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Abstract 

Apple moldy core is a fungus-infested disease that is extremely insidious, usually occurring inside the fruit, making 
it very difficult to distinguish from the exterior with the naked eye. Using VIS/NIR transmission spectroscopy, this 
study successfully detected moldy core apples. By combining four wavelength selection algorithms (CARS, CARS-SPA, 
MC-UVE, and MC-UVE-SPA) with four classifiers (SVM, ELM, KNN, and LDA-KNN), discrimination models were estab-
lished for two-class and three-class classifications. MC-UVE-SPA-LDA-KNN achieved an AUC of 0.99 and an accuracy 
of 98.82% for two-class classification, while MC-UVE-SPA achieved an AUC of 0.99 and an accuracy of 97.64% for three-
class classification. This confirms MC-UVE-SPA as an effective tool for selecting wavelengths specific to moldy core 
apples, facilitating precise identification and differentiation of apple states. This study advances dynamic online detec-
tion of early-stage moldy core conditions in apples, reducing post-harvest disease occurrence and preserving fruit 
quality effectively.
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Graphical Abstract

Introduction
In recent years, apples have become a widely grown and 
consumed fruit around the world, making a significant 
contribution to the world’s food supply. According to the 
statistics of the FAOSTAT (Food and Agriculture Organi-
zation), the total apple production reached 83 million 
tons in 2023. As one of the world’s best-selling fruits, the 
quality of apples is closely related to consumer purchasing 
demand. Apple moldy core is a disease caused by fungal 
infection leading to internal decay [1]. In the initial stage 
of fungal infection, small dark brown spots are formed 
in the center of the apple core, which then becomes dark 
brown over time. The infected part grows grey or white 
hyphae, and the bacteria continue to expand outward, 
eventually leading to fruit deterioration from the inside 
out, thus seriously affecting apples’ quality and shelf life 
[2]. This disease occurs mainly inside the fruit, and its 
diseased fruit is not visibly different from normal fruit in 
appearance, and can only be detected as diseased if the 
apple is cut open [3]. Once infected fruits are considered 
healthy and enter the market, it will not only cause food 
safety problems, but also affect the reputation of the fruit 
growers and the place of origin, and even lead to the bulk 
return of the export trade, which will inevitably affect the 
development of the apple industry. If apple moldy core 

can be effectively identified at its early stage, the spread of 
the disease can be effectively prevented. Hu et al. devel-
oped a classification model of the moldy core using the 
acquired NIR transmittance spectra and back propaga-
tion network with a success rate of 95% [4]. However, due 
to the hidden nature of its early lesions and low detection 
rate. Therefore, there is an urgent need to achieve accu-
rate, rapid, and nondestructive detection of early moldy 
core in apples, to safeguard the quality of apples.

Non-destructive detection methods for fruits that are 
commonly used include magnetic resonance imaging 
(MRI) [5], X-ray [6], acoustic vibration technology [7], 
electronic nose technology [8], and Vis/NIR [9] Because 
of its high detection rate, accuracy, efficiency, and cost-
effectiveness, Vis/NIR spectroscopy technology has 
gained favor in the non-destructive testing of agricultural 
products [10]. According to the difference of frequency 
combination and frequency doubling absorption intensity 
of C–H, N–H, O–H, and other groups in spectra, com-
bined with chemometrics methods, the internal physi-
ological diseases of fruit can be identified [11]. To achieve 
fruit quality detection, Yao et al. [12] used a homemade 
portable near-infrared diffuse reflectometer for evalu-
ating and monitoring the SSC of apples. Ma et  al. [13] 
designed a multi-fiber-based Vis/NIR spatially resolved 
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spectrometry system for the simultaneous evaluation of 
soluble solids content and hardness of apples. Baranow-
ski [14] used a hyperspectral camera to Combine Vis/NIR 
and SWIR spectral properties for the prediction of days 
to bruise in apples. Cruz et  al. [15] explored the use of 
VIS/NIR spectrometry for the prediction of SSC, hard-
ness, and presence of internal browning in ‘Rocha’ pears. 
Burdon [16] used the flesh color of kiwifruit, SSC, hard-
ness, and dry matter for nondestructive prediction of the 
presence or absence of frostbite during its storage period. 
The above study mainly utilized the diffuse reflectance 
mode to detect fruit quality. Since early moldy core usu-
ally occurs inside apples, it is more effective to use near-
infrared transmission mode than diffuse reflection mode 
for its internal quality detection [17]. Several online sys-
tems utilizing NIR spectroscopy have been developed to 
address the need for quality testing and classification of 
a significant quantity of fruits. These systems are capa-
ble of detecting internal fruit quality, including freez-
ing damage [18] and blackheart [19], among others. To 
enhance the performance of the model, it is possible to 
implement effective methods for selecting wavelengths. 
These methods not only improve the performance of the 
model but also decrease its complexity and runtime [20]. 
Some commonly employed methodologies encompass 
principal component analysis (PCA) [21], Monte Carlo-
uninformative variable elimination (MC-UVE) [22], com-
petitive adaptive reweighted sampling (CARS) [23], and 
successive projection algorithm (SPA) [24]. This study 
utilized the MC-UVE-SPA algorithm as the wavelength 
selection method to dynamically detect moldy core in 
apples. The rationale behind this choice was the potential 
synergistic effects that could be achieved by combining 
two complementary wavelength selection algorithms.

