spearman correlation coefficient |r| > 0.6, p < 0.05). B Distribution of OTUs based on Zi and Pi. 
C Taxonomic annotation levels (phylum level and genus level) of OTUs in the Connectors region and the modules they belong to. D Composition 
of bacterial and fungal communities in Module 1 in the Connectors region at the genus level. E Composition of bacterial and fungal communities 
in Module 2 in the Connectors region at the genus level. F Composition of bacterial and fungal communities in Module 3 in the Connectors region 
at the genus level
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Discussion
Chemical components impact on CTLs quality
The quality of CTLs generally includes aspects like 
appearance, chemical components, and internal quality 
[7]. The internal quality mainly refers to the harmony in 
the content and proportions of various chemical compo-
nents within the leaves, with a direct correlation existing 
between the leaf quality and the content and propor-
tion of these chemical constituents. The results of this 
study indicate that the average content of conventional 
chemical components in the samples of WR, BI, and FI 
is within the appropriate range for each component, an 
overall harmonious chemical composition (Additional 
file 1: Fig. S2). These findings suggest that despite some 
variations among WR, BI, and FI post-uniform fermen-
tation, the overall degree of differentiation is minimal, 
indicating a trend toward homogenization. This further 
underscores the pivotal role of fermentation in stand-
ardizing the quality of CTLs. Nitrogen compounds and 
carbohydrates are among the most crucial conventional 
chemical components in WR, BI, and FI, and their con-
tent significantly impacts the overall quality of the leaves. 
Generally, the pyrolysis products of carbohydrates and 
nitrogen compounds while burning CTLs have opposite 
effects on the taste experience. The pyrolysis products of 

carbohydrates are acidic, while those of nitrogen com-
pounds (especially alkaloids) are alkaline. The harmoni-
ous proportional relationship between these two types of 
compounds produces a desirable flavor when smoked [2, 
29].

From the average content of the tested components, 
the N contents in the WR were significantly higher than 
in the BI and FI. There were no significant differences 
in other chemical components between WR, BI, and FI. 
Moreover, based on the selection criteria of VIP > 1 and 
TAV > 1, Glu and Asp are important taste-flavor amino 
acids distinguishing WR, BI, and FI (Fig.  1D). Tobacco 
leaf-free amino acid concentration is closely connected 
to leaf quality. They are precursors for protein and nic-
otine synthesis and participate in enzymatic and non-
enzymatic browning reactions with reducing sugars (or 
carbonyl compounds) during tobacco processing, fer-
mentation, and even burning. These reactions produce 
various heterocyclic compounds with roasted or pop-
corn-like aromas, such as pyrans, pyrazines, pyrroles, 
and pyridines. Some amino acids, like phenylalanine, 
can also decompose into aromatic compounds like ben-
zyl alcohol and phenylethanol [30]. In CTLs, Glu pro-
vides a unique umami taste, crucial for balancing and 
enriching the overall flavor characteristics of cigars. Asp 

Fig. 8 A Mantel test between bacterial communities and chemical components. B Mantel test between fungal communities and chemical 
components. (Bacteria and fungi as core microorganisms after screening). C PLS-SEM in chemical components, microorganisms, and metabolites 
based on the results of fungal diversity. D PLS-SEM in chemical components microorganism and metabolites based on the results of key 
microorganism genus of fungi. Specific values for the Mantel test were given in the supplementary material (Additional file 1: Table S11), 
and the results of bacterial diversity and genus could not construct a valid model due to the low number of significant chemical components
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significantly affects the sweetness and ash cohesiveness of 
CTLs. Studies have shown a positive correlation between 
ASP and irritancy and off-flavor scores in cigarettes [31]. 
The impact of FAAs on tobacco quality is not the effect of 
a single amino acid but the result of interactions among 
various FAAs.

