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Abstract 

Background  This study utilized ultrasonication-assisted green extraction techniques to explore the physicochemical, 
rheological, biological, and prebiotic properties, alongside gut modulation abilities of novel polysaccharides extracted 
from date pomace. The extraction aimed at enhancing the utilization of date pomace, a by-product of date fruit process‑
ing, by investigating its potential as a functional food ingredient. The research focused on optimizing the extraction pro‑
cess, understanding the complex structure of the polysaccharides, and assessing their various health-related functionalities.

Results  The ultrasonically extracted polysaccharides (UPS) were identified as a mixture of significant bioactive 
compounds including galacturonic acid, galactose, glucose, arabinose, and fructose, showcasing a high molecular 
weight of 537.7 kDa. The study found that UPS exhibited outstanding antioxidant activities, with scavenging abili‑
ties ranging from 59 to 82% at a concentration of 1000 mg/L. Additionally, UPS demonstrated potent inhibitory 
effects on α-amylase (83%), α-glucosidase (81%), and ACE-inhibition (45%), alongside strong antiproliferative activi‑
ties against Caco-2 and MCF-7 cancer cell lines and broad-spectrum antimicrobial properties. Remarkably, UPS 
also enhanced the abundance of beneficial gut microbiota, including Actinobacteria, Firmicutes, and Proteobacteria, 
during in vitro fermentations and positively modulated gut metabolic pathways, promoting the production of major 
short-chain fatty acids. UPS had higher abundance in pathways related to cofactors, vitamins, electron carriers, 
and prosthetic groups biosynthesis compared to blank.

Conclusions  The findings affirm the potential of UPS extracted from date pomace as an innovative and promising 
functional food ingredient. Its high molecular weight, complex sugar composition, significant antioxidant, antimicro‑
bial, antiproliferative activities, and prebiotic properties make it a valuable resource for promoting health and man‑
aging diseases. This study paves the way for further research on the bioavailability and physiological effects of UPS 
in vivo, highlighting the importance of sustainable utilization of agricultural by-products in developing functional 
foods that support human health.
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Graphical Abstract

Introduction
Date palm fruits, extensively cultivated and consumed 
across regions such as Africa, the Middle East, the Gulf 
Cooperation Council territories, and Central Asia, have 
experienced a marked increase in utilization owing to 
their beneficial health properties [1]. This augmented 
consumption encompasses not only the fruit, but also 
extends to derivative products including syrups, juices, 
jams, and pastes, particularly utilizing dates deemed sub-
par in quality. Dates, being repositories of vital nutrients, 
are a staple component within the dietary frameworks 
prevalent in MENA regions [1]. The agricultural and food 
industries contribute to significant by-product genera-
tion; nonetheless, these by-products present opportuni-
ties for resource recovery, promoting sustainability and 
the adoption of circular economies [2]. The processing 
of date fruits results in various by-products, such as date 
seeds, pomace, and substandard fruits, all rich in bioac-
tive constituents.

Currently, date pomace (DP) is primarily utilized 
within animal feed formulations, despite a large pro-
portion being discarded, which leads to environmen-
tal detriments. The nutrient matrix of DP, abundant in 

polysaccharides, proteins, phenolic compounds, and 
essential vitamins, renders it an opportune candidate for 
incorporation in animal feeds and as a substrate for the 
synthesis of high-value products [1]. Scientific investiga-
tions have predominantly concentrated on the phenolic 
content within dates, while the polysaccharides—com-
plex carbohydrates composed of monosaccharide units 
connected via glycosidic linkages and sourced from 
various biological origins, including plant, animal, and 
microbial—have received less focus [3, 4]

Polysaccharides, functioning as dietary fibers, emulsi-
fiers, and stabilizers, are pivotal in food and pharmaceu-
tical industries due to their intrinsic bioactive properties 
that may confer antitumor, antiglycation, and cardiopro-
tective effects [5, 6]. Their significant role in modulat-
ing the gut microbiota, which is essential for digestion, 
nutrient absorption, and immunomodulation, further 
highlights the critical interaction between dietary poly-
saccharides and overall health [7]. Despite their impor-
tance, date pomace (DP) polysaccharides remain an 
underutilized resource within the food industry. Con-
ventional extraction methods for polysaccharides, which 
typically rely on solvent use and are energy-intensive, are 
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fraught with inefficiencies, thus bolstering the transition 
towards more eco-friendly extraction techniques [8].

Emerging as a more sustainable option, deep eutec-
tic solvents (DES), consisting of benign metabolites, 
are gaining recognition for their superior efficacy in the 
extraction of polysaccharides by disrupting intermolecu-
lar interactions and improving solubility [9]. Acidic DES, 
like ChCl:CA, are particularly promising due to their 
cost-effectiveness, recyclability, and ability to enhance 
bioactivity [10]. The use of ultrasound-assisted extrac-
tion (UAE) has been lauded for enhancing extraction 
efficiency while minimizing energy and solvent con-
sumption, and for its capacity to preserve the integrity 
of thermally labile compounds. The combined applica-
tion of DES and UAE represents a forward-thinking 
approach, outperforming traditional methods in terms of 
efficiency, cost, and environmental impact [10]. Evidence 
also suggests that the ultrasonic parameters (cavitation, 
frequency, intensity, and mass transfer) can alter polysac-
charides’ structural and chemical characteristics, thereby 
affecting their physicochemical and biological attrib-
utes [11]. Additionally, ultrasonic degradation of Plan-
tago asiatica L. seed polysaccharides has been linked to 
increased prebiotic activities, modulation of gut micro-
biota, and short-chain fatty acid (SCFA) production [12]. 
Therefore, investigating the effects of ultrasonication on 
the polysaccharides of DP may yield notable findings.