This study aims to develop a classification model suit-
able for dynamic online that can accurately detect early 
moldy core apples. The main aims of this study are as 
follows: (1) Study of Vis/NIR transmission spectroscopy 
combined with various classification models for the iden-
tification of early moldy core apples. (2) Four classifica-
tion algorithms (SVM, ELM, KNN, and LDA-KNN) were 
utilized to classify two-class model including healthy and 
moldy core, and three-class model including healthy, 
light, and severe. (3) The determination of effective wave-
lengths for detecting apple moldy core was conducted 
using four variable selection methods: CARS, CARS-
SPA, MC-UVE, and MC-UVE-SPA.

Materials and method
Apple samples
A total of 340 Red Fuji apples, all from the same growing 
area within the orchard and confirmed by the farmer to 
be infected with moldy core, were collected at the same 

stage of ripeness and presenting a similar coloration, thus 
ensuring consistency in growing conditions, ripeness and 
coloration. The apples were carefully selected to ensure 
that their appearance was free from any physical dam-
age. Immediately upon arrival at the lab, the apples are 
washed and then air-dried. Each apple is then labeled 
and placed in an environment with a room temperature 
of 23 °C and a relative humidity of 30% to 40% for 24 h. 
After a resting period, spectral data collection began.

Transmittance spectra acquisition
The VIS/NIR spectroscopy collection system utilized in 
this study was a dynamic online transmittance detec-
tion device that was independently researched and 
developed [25], the specific structure is shown in Fig. 1. 
The QE65Pro spectrometer from Ocean Optics was 
selected for this study, which has higher sensitivity and 
lower stray light and excellent thermal stability. The light 
sources were 2 rows of 5 halogen lamps, each with a spe-
cific specification of 12  V and 100  W. The apples were 
carefully arranged on the fruit cup to guarantee that their 
stem axes were parallel and precisely aligned with the 
conveyor belt. They were then transported to a dark box 
for measurement. When the halogen lamps illuminated 
the apples, the transmitted light entering the apple was 
captured by optical fibers and transmitted to a computer 
through a spectrometer. The spectrometer had a wave-
length range of 350 to 1150  nm and required a 30-min 
preheating before acquiring spectral data.

Moldy core degree assessment
The apple samples were horizontally sliced to conduct 
moldy core discrimination. Images of the apples were 
captured using a camera to assess the disease’s degree. 
The CAD software was utilized to determine the propor-
tion of the impacted region within the cross-sectional 
area. Based on the percentage, the severity of moldy core 
disease was classified into three groups: Healthy apples 
(Sd = 0), Light moldy core (Sd < 10%), and Severe moldy 

Fig. 1  Near-infrared spectra acquisition device



Page 4 of 12Jiang et al. Chem. Biol. Technol. Agric.           (2024) 11:63 

core (Sd > 10%). The level of internal disease severity in 
the apples is illustrated in Fig. 2.