Flavor compound variations in different types of CTLs
The composition and concentration of aromatic chemi-
cals influence the sensory qualities of CTLs. Currently, 
E-nose are used to detect odors or flavors by mimicking 
human olfaction. They are widely applied in various fields 
including food, beverages, environmental monitoring, 
and medical diagnostics. In the analysis of CTLs, E-nose 
can rapidly and non-destructively evaluate the aroma 
characteristics of different tobacco products. Through 
E-nose analysis, it was found that WR, BI, and FI sam-
ples showed higher response values at sensor W5S, indi-
cating that nitrogen oxides have a significant presence in 
CTLs. Moreover, the signal intensity in WR was notably 
higher than in BI and FI (Fig.  2C), suggesting distinct 
differences in the aromatic profile among these com-
ponents of WR, BI, and FI. Although E-nose provides 
rapid aroma analysis, they cannot offer detailed struc-
tural information about compounds and have relatively 
lower sensitivity and specificity. Therefore, we further 
employed HS–SPME–GC–MS to measure the VOCs 
in WR, BI, and FI. A total of 90 VOCs were identified, 
among which 10 VOCs had a VIP > 1.5. These 10 VOCs 
were identified as key VOCs critical in differentiating 
the flavor characteristics of WR, BI, and FI (Fig. 3D). The 
phenylalanine breakdown products, such as benzyl alco-
hol, phenyl ethyl alcohol, benzaldehyde, and phenylac-
etaldehyde, had a floral odor of a rose, a strong almond 
odor, and a honey-like odor [32]. Phenylacetaldehyde 
can be further converted into phenylacetic acid, which 
when reacted with methanol in an esterification pro-
cess, forms phenylacetic acid methyl ester. Phenylacetic 
acid methyl ester significantly contributes to the aroma 
of CTLs, providing a sweet floral fragrance that enriches 
the overall flavor profile of cigars, adding a specific floral 
and fruity note [33]. γ-Cadinene, a type of monoterpe-
noid, and ( +)-Cuparene, a sesquiterpenoid, are produced 
in plants through the terpenoid synthesis pathway involv-
ing isopentenyl diphosphate (IPP) and dimethylallyl 
diphosphate (DMAPP) [34]. These compounds are char-
acterized by their distinctive woody and citrus scents, 
respectively [35]. Megastigmatrienone-A, a naturally 
occurring substance in CTLs, is an essential component 
of tobacco aroma and plays a primary role in fragrance. 
It significantly enhances the tobacco scent, improves the 
taste experience, harmonizes the smoke, and reduces irri-
tation. Megastigmatrienone-A is a degradation product 

of carotenoids, formed from the breakdown of lutein, and 
contributes significantly to the enhancement of tobacco 
aroma, modulation of flavor, and removal of off-flavors 
[36]. Myosmine is a natural alkaline compound found in 
tobacco and other plants, belonging to the nicotine class 
of compounds. It, along with nicotine, nornicotine, anat-
abine, and anabasine, influences the overall chemical and 
sensory properties of CTLs [37]. According to the results 
of PLS-DA and VIP analysis, after fermentation, aromatic 
components in WR, BI, and FI can be somewhat distin-
guished. Methyl phenyl acetate (VIP = 4.73), γ-Cadinene 
(VIP = 2.78), and ( +)-Cuparene (VIP = 2.36) are key 
VOCs that differentiate WR, BI, and FI (Additional file 1: 
Table S8). CTLs are known to contain a range of aromatic 
compounds, and the degradation of these aromatics may 
result in the production of new aromatic compounds. 
Notably, in contrast to flue-cured tobacco, which mostly 
comprises neutral flavor compounds, cigars are distin-
guished by the predominance of alkaline flavor sub-
stances. As a result, additional research is required to 
thoroughly evaluate the properties of alkaline aromatic 
components in WR, BI, and FI.