To date, the endeavor of extracting polysaccha-
rides from date pomace (UPS) utilizing an ultra-
sound-assisted deep eutectic solvent method and 
the subsequent impact on their physicochemical, 
structural, and biofunctional properties has not been 
documented. This study aimed to (1) investigate the 
extraction of UPS using ultrasound-assisted DES and 
conduct a thorough physicochemical characterization; 
(2) assess the rheological, functional, and biological 
properties of UPS, at various concentrations, includ-
ing its capacity for antioxidant, antidiabetic against 
α-amylase and α-glucosidase enzymes, ACE-inhi-
bition, antiproliferative activity against Caco-2 and 
MCF-7 cell lines, and antimicrobial activities against 
four pathogenic bacteria; (3) evaluate the prebiotic 
efficacy of UPS by its ability to stimulate growth of six 
well-known probiotic bacteria and modulate human 
gut microbiota and SCFA production through in vitro 
fecal fermentation.

Materials and methods
Materials
Approximately 20 kg of fresh wet date pomace (DP) resi-
due was obtained from Al Foah Date Processing Industry 
in Al Ain, Abu Dhabi, United Arab Emirates, and stored 

at −20  °C for further analysis. Choline chloride (ChCl) 
and citric acid (CA) were procured from Sigma-Aldrich 
Inc. (St. Louis, Missouri, USA). All other chemicals and 
reagents employed were of high analytical grade and were 
sourced from Sigma-Aldrich, unless otherwise indicated.

Preparation of deep eutectic solvent (DES)
The DES was prepared following the heating and stirring 
method described by Shafie and Gan [13]. ChCl and CA 
were mixed in a 1:1 molar ratio with 30% water. These 
conditions were chosen based on preliminary trials with 
different molar ratios (1:1, 1:2, 1:3, 1:4, 2:1, and 3:1) and 
various water percentages (20–50%) and 1:1 gave the 
highest amount of polysaccharides evaluated with phe-
nol–sulphuric acid method. The mixture was continu-
ously stirred with a magnetic bar and heated on a heat 
stirrer (Stuart UC152, UK) at 80 °C until a homogeneous 
and transparent eutectic liquid was formed.

Pretreatment of date palm residue with deep eutectic 
solvent
A slightly modified method based on Yang et al. [14] was 
employed for defatting. Specifically, a 1:5 (w/v) ratio of 
DP to hexane was continuously stirred on a magnetic 
stirrer for 4  h. The DP was separated from hexane by 
draining it over muslin cloth and air-dried overnight in a 
fume hood at ambient temperature, then stored at −20 °C 
for further analysis. During the pretreatment, 0.5 g of DP 
was added to 10 mL of the DES and incubated at 80  °C 
for 120 min with constant shaking at 250 rpm in a WSB 
shaking water bath (Witeg, Germany). The heated mix-
ture was centrifuged at 10,000×g at 5 °C for 15 min (Cen-
trifuge 5804, Eppendorf AG, Germany). The supernatant 
was separated using muslin cloth and analyzed for the 
total amount of extracted polysaccharides using the phe-
nol–sulfuric acid method described by Cuesta et al. [15].

Optimization of DP pretreatment with deep eutectic 
solvent
The experimental design for evaluating the efficiency of 
DES pretreatment was performed using Design-Expert 
Ver. 8.1.5 (Stat-Ease Inc., Minneapolis, MN, USA). 
Response Surface Methodology (RSM) was employed 
for the experimental design, and a total of 26 runs were 
conducted (see Table S1). The polysaccharide extraction 
yield was considered the response variable for the design 
experiments, and a Central Composite Design (CCD) 
was carried out to determine the optimal pretreatment 
conditions.
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Optimization of ultrasound‑assisted deep eutectic 
extraction of polysaccharides
The polysaccharides from the DES-pretreated DP mix-
ture were extracted using a probe-type ultrasonic sys-
tem (SFX550, Branson, Mexico) at 80  m amplitudes for 
15 min. The sonicated mixture was centrifuged and quan-
tified, as described in Section. "Pretreatment of date palm 
residue with deep eutectic solvent". A 23 experimental 
design was carried out to evaluate the extraction effi-
ciency of UAE for polysaccharides extraction. The experi-
ment was designed with RSM using Design-Expert Ver. 
8.1.5, and a total of 10 runs were obtained (see Table S3). 
CCD was applied to determine the optimal UAE condi-
tions. The polysaccharide extraction yield was considered 
the response variable for the design. The mathematical 
model corresponding to the CCD is presented in Eq. 1.

where Y represents the response of yield, β0 is the inter-
cept, β1 and β2 are the linear coefficient, β11, β22 are quad-
ratic and β12 represents the interaction coefficient. The 
experimental analyses were conducted in triplicates, and 
the data obtained were analyzed with regression analysis 
to select the optimal conditions for the UAE extraction of 
polysaccharides.

Purification of crude polysaccharides
Deproteinization and purification of UPS were con-
ducted according to the method described by Ali et  al. 
[16] with slight modifications. The crude polysaccharides 
were mixed with four volumes of chilled absolute etha-
nol and stored at 4  °C for 24  h, followed by centrifuga-
tion at 5000 xg for 20  min. Afterward, the precipitated 
polysaccharides were mixed with 16% (w/v) trichloro-
acetic acid to eliminate the presence of any proteins. The 
mixture was centrifuged at 15,000 × g at 4 °C for 20 min. 
The supernatant was purified using Slide-A-Lyzer™ G2 
dialysis cassettes (10  kDa MWCO) (Thermo Fisher Sci-
entific) against deionized water for 72 h at 4 °C. The UV–
Vis spectrometer (Epoch™ 2, Bio-Tek, VT, USA) did not 
detect absorbance at 260 and 280 nm, indicating no pres-
ence of proteins or nucleic acids. The purified UPS was 
freeze-dried and stored at -20 °C for further analysis. The 
total carbohydrate content was quantified as reported 
in Sect.  "Pretreatment of date palm residue with deep 
eutectic solvent".