Spectral pre‑processing and effective wavelength selection 
algorithm
VIS/NIR spectra frequently display noise, baseline drift, 
and similar phenomena, which can be attributed to 
instrument variations, sample backgrounds, and other 
influencing factors. To address the potential impact of 
these detrimental factors on the model, this study utilizes 
three preprocessing techniques: Savitzky–Golay (S–G) 
smoothing, Multiplicative Scatter Correction (MSC), and 
Standard Normal Variate (SNV). Finally, a comparison 
and analysis are conducted between the raw spectra and 
the preprocessed spectra to ascertain the most suitable 
preprocessing method for the construction of the model. 
However, the presence of redundant or uninformative 
variables in spectral data may affect the performance 
and computational efficiency of classification models. 
To address this issue, four variable selection algorithms 
were chosen to extract the effective wavelengths, such as 
CARS, CARS-SPA, MC-UVE, and MC-UVE-SPA. These 
effective wavelengths are subsequently combined with 
the classifiers to improve the accuracy of two-class and 
three-class classifications.

Classification algorithms
Selecting a suitable classification algorithm is of utmost 
importance in enhancing the accuracy of classification. 
In this article, we have chosen four classification algo-
rithms, namely K-Nearest Neighbors (KNN), Linear Dis-
criminant Analysis-K Nearest Neighbors (LDA-KNN), 
Extreme Learning Machine (ELM), and Support Vector 
Machine (SVM), to conduct discriminant analysis on the 
moldy core of apples.

KNN is a classification algorithm that functions based 
on principle of proximity [26]. When classifying a new 
sample, the classification algorithm identifies the K 

nearest training samples and assigns the new sample to 
the category with the highest number of votes, which is 
determined based on the categories of these K neighbors.

LDA-KNN is a hybrid approach that combines LDA 
and KNN [27]. Initially, LDA is utilized to reduce the 
dimensionality of the original data. This process entails 
the computation of the between-class scatter and within-
class scatter to determine the most suitable discriminant 
vectors and subsequently project the data onto a discri-
minant subspace of lower dimensionality. Afterward, 
the KNN is employed to classify the dimension-reduced 
data. It achieves this by calculating the distances between 
the sample to be classified and the training samples that 
have been dimension reduced. The primary benefit of 
the LDA-KNN algorithm lies in its efficient utilization of 
LDA for reducing dimensionality and extracting features, 
in conjunction with KNN for classification. By imple-
menting classification in a lower-dimensional space, this 
approach effectively enhances classification accuracy and 
generalization, while simultaneously reducing the dimen-
sionality of the data.

The Extreme Learning Machine (ELM) is an algorithm 
for single-hidden-layer feedforward neural networks. It 
has been shown to exhibit superior generalization per-
formance and higher learning efficiency during train-
ing when compared to traditional feedforward network 
learning algorithms. This characteristic renders it an 
appealing technique in the field of machine learning 
[28]. ELM demonstrates notable efficacy in various tasks, 
including classification, regression, and density estima-
tion. By employing suitable network architectures and 
parameter settings, Extreme Learning Machines (ELM) 
have demonstrated the ability to effectively capture intri-
cate patterns within data, leading to favorable learning 
results and extensive practical implementations.

Support Vector Machine (SVM), which was proposed 
by Vapnik [29] as a statistical learning theory, is a highly 
influential and extensively employed machine learning 

Fig. 2  Healthy (a), light (b), severe (c)
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algorithm utilized for both classification and regression 
tasks. The fundamental concept revolves around the 
identification of an optimal hyperplane that maximizes 
the margin between various classes, thereby effectively 
segregating the data into distinct categories. SVM dem-
onstrates exceptional performance across a wide range of 
applications, particularly in effectively managing datasets 
with high dimensions and tackling intricate classification 
tasks.

Establishment of classification models
This study developed two-class classification models, 
distinguishing between healthy and moldy core sam-
ples, as well as three-class classification models, differ-
entiating between healthy, light, and severe. The main 
aim of developing the three-class model was to evaluate 
its effectiveness in identifying apples with a light moldy 
core. Accurately identifying apples exhibiting a mild 
moldy core is of utmost importance to prevent their fur-
ther deterioration into a severe state and to safeguard the 

well-being of other unaffected fruits. Additionally, the 
identification of moldy core can aid farmers in imple-
menting targeted orchard management strategies aimed 
at mitigating the prevalence of diseased fruits. For two 
classes, a dataset consisting of 100 healthy apples and 
240 apples with moldy core was utilized. In the three 
classes, there were a total of 340 apples categorized as 
follows: 100 apples were classified as healthy, 160 apples 
had a mild moldy core, and 80 apples had a severe moldy 
core. As shown in Table 1, the samples were divided into 
calibration and prediction sets using the Kennard–Stone 
algorithm in a 3:1 ratio [30].