Impact of chemical components and core microbial genera 
on flavor characteristics
It is noteworthy that the top 10 bacterial and fungal gen-
era in terms of relative abundance are common across 
WR, BI, and FI, indicating that these dominant gen-
era are better adapted to the fermentation environment 
and occupy a significant position in WR, BI, and FI 
(Fig. 4B–D). Previous research has shown that during the 
fermentation process of CTLs, it is primarily the bacte-
rial communities that influence the generation of flavor 
compounds [5]. However, whether bacteria or fungi play 
a more significant role in shaping the distinct flavor char-
acteristics of WR, BI, and FI has not yet been reported. 
As a consequence, OTUs from bacteria and fungi in WR, 
BI, and FI that appeared in more than 30% of the samples 
and had a relative abundance larger than 0.1% were cho-
sen for this investigation. These OTUs were chosen as the 
primary microbiota and were designated as independent 
variables (x), while 90 flavor compounds were designated 
as dependent variables (y). The O2PLS model was then 
used to investigate the relationships between bacterial 
and fungal communities and flavor chemicals in a variety 
of samples. We identified 5 bacterial and 4 fungal genera 
that were significantly correlated with flavor compounds 
(Fig. 6E–H). These microbial genera had been detected in 
CTLs before, but their functions in fermented CTLs had 
not been previously established.

Moreover, it has been claimed that these genera are 
important in the synthesis of flavor components in 
tobacco. As an example, Sphingobacterium can produce 
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microbial lignin oxidase and is known for lignin degrada-
tion [38]. In a study examining the impact of flue-curing 
techniques on the dynamic changes in microbial diversity 
of CTLs, Hu et al. found that the trends in Sediminibac-
terium were significantly correlated with changes in flue-
curing processes [39]. Flavisolibacter is a dominant genus 
of bacteria in the rhizosphere soil of tobacco plants, while 
Alternaria is a very common microbial genus in tobacco, 
although it may cause brown spot disease in the crop 
[40]. Candida plays an important role in the fermenta-
tion of cigars, increasing the content of chlorophyll deg-
radation products and carotenoid degradation products, 
enhancing the roasted, nutty, cocoa, and honey flavors 
of cigars, and improving the flavor components of CTLs 
[41]. Massilia and Bacteroides are also ubiquitous in 
CTLs, with Massilia identified as a primary predictive 
taxon in the bacterial composition of CTLs after re-dry-
ing in different regions [42]. Furthermore, fungi such as 
Aspergillus, Penicillium, Fusarium, Cladosporium, and 
Trichomonascus have been identified as indicator micro-
organisms for microbial community succession during 
the pile fermentation of CTLs [43]. Pseudomonas, as a 
main genus of bacteria engaged in nicotine breakdown, 
could sustain high nicotine concentrations and use nic-
otine as the sole carbon and nitrogen source for growth 
[44]. Bacillus species can synthesize tiny aromatic com-
pounds by digesting big molecules like carotene. After 
2  days of co-culture of Bacillus Amylolytic and Bacillus 
Kochi, the levels of the most important reaction prod-
ucts and terpene metabolites were reported to be greater 
than those of other samples, which boosted the scent and 
softness of the samples [45]. Studies have indicated that 
WR, BI, and FI exhibit similar dominant microbial com-
positions during the pile fermentation process. Through 
their interactions, key microorganisms such as Staphy-
lococcus, Corynebacterium, Aerococcus, and Aspergillus 
have the most influence on the microbial community 
structure and distinctive bacteria in CTLs. These inter-
actions influence the transformation of volatile flavor 
compounds [46]. As a result, in CTLs, bacteria, and fungi 
work together to degrade carbohydrates and nitrogen 
molecules, as well as to chemosynthesis VOCs through-
out the fermentation process.

Microorganisms often live in intricate communities 
rather than in isolation, forming tight relationships with 
one another [47]. Microbial co-occurrence networks are 
commonly utilized to investigate microbial community 
connections. Key species can be found by evaluating the 
topological properties of species within these networks 
[48]. Co-occurrence networks were used in this investi-
gation to analyze potential connections between micro-
organisms in WR, BI, and FI. Significant connections 
between bacterial and fungal nodes were found in these 