UPS characterization
Molecular weight (Mw) and monosaccharide composition 
determination
The method reported by Bamigbade et  al. [17] was 
employed to evaluate the Mw using gel permeation 

(1)
Y = β0 + β1X1 + β2X2 + β11X1

2
+ β22X2

2
+ β12X1X2 + ǫ,

chromatography (GPC). Before injection into the SIL-
20AC autosampler of the HPLC system (Shimadzu, 
Kyoto, Japan), the sample underwent filtration through a 
0.22-μm syringe filter. The system, which was equipped 
with a refractive index detector (RID-20A) and a Shim-
pack GPC-802 column, maintained a constant tempera-
ture of 40  °C. Distilled water with a flow rate of 1  mL/
min was used to elute the samples. To determine the 
molecular weight (Mw), calibration curves based on pul-
lulan standards were employed. Monosaccharides com-
position was determined according to Qiao et  al. [18]. 
Briefly, 2  M trifluoroacetic acid (TFA) (1  mL) was used 
to hydrolyze the purified UPS (25 mg) at 105  °C for 4 h 
in a heating block to fractionate the sample into con-
stituent monosaccharides followed by methanol addition 
(1  mL) and purging with nitrogen until the hydrolysate 
become dried. The dried hydrolysates was then reconsti-
tuted with 1 mL deionized water, then 50 µL of the mix-
ture was added to 50 µL of 0.6 M NaOH, 100 µL of 0.5 M 
methanolic 1-phenyl-3-methyl-5-pyrazolone (PMP) and 
vortex. The reaction mixture was completely derivatized 
by incubating in a water bath for 70 min at 70 °C. After 
heating, the mixture was cooled and neutralized with 120 
µL 0.3 M HCl, vortex and make up to 1 mL with deion-
ized water. The derivatized hydrolysate was extracted 
three times using an equal amount of chloroform and 
centrifuged at 10,000× g for 10 min to remove the organic 
phase (chloroform layer). Monosaccharide standards 
(arabinose, fructose, galactose, galacturonic acid, glu-
cose, lactose, maltose, mannose, ribose, and xylose) were 
hydrolyzed and derivatized as described for the UPS. The 
derivatized UPS was filtered using a 0.45-μm membrane 
filter and injected into the Thermo C18 (250 × 4.6  mm, 
5 μm) column in the Shimadzu HPLC system equipped 
with an SPD-M20A photodiode array using the following 
conditions: mobile phase A: 0.1  M ammonium acetate, 
mobile phase B: acetonitrile; flow rate: 1.5  mL/min; UV 
detector: 245 nm; injection volume: 20 μL; column tem-
perature: 30  °C. A gradient program with varied mobile 
phase (A: 0.1 M ammonium acetate, mobile phase B: ace-
tonitrile) concentration at flow rate: 1.5 mL/min and col-
umn temperature of 30 °C was used.

Fourier transform infrared (FTIR) spectroscopy
FTIR spectroscopy was performed as per the protocol 
described by Ali et al. [16]. The UPS powder was applied 
onto a diamond/ZnSe crystal plate (PerkinElmer Inc., 
CA, USA). The plate was then scanned 16 times using the 
Spectrum Two FT-IR Spectrometer (PerkinElmer). The 
scanning was conducted from 4000 to 400 cm−1 at a reso-
lution of ± 4  cm−1, and the temperature was maintained 
at 23 ± 0.1 °C.
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Thermal properties
The thermogram of UPS was determined using a differ-
ential scanning calorimeter (DSC 25, TA Instruments, 
DE, USA) as outlined by Sasikumar et  al. [19]. UPS 
(25  mg) was heated in a sealed aluminum pan from 20 
to 250  °C at 10  °C/min under a constant N2 supply. The 
TGA analysis was conducted to investigate the weight 
loss as described by Fatahi and Tabaraki [20] with slight 
modification. UPS (5 mg) was heated from 25 to 600 °C at 
10 °C/min with a constant N2 supply.

Scanning electron microscopy (SEM)
The surface morphology and microstructure were 
observed using a JEOL JSM-6010LA scanning elec-
tron microscope (SEM, Akishima, Tokyo, Japan) oper-
ated at an accelerated voltage of 20  kV. A 5  mg of UPS 
was coated with a thin gold coat using a Cressington 108 
Auto Sputter Coater (Ted Pella Inc., Redding, CA, USA) 
before analysis [16].

Particle size and zeta potential analysis
The particle size distribution and zeta potential charge 
were determined according to Ali et  al. [16]. UPS was 
diluted to 1  mg/mL with deionized water and placed 
in the cells of the NanoPlus-3 Particulate Systems 
(Micromeritics Instrument Corp., GA, USA).

Physical and rheological properties
Three rheological tests were performed on the crude 
aqueous solution of UPS (5  mg/mL) using a rheometer 
(Discovery Hybrid HR-2, TA Instruments, DE, USA) 
according to Ali et  al. [16]. A 50  mm geometry cone 
plane at a 50 μm gap, 1° cone angle, and 25 ± 0.1 °C plate-
controlled temperature was employed for the analyses. 
Data were analyzed using TRIOS 5.2 software.

Amplitude and frequency sweep tests
The linear viscoelastic region of UPS solution was evalu-
ated using an amplitude sweep test in the strain range of 
0.1–10% at a constant frequency of 1.0 Hz. The frequency 
sweep test was used to estimate the viscoelastic behavior 
of UPS at a frequency range of 0.1–10 Hz and a strain of 
0.8% within the linear viscoelastic region.

Time‑dependent behavior
UPS solution was subjected to low and high shearing con-
ditions as described by Rütering et al. [21] to determine 

structural deterioration and recovery. The storage (G’) 
and loss (G") moduli were measured over three-time seg-
ments: (200 s, 0.2 Pa), (60 s, 50 Pa), and (400 s, 0.2 Pa).