Results and discussion
Spectral features
Figure 3a displays the spectra of healthy and moldy core 
apples. From the figure, it is evident that there exist three 
distinct absorption peaks at approximately 650  nm, 
715  nm, and 815  nm. The absorption peak observed at 
approximately 650  nm is attributed to chlorophyll [31], 
whereas the peak at 715  nm is predominantly linked to 
the second harmonic stretching vibration of C-H and 
O–H bonds. The peak observed at 815  nm can be pri-
marily attributed to the second harmonic absorption of 
C–H and N–H bonds [32]. From the figure, it is evident 
that the spectral curves of healthy and moldy core apples 
exhibit a high degree of similarity. Additionally, there 
is a certain degree of spectral overlap between healthy 
and diseased apples, which poses a challenge for direct 

Table 1  Moldy core degree classification and sample set division

Moldy core 
degree

Area ratio Total Calibration set Prediction set

Healthy 0 100 75 25

light < 10% 160 120 40

Severe ≥ 10% 80 60 20

Fig. 3  Three types of different states and original transmission spectra (a), origin transmittance spectra (b), MSC (c), S–G smoothing (d), and SNV (e)
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differentiation. Despite the observed differences in spec-
tral intensities between healthy and moldy core apples, 
and the fact that the characteristic peaks were not sig-
nificantly different, directly categorizing the three apples 
by observing only the spectral information is still a great 
challenge.

The development of classification models that effec-
tively integrate the information present in spectra is 
crucial for achieving precise identification of diverse 
samples. In addition, to improve the accuracy of the 
spectra and to build a reliable classification model, three 
preprocessing techniques, namely SNV, Savitzky–Golay 
smoothing, and MSC, were used to eliminate unwanted 
factors such as noise, baseline drift, and light scatter-
ing from the original transmission spectra data, where 
Fig. 3b is the raw transmission spectrum, Fig. 3c is MSC, 
Fig. 3d is S–G smoothing and Fig. 3e is SNV.

Two‑class classification by full wavelengths
Table  2 provides a comprehensive overview of the 
results obtained from two-class experiments using SVM, 
ELM, KNN, and LDA-KNN models. Compared to the 
unprocessed raw spectra, the utilization of the MSC, 
Savitzky–Golay smoothing, and SNV preprocessing 
techniques led to improved prediction accuracy of the 
model. Among the four classification models that were 
investigated, SVM and LDA-KNN exhibited exceptional 
performance. Specifically, the utilization of the SNV pre-
processing technique resulted in an enhancement of pre-
diction accuracy from 89.41 to 92.94%. The classification 

performance of the ELM and KNN models was found to 
be satisfactory. The ELM model, when utilizing the MSC 
preprocessing technique, demonstrated an increase in 
predictive accuracy from 90.59 to 92.94%. The applica-
tion of the KNN model, in conjunction with SNV pre-
processing, resulted in a significant improvement in 
prediction accuracy, the accuracy increased from 87.06 to 
90.58%. The analysis of the obtained results demonstrates 
that the implementation of preprocessing techniques led 
to diverse enhancements for different classifiers. Among 
the various methods that were evaluated, the SNV pre-
processing technique exhibited the most superior per-
formance, resulting in a significant enhancement in 
accuracy.

Effective wavelengths selection based on two‑class 
classification
Four variable selection algorithms, namely CARS, 
CARS-SPA, MC-UVE, and MC-UVE-SPA, were uti-
lized to identify optimal wavelengths from an initial 
pool of 1044 spectrums to enhance and streamline the 
model. Taking the two-class classification as an exam-
ple, Fig.  4a shows the variation of RMSECV with the 
number of repetitions in the 50 rounds of repetition, 
from which it can be seen that the RMSECV value is 
the smallest at the 18th round, and the number of 
selected variables is 119. Fig.  4b demonstrates the 
results of MC-UVE in determining the optimal wave-
length. The two red dashed lines indicate the stability 
boundaries and the variables located on the boundaries 