networks (p < 0.05, |r|> 0.6, Additional file  1: Table  S3), 
demonstrating that microorganisms work together to 
adapt to the phyllosphere and sustain community struc-
ture [49]. Nodes in the network were separated into four 
modules and classified as peripherals, connectors, mod-
ule hubs, and network hubs based on Zi and Pi values. 
Within microbial co-occurrence networks, nodes catego-
rized as connectors, module hubs, and network hubs are 
considered keystone nodes that contribute to the sustain-
ability and stability of the ecosystem and are important 
for the bacterial community assembly and function; the 
removal of this keystone may have a significant impact 
on the community structure [50, 51]. In all samples, a 
total of 18 nodes (54.55%) were identified as connectors. 
Among these module hubs, there were 13 fungal genera 
and 2 bacterial genera, with high-abundance dominant 
genera such as Aspergillus, Golubevia, Septoria, Cumu-
liphoma, Wallemia, Trichomonascus, and Hannaella 
occupying central positions in the modules (Fig. 7). This 
suggests that fungi may have a stronger role than bacte-
ria in shaping the microbial populations of WR, BI, and 
FI. The diversity of fungal species is critical for shaping 
the ecological and functional stability of WR, BI, and FIs ’ 
microbial communities. This emphasizes the significance 
of taking into account the diversity and dominant spe-
cies when researching microbial communities in CTLs. 
Observations similar to these have been made in the fer-
mentation ecosystems of Chinese strong-flavored Baijiu 
[11].

Structural Equation Modeling (SEM) is a quantitative 
research tool for dealing with multifactor causal interac-
tions that is based on statistical analysis techniques [52]. 
By connecting empirical data and theoretical analysis, 
the relationships between multiple causes and outcomes 
can be established utilizing integrated path analysis, fac-
tor analysis, regression analysis, and analysis of variance. 
SEM is employed in the estimation of latent variables and 
the construction of a complex variable prediction model 
[53]. This method, in addition to the results of a normal 
multivariate statistical analysis, provides a better knowl-
edge of the elements’ direct and indirect relationships 
[54, 55]. Considering the complex interactions between 
microbial communities and chemical components that 
determine the flavor quality of WR, BI, and FI, this study 
employed an SEM model to investigate the composite 
factors affecting microbial communities and the main 
genera impacting VOCs. The diversity of fungi and fun-
gal genera such as Aspergillus, Candida, and Hannaella 
significantly affect nitrogenous compounds in CTLs. 
Nitrogenous compounds, like nicotine and other alka-
loids, are produced through various metabolic pathways 
in CTLs and play a crucial role in regulating their flavor, 
aroma, and burning characteristics. Starch was identified 
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as a key chemical component significantly influencing 
fungal microbial diversity and genera (p < 0.05,  R2 > 0.6) 
and is an important factor affecting the flavor quality of 
WR, BI, and FI (Fig. 8C, D). Starch, a primary metabolite 
in tobacco, was converted into water-soluble carbohy-
drates and ultimately into aromatic compounds, accord-
ing to Banozic et al. [56]. During the baking process, the 
Maillard reaction between amino acids released by pro-
tein hydrolysis and sugar formed by starch hydrolysis is 
the primary source of an aroma precursor in flue-cured 
tobacco.

Conclusion
In summary, our findings extensively evaluated the tra-
ditional chemical components, flavor compounds, and 
microbial community architectures of WR, BI, and FI and 
investigated their interrelationships. The findings con-
clude that the conventional chemical components in WR, 
BI, and FI show a trend of homogenization, with Asp 
and Glu being the main taste-contributing amino acids 
in CTLs. Compared to fungal microbiota, the bacterial 
community structures in WR, BI, and FI are more similar. 
Additionally, five bacterial genera and four fungal genera 
are significantly related to flavor compounds, with seven 
fungal genera identified as functional microorganisms 
that may play an essential role in maintaining the sustain-
ability and stability of the tobacco phyllosphere ecosys-
tem. The starch of WR, BI, and FI significantly positively 
influences fungal microbes such as Aspergillus, Candida, 
and Hannaella, thereby indirectly affecting the formation 
of nitrogenous flavor compounds. In subsequent practi-
cal production, it may be possible to regulate the changes 
in the fungal microbial communities by altering the 
starch content in fermented cigar tobacco leaves, thereby 
modifying the flavor quality characteristics of WR, BI, 
and FI. These findings improve our understanding of the 
properties of WR, BI, and FI and give a sound theoretical 
underpinning for increasing CTL quality.
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