Water binding capacity (WBC) and fat binding capacity (FBC)
The WBC and FBC of UPS were determined according to 
Jia et al. [22]. Briefly, 75 mg of freeze-dried UPS was dis-
solved in 1.5 mL of deionized-distilled water or sunflower 
oil in a centrifuge tube of known weight and dispersed 
with a vortex for 5  min at room temperature. The mix-
ture was centrifuged at 15,000×g for 30 min, the superna-
tant was removed, and the residues were weighed. WBC 
and FBC were calculated in percentages using Eq. 2.

Water solubility index (WSI)
The WSI was evaluated according to Ali et  al. [16]. 
Briefly, 100  mg of UPS was mixed with 2  mL of deion-
ized water in a centrifuge tube with a known weight and 
vortexed until fully dissolved, followed by centrifugation 
at 12,000×g for 10 min, and the supernatant was freeze-
dried overnight. The WSI value was determined with 
Eq. 3.

Biofunctional activities of UPS
All the biofunctional activities were carried out accord-
ing to methods detailed in [23, 24] unless otherwise 
mentioned.

Antioxidant capacities
Radical scavenging by DPPH and ABTS  In this section, 
the radical scavenging activities of UPS at various con-
centrations (125, 250, 500, and 1000 mg/L) were assessed 
using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 
2,2′-azino-bis(3-ethylbenzene-thiazoline-6-sulphonic 
acid) radical (ABTS• +). The absorbance was measured at 
specific wavelengths (517 nm for DPPH and 734 nm for 
ABTS• +) following established methodologies. The per-
centage radical scavenging rate of DPPH and ABTS⋅ + was 
calculated using Eq. 4.

(2)

WBC
/

FBC(% ) =

(

Water
/

oil bound weight

Total dry sample weight

)

× 100.

(3)

WSI(%) =

(

Dry weight after lyophilization

Total sample weight

)

× 100.
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Superoxide radical scavenging activities  This section 
investigated the superoxide scavenging activities of puri-
fied UPS at different concentrations using superoxide 
dismutase (SD) and superoxide anion scavenging (SAS) 
assays. Absorbance measurements were taken at 420 nm 
for SD and 320 nm for SAS. The inhibition rate of pyro-
gallol oxidation was calculated using Eq. 4.

Reactive oxygen species (ROS) scavenging activities  Here, 
the inhibition of reactive oxygen species by purified UPS 
was evaluated using hydrogen peroxide (HP) and hydroxyl 
radical scavenging (HRS) assays. Absorbance measure-
ments were conducted at 230 nm for HP and 536 nm for 
HRS. The scavenging activity was calculated using Eq. 4.

Metal chelation  For MC activity, 1 mL of UPS was mixed 
with 2 mL of water, 0.4 mL of ferrozine solution (6 mM), 
and 80 μL of FeCl2 solution (4 mM) in a glass tube. The 
mixture was then incubated at room temperature for 20 
min. The absorbance was measured at 562 nm, and result 
was calculated in µg/mL.

FRAP and  reducing power  The antioxidant power of 
purified UPS was determined using ferric reducing anti-
oxidant power (FRAP) and reducing power (RP) assays. 
Absorbance measurements were taken at 593 nm for 
FRAP and 700 nm for RP. The results were calculated in 
terms of µg/mL equivalent to ascorbic acid using equa-
tions based on standard curves.

Total antioxidant capacity (TAC)  The total antioxidant 
capacity (TAC) of UPS was evaluated through a specific 
method involving the preparation of a TAC reagent and 
absorbance measurements at 695 nm. The results were 
calculated in terms of µg/mL equivalent to ascorbic acid 
using an equation based on a standard curve.

Inhibition of α‑amylase and α‑glucosidase activities
The antidiabetic activity of purified UPS was assessed 
by evaluating its capacity to inhibit α-amylase and 
α-glucosidase. These assays involved specific reagents, 
incubation, and absorbance measurements at specific 
wavelengths. The absorbance was recorded at 400 nm. The 
percentage rate of inhibition was calculated using Eq. 3.

(4)Scavenging rate (%) =
(Blank absorbance− UPS absorbance)

Blank absorbance
× 100.

(5)
Inhibition (%) =

(Blank absorbance− UPS absorbance)

Blank absorbance
× 100.

Angiotensin‑converting enzyme (ACE) inhibition
The ACE inhibitory activity of purified UPS was eval-
uated according to Tarique et  al. [23]. Absorbance 
measurements at 228 nm were used to calculate the per-
centage rate of inhibition using Eq. 5.

Antiproliferative activity
The antiproliferative effects of purified UPS on Caco-2 
and MCF-7 cancer cell lines were assessed using a spe-
cific procedure. This involved incubation with the cells, 
addition of reagents, and absorbance measurements at 
specific wavelengths. Percentage cytotoxicity was calcu-
lated based on the ratio of OD570/OD605 nm:

where Rsample is the absorbance ratio of OD570/OD605 in 
the presence of EPS-C70. Rctrl is the absorbance ratio of 
OD570/OD605 in the absence of UPS [vehicle (positive) 
control]. R0 is the averaged background [non-cell (nega-
tive) control] absorbance ratio of OD570/OD605.

Minimum inhibitory concentrations (MIC)
The MIC of UPS against four common food pathogens, 
including Escherichia coli 0157:H7 1934, Salmonella 
Typhimurium 02-8423, Staphylococcus aureus ATCC 
25923, and Listeria monocytogenes DSM 20649) was 
determined through a specific method involving dilution 
and incubation. Absorbance measurements at 600 nm 
were used to calculate the percentage rate of inhibition 
[23].

In vitro digestion of UPS
The digestibility of UPS was evaluated using the 
INFOGEST2.0 model for adults, as detailed by Brodkorb 
et  al. [25]. Briefly, 30  mg/mL of UPS was sequentially 
mixed with in  vitro oral, gastric, and intestinal fluids. 
Total sugar (TS) and reducing sugar (CR) using the crude 
aqueous solution were assessed according to Bamigbade 
et al. [17].