Table 2  The two-class classification results based on SVM, ELM, KNN, and LDA-KNN models with full spectral

Classification 
algorithms

Preprocessing methods Accuracy (%) Calibration set Accuracy (%) Prediction set

Healthy
75

Diseased
180

Healthy
25

Diseased
60

SVM None 91.37 63 170 89.41 16 60

MSC 93.33 65 173 91.76 18 60

S–G smoothing 92.94 65 172 90.59 17 60

SNV 95.29 68 175 92.94 19 60

ELM None 91.37 61 172 90.59 18 59

MSC 93.33 63 175 92.94 20 59

S–G smoothing 91.37 61 172 90.59 18 59

SNV 92.94 63 174 92.94 20 59

KNN None 89.80 60 169 87.06 15 59

MSC 92.16 61 174 89.41 17 59

S–G smoothing 91.37 63 170 88.24 16 59

SNV 92.94 65 172 90.59 18 59

LDA-KNN None 92.94 66 171 89.41 16 60

MSC 94.11 70 170 92.94 19 60

S–G smoothing 94.90 69 173 91.76 19 59

SNV 96.08 70 175 92.94 19 60
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are regarded as non-informative variables. When con-
structing the model, the wavelength corresponding to 
the stable value within the boundary is chosen. The 
red curve indicates noise, which should be ignored. In 
the end, the MC-UVE method selected a total of 295 
wavelengths from the entire spectrum, while the wave-
length selection algorithm using CARS identified 119 
wavelengths. 295 and 119 wavelengths were retained 
by MC-UVE and CARS, respectively, which were then 
used as inputs to the SPA. The SPA eliminates redun-
dant variables, thus reducing the complexity of the 
model. Fig. 4c depicts the wavelength selection trend of 
the models using CARS-SPA and MC-UVE-SPA as the 
number of wavelengths increases. The black square in 
the figure corresponds to MC-UVE-SPA, which has an 
optimal RMSEP value of 0.2335. The red circle in the 
figure denotes CARS-SPA, which records an optimal 
RMSEP value of 0.1918. In the end, 32 and 18 optimal 
wavelengths were identified by the CARS-SPA and MC-
UVE-SPA methods, respectively.

Two‑class classification based on the effective wavelengths
Figure 5 shows the TPR, TNR, and Accuracy histogram 
of the SVM, ELM, KNN, and LDA-KNN classification 
models established for healthy and moldy core apples 
using the effective wavelengths determined by CARS, 
CARS-SPA, MC-UVE, and MC-UVE-SPA. By com-
paring TPR in Fig. 5a, TNR in Fig. 5b, and Accuracy in 
Fig.  5c it can be found that after selecting the effective 
wavelengths, the model classification performances of 
all the four classifiers are improved compared with the 
full spectrum model, which indicates that the selected 
effective wavelengths are highly representative. On the 
prediction set, we can see that the TPR of the model pre-
diction results are mixed, indicating that the model has 
a high misclassification rate of healthy apples, which is 
not conducive to the guidance of the actual production. 
The MC-UVE-SPA-LDA-KNN model phenotype is bet-
ter than the others, probably because the dimensionality 
reduction of the data by LDA facilitates the subsequent 
KNN for classification. It is worth mentioning that the 
TNR and Accuracy of all model classification results per-
formed well, probably because the models were more 

Fig. 4  Two-class wavelength selection by CARS (a), wavelength selection by MC-UVE (b), and wavelength selection by SPA (c)
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sensitive to feature recognition of healthy and moldy core 
apples. Figure 5d shows the confusion matrix of the pre-
diction model based on MC-UVE-SPA, from which it can 
be seen that LDA-KNN performs the best with only one 
misclassification followed by KNN and SVM, whereas 
ELM performs the worst with four misclassifications 
in which it misclassifies the two moldy core apples as 
healthy apples, which is extremely bad for both consum-
ers and fruit farmers. The model based on MC-UE-SPA 
uses 18 of the 295 wavelengths extracted by MC-UVE, 
while the model based on the CARS-SPA algorithm uses 
32 of the 119 wavelengths extracted by CARS. Without 

affecting the accuracy of the model, the combined vari-
able can be selected to select the combined algorithm 
to reduce irrelevant variables, improve the calculation 
speed, and reduce the complexity of the model. There-
fore, the model based on MC-UVE-SPA is the most suit-
able choice, it has fewer variables and better performance 
than the model based on CARS-SPA.

Figure 6 shows the ROC curve of the model based on 
CARS-SPA and MC-UE-SPA. From the figure, LDA-
KNN performs well, and the AUC value is close to 1, 
which is the highest among all classifiers. The perfor-
mance of KNN and ELM is relatively stable, and both 

Fig. 5  Two-class classification results: TPR (a), TNR (b), accuracy (c), confusion matrix of prediction sets based on MC-UVE-SPA model (d)

Fig. 6  Two-class classifications ROC curve of model prediction set: based on CARS-SPA (a), based on MC-UVE-SPA (b)
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have achieved good results. The performance of SVM 
based on MC-UE-SPA is better than that of CARS-SPA, 
which is related to the variables they screen out. The 
results show that MC-UVE is a reliable variable selection 
algorithm, and the combination of MC-UVE and SPA can 
extract representative wavelengths for the classification 
of moldy core apples. Therefore, considering the TPR, 
TNR, Accuracy, and ROC curves of the model, the MC-
UE-SPA-KNN and MC-UE-SPA-LDA-KNN models have 
excellent performance for the classification of healthy 
apples and moldy core apples. Thanks to its good data 
dimensionality reduction ability, the MC-UE-SPA-LDA-
KNN model should be the best choice.

Three‑class classification based on the effective 
wavelengths
Based on the four variable selection algorithms of CARS, 
CARS-SPA, MC-UVE, and MC-UVE-SPA, 154, 29, 214, 
and 14 effective wavelengths were screened out, respec-
tively, and the number of effective wavelengths used in 
the three-class classification was found to be less than 
two-class classification through comparison. Figure  7 is 
the TPR, TNR, and Accuracy histogram of the three-level 
classification models of SVM, ELM, KNN, and LDA-
KNN established for healthy apples, light, and severe 
apples using the determined effective wavelengths. From 
Fig.  7a, it can be seen that the TPR of all models per-
formed well, and only MC-UE-SPA-KNN performed the 
worst. Combined with the confusion matrix in Fig. 7d, it 
can be found that there are a total of 7 misclassifications. 

Among them, two light moldy core apples are misclas-
sified as healthy apples, which is unacceptable to con-
sumers. Figure  7b, c shows that the TNR and Accuracy 
performance of the model is relatively close and the over-
all performance is good. Figure  7d shows the confusion 
matrix of the prediction model based on MC-UE-SPA. 
From the figure, it can be seen that compared with the 
other three models, SVM performs best, with only two 
wrong classifications, followed by LDA-KNN, and ELM 
and KNN performance is just passable. It is worth noting 
that MC-UVE-SPA used only 14 of the 214 wavelengths 
extracted by SPA, and CARS-SPA used only 29 of the 154 
wavelengths extracted by SPA. Thus, the MC-UVE-SPA 
and CARS-SPA wavelength selection algorithm signifi-
cantly simplifies the model without affecting the clas-
sification accuracy. By comparing Figs.  5 and 7, it can 
be found that the overall effect of the three-class classi-
fication model is worse than the two-class classification 
model. Although the three-class classification model uses 
a smaller number of effective wavelengths, these wave-
lengths may not be sufficient to capture the complex rela-
tionships between their categories.

Figure  8 shows the ROC curve of the model based 
on CARS-SPA and MC-UE-SPA, from which it can be 
seen that the performance of MC-UVE-SPA-SVM is the 
best, and its AUC is close to 1, indicating that a good 
balance has been achieved between the TPR and the 
FPR, showing strong classification performance, next 
LDA-KNN. ELM’s AUC is slightly lower but still rela-
tively high, showing good performance. KNN’s AUC is 

Fig. 7  Three-class classification results: TPR (a), TNR (b), accuracy (c), confusion matrix of prediction sets based on MC-UVE-SPA model (d)
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medium, indicating that it has a certain performance 
on this task, but it is slightly insufficient compared with 
SVM. Combining the performance of each model in 
Figs. 7 and 8, MC-UE-SPA-SVM is more suitable for the 
three-class classification problems of health, light, and 
severe.