Prebiotic properties
The prebiotic properties of the purified UPS were 
assessed using six probiotic strains: Lactobacillus aci-
dophilus, Lactobacillus delbrueckii subsp. delbrueckii, 
Lacticaseibacillus rhamnosus, Lacticaseibacillus par-
acasei subsp. paracasei, Lactobacillus gasseri, and 

(6)Cytotoxicity(%) =

[

1−
Rsample − R0

Rctrl − R0

]

× 100
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Bifidobacterium breve, following the procedure reported 
by Yılmaz and Şimşek [26]. The growth kinetics of each 
probiotic strain at 600 nm for 24 h were measured under 
different carbon sources.

In vitro fecal fermentation, microbial analysis, 
and short‑chain fatty acid (SCFA) analysis
In vitro fecal fermentation of UPS
The in  vitro fecal fermentation was carried out accord-
ing to the method described by Bamigbade et  al. [17]. 
Briefly, fecal slurry was prepared using an equal amount 
of fecal samples pooled from four healthy individuals 
(26–45 years) without recent use of antibiotics. The fecal 
slurry was mixed with a basal medium and various treat-
ments (blank, galacto-oligosaccharides (GOS-P), and 
UPS) and then incubated at 37 ºC in a shaking water bath 
for 24 h, as described by Bamigbade et al. [17]. Changes 
in pH, gas production, total sugar, and reducing sugar 
during fecal fermentation were evaluated at 0, 6, 12, 24, 
and 48 h.

Microbial analysis during fecal fermentation
The microbial content for each treatment was analyzed 
every 6  h during fecal fermentation as per Bamigbade 
et al. [17]. Briefly, Genomic DNA was extracted using the 
Genomic DNA Kit (Tiangen, Beijing, China). The V3–
V4 regions of 16S rRNA were amplified and analyzed at 
BGI, Hong Kong. Library construction, concentration, 
and quality assessment were performed using Agen-
court AMPure XP beads and Agilent 2100 Bioanalyzer, 
respectively. Raw data were filtered using iTools Fqtools 
fqcheck (v.0.25), and the paired-end reads were merged 
into a single tag sequence using Fast Length Adjustment 
of SHort reads (FLASH, v1.2.11). The sequences were 
clustered into operational taxonomic units (OTUs) with 
a 97% similarity threshold by UPARSE, while chimeras 
were removed using UCHIME (v4.2.40). OTU repre-
sentative sequences were mapped to the tags using USE-
ARCH (v7.0.1090) and aligned against the database for 
taxonomic annotation using the RDP classifier (v2.2) at 
a 60% sequence identity. Alpha diversity was calculated 
using mothur (v.1.31.2), beta diversity was obtained using 
QIIME (v1.80) and R (v3.1.1), differential species analysis 
was carried out using linear discriminant analysis effect 
size (LEfSe), microbial functional annotation was pre-
dicted by PICRUSt2 v2.3.0-b, and R (v3.4.10), while cor-
relation analysis and model prediction were performed 
using R (v3.4.1) and Cytoscape.

SCFA production
The quantification of short-chain fatty acids (SCFAs) 
produced by UPS after fecal fermentation was evaluated 
according to Dobrowolska-Iwanek et  al. [27] with slight 

modifications. After 48 h of fermentation, the broth was 
centrifuged at 15,000×g for 20 min, and the supernatant 
was filtered using 0.45-µm filters. The Shimadzu HPLC 
system equipped with the SPD-M20A photodiode array 
detector (PDA) was used for analysis. A Shodex C18M 
4E (250 × 4.6  mm, 5  μm) column (Resonac Inc, Japan) 
was employed with an isocratic mobile phase containing 
10  mM monopotassium phosphate, pH 2.4 with phos-
phoric acid, and 100% acetonitrile (80:20) at a flow rate 
of 1.5 mL/min and a column temperature of 30 ºC. The 
injection volume was 20 μL with a 7-min run time and a 
210 nm UV detector. Standard curves were prepared for 
acetic, propionic, and butyric acid under the same condi-
tions at different concentrations.

Statistical analysis
The different biological activities conducted in this 
study were evaluated in triplicates, and the results were 
expressed as means ± standard deviation. One-way 
ANOVA was employed to estimate the significance effect 
of the UPS concentrations using JMP® Student v17 (JMP 
Statistical Discovery LLC), and Tukey’s test was con-
ducted to perform means comparisons (p < 0.05).

Results
Optimization and purification of UPS
To optimize DES pretreatment and ultrasonic-assisted 
extraction (UAE) factors, we employed a CCD. Results 
are presented in Tables S1 (DES) and S3 (UAE). Experi-
mental data underwent multiple regression analysis 
using the CCD matrix. Significance of factors’ effects 
and model validation were assessed through analysis of 
variance (ANOVA), as in Tables S2 (DES) and S4 (UAE). 
3D response surface plots are shown in Fig. S1A–H. The 
highest UPS yield was achieved under these pretreat-
ment conditions: pH 8, 100  °C, solid–liquid ratio 1:10, 
and 150 min. UAE parameters were set at an amplitude 
of 80  m and 20  min. Following extraction, UPS under-
went deproteinization and purification before lyophi-
lization. The yield of purified UPS was 5060 ± 0.64  µg/
mL, determined using a standard glucose curve 
(y = 0.0009x + 0.0021, R2 = 0.994).

Characterization of UPS
Characterized UPS had an average molecular weight 
(Mw) of 537.7  kDa. Chromatogram analysis (Fig.  1A) 
revealed UPS as a heteropolysaccharide with varying 
concentrations of galacturonic acid, galactose, glucose, 
arabinose, and fructose (molar ratio 0.1:0.9:1.0:0.4:0.3).

FT-IR spectra (Fig.  1C) group displayed typi-
cal polysaccharide functional. Peaks at 830.7  cm−1 
and 844.19  cm−1 indicated α- and β-conformation 
pyranose rings, while 952.37  cm−1 signals indicated 
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glycosidic bonds [28]. Absorbance at 1016.71  cm−1 
and 1171.87  cm−1 suggested pyranose ring stretch-
ing and C–O–C vibration. Vibrations of C–O–H and 
C–O–C (polysaccharide fingerprint) were observed 
from 972.66  cm−1 to 1097.91  cm−1, with C–H bending 
vibration at 1219.06  cm−1 [16]. A prominent peak at 
1502.97  cm−1 indicated C=O stretching of the carbox-
ylic group, and at 1729.54 cm−1, a non-polar C–C bond 
was observed [29]. Weak absorbance at 1801.3  cm−1 
and a wide peak at 3369.63  cm−1 indicated mannose 
presence and stretching of O–H in cellulose and water 
fraction of polysaccharides, respectively [30]. DSC 
thermogram (Fig. 1D) revealed Tg (50 °C), Tm (100 °C), 
and Td (200  °C). TGA showed three-level mass loss: 
12.5% (0–100 °C), 37.5% (100–250 °C), and 37.5% (250–
550  °C) with 12.5% residual mass (Fig.  1E). Structural 
morphology from SEM (Fig. 2) revealed a smooth, com-
pact structure with a mixture of large and small par-
ticles. Particle size analysis indicated 5829.8  nm (Fig. 
S2A), and zeta potential was -256.47 mV (Fig. S2B).

Rheological properties of UPS
Viscoelastic characteristics were assessed with dynamic 
storage (G’) and loss (G’’) moduli in amplitude and fre-
quency sweep tests. In the amplitude test (Fig.  3A), 
aqueous UPS products were analyzed. Frequency sweep 
(Fig. 3B) at a constant shear rate of 0.8% and 0.1–10 Hz 

showed increasing G’ and G” with higher frequency, 
with G’ predominating. UPS’s structural changes were 
evaluated in a time-dependent test over three shear 
periods (Fig.  3C). At a 0.8% shear rate, UPS displayed 
elasticity (G’> G’’). Acceleration to 50% shear made UPS 
viscous (G’ < G’’), returning to elasticity at 0.8% shear.

Bioactive properties of UPS
Antioxidant assays
Antioxidant assays (250–1000  mg/L of UPS) showed 
dose-dependent activities (Table  1). UPS scavenged 
DPPH and ABTS radicals (17.1 ± 0.72% to 62.9 ± 2.37% 
and 31.7 ± 0.68% to 82.1 ± 0.81%, respectively). SD and 
SAS activities ranged from 14.8 ± 1.69% to 61.6 ± 1.95% 
and 19.4 ± 1.88% to 58.5 ± 1.07%, respectively. HP 
scavenging increased from 30.0 ± 0.13% at 250  mg/L 
to 58.5 ± 0.05% at 1000  mg/L. HRS increased from 
17.1 ± 0.07% to 81.1 ± 0.53%. MC rate increased from 
19.6 ± 0.07% at 250 mg/mL to 62.8 ± 0.59% at 1000 mg/L. 
Antioxidant power ranged from 461.4 ± 1.83 to 
411.4 ± 1.08, 588.6 ± 20.57 to 961.5 ± 5.95, and 13.1 ± 0.18 
to 217.0 ± 0.13  µg/mL for FRAP, TAC, and RP, respec-
tively, at 250–1000 mg/L.

Enzyme inhibitory activity assays
The hypoglycaemic activities of UPS were eval-
uated with α-amylase and α-glucosidase. A 
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concentration-dependent activity was observed, with 
83.6 ± 0.48% (IC50 = 213.661  µg/mL) for α-amylase and 
81.6 ± 0.35% (IC50 = 250.316  µg/mL) at 1000  mg/L of 
UPS, as depicted in Fig.  4A. Additionally, UPS exhib-
ited the highest inhibitory activity of 45.5 ± 0.54% 
(IC50 = 332.945  µg/mL) at 1000  mg/mL against ACE 
(Fig. 4A).

Antiproliferative activity
The cytotoxicity of UPS against human carcinoma 
cells was assessed at four different concentration lev-
els, as illustrated in Fig.  4B. Both Caco-2 and MCF-7 

cancer cell lines were employed in this study, and the 
results indicated a concentration-dependent response. 
The maximum percentage inhibition was achieved at 
2500  mg/L of UPS, with 96.3 ± 0.46% for Caco-2 and 
96.6 ± 0.39% for MCF-7, respectively. Notably, MCF-7 
cells (IC50 = 724.302 mg/L) exhibited greater sensitivity to 
UPS compared to Caco-2 (IC50 = 774.209 mg/L).

Antimicrobial activities
UPS was evaluated for antimicrobial efficacy against four 
foodborne pathogens at five concentrations (Fig.  4C). 
Minimum inhibitory concentration (MIC) is defined as 

(C)

(A) (B)

(D)

Fig. 2  SEM micrographs of UPS (A–D) at magnifications 1000X (A), 2000X (B), and 3000X (C–D)
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a concentration at which 50% of the bacterial population 
reduces after 24 h. All tested pathogens showed concen-
tration-dependent sensitivity to UPS, with 68.6%, 63.9%, 
66.1%, and 65.9% inhibition for E. coli 0157:H7, S. aureus, 

S. Typhimurium, and L. monocytogenes, respectively, at 
1000 mg/L.

Fig. 3  Rheological properties: A amplitude sweep test, B frequency sweep test and C time-dependent behavior of UPS
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Functional properties of UPS
To estimate the water and oil absorption capabilities of 
UPS, important functional properties were evaluated, 
including WBC, FBC, and WSI. The results for these 
properties were as follows: WBC, 756.2 ± 13.4%; FBC, 
941.8 ± 0.7%; and WSI, 39.8 ± 0.9%.