By analyzing Figs. 7 and 8, we can find that the mod-
els based on CARS-SPA and MC-UVE-SPA perform well 
in all three classification tasks. In practical applications, 
the model’s accuracy in detecting apples with moldy 
core should be higher than that for detecting healthy 
apples because misclassifying diseased apples as healthy 
can incur higher costs. In the detection of moldy core in 
apples, the most stringent requirement is to have zero 
tolerance for misclassifying severely moldy core apples as 
healthy. This is followed by the requirement to avoid mis-
classifying mildly moldy core apples as healthy. There is 
usually more tolerance for misclassifying healthy apples 
as diseased. In the study of early detection of apple moldy 
core, by comparing the performance of four different 
models, the MC-UVE-SPA-SVM model stood out with its 
excellent TPR, TNR, Accuracy, and ROC curves, prov-
ing its high accuracy and balance in identifying healthy 
apples and apples with different degrees of moldy core. In 
particular, the model successfully avoided misclassifying 
severe apples as healthy apples, demonstrating its reli-
ability in food safety. In contrast, other models misclassi-
fied when distinguishing light from healthy apples, which 
is unacceptable from a food safety perspective. Therefore, 
MC-UVE-SPA-SVM not only proved to be the optimal 
model for early moldy core detection in apples but also 
highlighted the effectiveness of the MC-UVE-SPA vari-
able selection algorithm, which made a significant contri-
bution to improving the yield of dynamic online sorting 
and ensuring food safety.

Wavelength analysis used in the optimal models
In this study, the MC-UVE-SPA wavelength selection 
algorithm was utilized to select different sets of wave-
lengths for two-class and three-class classification tasks 
as shown in Fig. 9. For two-class classification, 18 wave-
lengths were chosen: 597, 616, 632, 645, 684, 690, 698, 
704, 705, 708, 709, 712, 715, 716, 730, 760, 787, and 
799  nm. Most of these wavelengths are within the vis-
ible spectrum, primarily because of the color difference 
between the healthy apple tissue and the moldy core tis-
sue [33]. The moldy core tissue, being brown, is mainly 
composed of red, orange, and yellow, with 597  nm fall-
ing in the yellow band, 616 nm in the orange band, and 
the rest in the red band, which can be reflected in the 
transmission spectrum. For three-class classification, 14 
wavelengths were selected: 639, 694, 707, 709, 714, 715, 
716, 717, 720, 740, 746, 773, 810, and 820  nm. These 

Fig. 8  Three-class classifications ROC curve of model prediction set: based on CARS-SPA (a), based on MC-UVE-SPA (b)

Fig. 9  Distribution of variables selected in two-class and three-class 
classifications based on MC-UVE-SPA
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wavelengths overlap with some of the wavelengths used 
in binary classification, further highlighting their impor-
tance for distinguishing between healthy and moldy core 
tissues. Additionally, there is a small portion in the near-
infrared spectrum, which contributes to differentiating 
various degrees of moldy core. This can be confirmed 
by Fig. 3a, where various degrees of the moldy core can 
be observed along with the decrease in absorption peak 
intensity as the condition of moldy core worsens.

Conclusions
This study successfully detected moldy core apples 
using VIS/NIR transmission spectroscopy. Discrimi-
nation models for two-class and three-class classifica-
tions were established by combining four wavelength 
selection algorithms (CARS, CARS-SPA, MC-UVE, and 
MC-UVE-SPA) with four classifiers (SVM, ELM, KNN, 
and LDA-KNN). The results show that MC-UVE-SPA-
LDA-KNN is suitable for two-class classification between 
healthy and moldy core apples, with an AUC and accu-
racy of 0.99 and 98.82%, respectively. MC-UVE-SPA is 
applicable for three-class classifications of healthy, mild, 
and severe conditions, with an AUC and accuracy of 0.99 
and 97.64%, respectively. This confirms that MC-UVE-
SPA is an effective tool for selecting wavelengths specific 
to moldy core apples, aiding in the precise identification 
and differentiation of apple states. This study advances 
the dynamic online detection of early-stage moldy core 
conditions in apples, contributing to a reduction in post-
harvest disease occurrence and ensuring the effective 
preservation of fruit quality.
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