Effect of in vitro digestion on total sugar and CR of UPS
The total sugar content of UPS decreased from 
24.2 ± 0.30 to 15.3 ± 0.29, representing a 37% reduction 
(Fig. S3). Additionally, the CR decreased from 2.5 ± 0.21 
to 0.9 ± 0.91, equivalent to a 63.2% reduction.

Growth stimulation of potential probiotics
To evaluate the prebiotic effects of UPS on six probiotic 
strains, bacterial growth kinetics were studied over a 
24-h period. The study involved the utilization of differ-
ent carbon sources. The growth of the probiotics in the 
presence of UPS demonstrated varying degrees of growth 
kinetics. The cell density ranged between 0.1 nm (control) 
and 0.7 nm (glucose). With UPS, all six probiotic cultures 
exhibited reduced lag and exponential phases, and they 
reached their maximum growth at different times, which 
fell between the values for GOS-P and glucose. Among 
the probiotics tested, Lacticaseibacillus paracasei subsp. 
paracasei achieved the highest cell density (0.5 nm), 
while Lactobacillus gasseri had the lowest (0.3 nm).

Effect of UPS on in vitro human fecal fermentation
Gas production and pH changes
Gas production increased with fermentation time 
(Fig. 5A). Maximum gas production of UPS (5 mL) was 
comparable to GOS-P (5.5  mL), both higher than the 
control (3.5  mL). Similarly, pH decreased with fermen-
tation time (Fig. 5B). UPS pH reduction from 7.4 to 4.6 
was comparable to GOS-P, changing from 7.3 to 4.2. 
Total and reducing sugars: total sugar content inversely 
proportional to fermentation time (Fig. 5C). After 48 h, 
the highest total sugar content in the fermentation broth 
observed in the control (6.01 mg/mL), while GOS-P and 
UPS had 4.2 and 4.6  mg/mL, respectively. In contrast, 
reducing sugar content trend (Fig.  5D) showed initial 
increase and subsequent decrease, highest values at 6  h 
for all groups before decreasing further up to 48 h.

Production of short‑chain fatty acids (SCFAs)
Concentrations of acetic, propionic, and butyric acids in 
UPS fecal fermentation products are shown in Fig. 5E–G. 
All experimental groups exhibited a similar trend, a sig-
nificant increase in SCFA concentrations with time, up to 
24 h, followed by a decline. Highest acetic acid (19.3 mg/
mL) produced by UPS, while GOS-P generated highest 

propionic (12.1 mg/mL) and butyric (13.3 mg/mL) acids. 
Control group had lowest levels of all quantified SCFAs.

Gut microbiota modulation
Bioinformatic analysis of gut bacteria
After 48  h of fermentation, a total of 883 OTUs identi-
fied across all groups, with 541 OTUs shared among all 
groups. Blank, GOS-P, and UPS groups had 722, 713, 
and 721 total OTUs, with 61, 55, and 35 unique to each 
group, respectively. Paired OTUs sharing revealed 66, 54, 
and 71 OTUs for blank-GOS-P, blank-UPS, and GOS-P-
UPS, respectively. Analysis of similarities of the OTUs 
data indicated significant difference among the OTUs 
from the three groups. Multiple response permutation 
procedure confirmed significant differences (p < 0.05) 
among the groups.

Six alpha diversity indexes were used in the study, 
and their results are presented with refraction curves 
and boxplots (Fig.  6B). While some diversity measures 
showed significant differences among the groups, others 
did not. In the beta diversity analysis, non-metric multi-
dimensional scaling (NMDS) and principal coordinate 
analysis (PCoA) revealed differences in microbial diver-
sity and species complexities between the groups, with 
UPS and GOS-P diverging from the control at 48 h. The 
PCoA enterotype diagram supported these findings, indi-
cating different microbial community compositions in 
the blank, GOS-P, and UPS groups.

Microbial composition and abundance during fermen-
tation evaluated through OTU taxonomic analysis using 
RDP classifier Bayesian algorithm. Fig. S6B and S6C 
depict relative microbial abundance at phylum and genus 
levels. Major phyla included Firmicutes, Proteobacte-
ria, and Actinobacteria, varying in abundance among 
the groups. Proteobacteria most abundant in UPS, while 
Actinobacteria and Firmicutes prominent in GOS-P and 
blank, respectively. Figure 6E displays relative abundance 
at order taxon level. Common orders found in all groups 
included Lactobacilales, Enterobacteriales, Clostridiales, 
and Bifidobacteriales, highest abundance of Clostridi-
ales and Bifidobacteriales in UPS and Lactobacilales 
in blank. Several major genera abundant in all groups, 
including Enterococcus, Escherichia, Bifidobacterium, 
Blautia, Klebsiella, Streptococcus, and Rombustia. Rela-
tive abundances of top 50 genera statistically compared 
with heatmap (Fig S6D). The abundance of genera in 
UPS and GOS-P are closely associated and different from 
blank. Species phylogenetic analysis (Fig.  6F) corrobo-
rates results of relative abundances at phylum, order, and 
genus levels mentioned above.
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Fig. 6  Effect of UPS on gut microbiome composition during fecal fermentation. Venn diagram (A), box plot of different indices of alpha diversity (B), 
NMDS plot (C), PCoA plot (D), combination graph of UPGMA Cluster Tree and order abundance bar plot (E), and species phylogenetic analysis (F) 
of the sample groups. where A, B, and D represent the sample groups blank (negative control), GOS-P (positive control), and UPS, respectively
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Overall changes in microbial metabolic pathways
The abundance of microbial metabolic pathways and 
products during fermentation was evaluated using 
PICRUSt. The analysis focused on KEGG, COG of pro-
teins, and MetaCyc metabolic pathways. Figure  7A–C 
presents a relative abundance of metabolic pathways at 
three different levels. In level 1, all groups had metabo-
lism as highest relative abundance (~ 80%). In level 2, 
metabolic pathways related to carbohydrates, terpe-
noids, polyketides, energy, lipids, amino acids, cofac-
tors, vitamins, xenobiotics, and other amino acids are 
relatively abundant for all groups. In level 3, specific 
pathways related to glucogenesis, peptidoglycan syn-
thesis, C5-branched dibasic acid metabolism, amino 
and nucleotide sugar metabolism, biosynthesis of ami-
noacyl tRNA, lysine and vancomycin antibiotics, thia-
mine, biotin, tyrosine, and alanine metabolism highly 
abundant across all groups. COG heatmap (Fig.  7D) 
revealed that UPS had higher abundance in cell cycle 
control and division, chromosome partitioning, inor-
ganic ion and coenzyme transport and metabolism, 

energy production, and conversion compared to blank 
and GOS-P.

Results of MetaCyc heatmap (Fig.  7E) aligned with 
KEGG and COG findings. It highlighted enzyme-cata-
lyzed reactions and metabolic pathways of gut micro-
biota. Results indicated high abundance of pathways 
related to amino acids, nucleotides, cell structure, fatty 
acid and lipid biosynthesis, fermentation, and carbohy-
drate degradation and biosynthesis among the groups. 
UPS and GOS-P also showed higher abundance in 
pathways related to cofactors, vitamins, electron car-
riers, and prosthetic groups biosynthesis compared to 
blank.

Correlation analysis
The indigenous associations between the fecal micro-
flora were established with Spearman’s rank correlation 
analysis. At p < 0.05, the Spearman rank showed a pair-
wise correlation among the species with positive and 
negative correlations ranging from strong to moder-
ate and weak. Overall, 14 out of the 15 organisms were 
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(A)

(C)

(B)

Fig. 7  Effect of UPS on different microbial functions during fecal fermentation. Histograms of KEGG pathways abundance at levels 1–3 (A-C), 
heatmap of COG pathways (D), heatmap of MetaCyc pathways (E), and species spearman coefficients analysis of OTUs in each sample group (F), 
where A, B and D represent sample groups blank (negative control), GOS-P (positive control), and UPS, respectively
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negatively correlated with Enterococcus saccharolyticus, 
with Catenibacterium mitsuokai, Dialister succinatiphi-
lus, and Streptococcus gallolyticus showing strong nega-
tive correlations. Comparatively, only Catenibacterium 
mitsuokai, Dialister succinatiphilus, and Streptococcus 
gallolyticus had weak to moderate positive correlations 
with Escherichia, while other bacteria showed negative 
correlations with Escherichia. Of all the bacteria, only 
Lactobacillus ruminis showed no correlation with Ente-
rococcus saccharolyticus and Streptococcus gallolyti-
cus but had moderate positive correlations with other 
organisms. Interestingly, SCFAs producing gut micro-
biota including Gemmiger formicilis, Blautia schinkii, 
Blautia faecis, Collinsella aerofaciens, Blautia luti, 

Blautia wexlerae, and Bifidobacterium longum were all 
strongly positively correlated. Furthermore, the result 
of the network analysis corroborated the Spearman’s 
rank correlation, as 93% and 80% of the organisms were 
negatively correlated with Enterococcus saccharolyticus 
and Escherichia, respectively, with r > 0.2. The results 
indicate metabolic pathways-dependent complex eco-
logical interactions exist among gut microbiota.

Discussions
Utilization of RSM for DES parameter optimization in 
natural polysaccharide extraction has been well-docu-
mented [20]. This optimization study highlights the sig-
nificant impact of pH, temperature, solid–liquid ratio, 
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pretreatment time, amplitude, and sonication time on 
polysaccharide yield within the experimental range. 
The Mw of our extracted UPS is consistent with those 
reported by Zuofa et al. [31] (455.6 kDa) but higher than 
Liu et  al. [32] (151  kDa). High Mw polysaccharides are 
known for enhanced functionality due to their complex 
structure and interactions [33, 34]. The elevated Mw of 
our UPS suggests non-degradative ultrasound processing 
and efficient DES extraction. Monosaccharide composi-
tion analysis aligns with previous studies, confirming the 
presence of galacturonic acid, galactose, glucose, arab-
inose, and fructose [34, 35]. Monosaccharide compo-
nents correlate with polysaccharide bio-functionalities 
[32].

FTIR spectroscopy effectively evaluates functional 
groups in plant polysaccharides [36]. O–H stretching 
and unique UPS fingerprint region validates our mono-
saccharide composition, which is consistent with previ-
ous findings [36, 37]. A structure–function relationship 
of polysaccharides containing one or more of COOH, 
OH, and COH has also been reported [38, 39]. The peaks 
indicating carboxylic groups (1729.54 cm−1 and 1502.97 
cm−1) are traceable to the presence of uronic acids from 
the galacturonic acid components of the monosaccha-
rides and this resembles date flesh polysaccharides at 
1650 cm−1 [36]. Interestingly, improved antioxidant 
properties have been associated with uronic acid com-
ponents of polysaccharides [38]. The presence of α- and 
β-conformation pyranose ring regions aligns with prior 
research [13, 36]. C–H bending variation in our UPS is 
similar to ginger polysaccharides [40].

Polysaccharide suitability in the food and pharmaceu-
tical industries depends on thermal behavior [38]. Dou-
ble endothermic peaks in DSC suggest water-retaining 
ability due to hydrophilic ends, with a single exothermic 
peak linked to the chemical profile. UPS melting tem-
perature (Tm) and thermal decomposition temperature 
(Td) are comparable to pectic polysaccharides at 105  °C 
and 220 °C [41], indicating UPS’s high melting point and 
thermal stability due to its Mw, monosaccharaide com-
position and structural bonds [32]. UPS may exhibit sta-
bility during heating and industrial processes. In TGA, 
the initial 12.5% loss is attributed to compound vola-
tilization, while subsequent 37.5% mass losses relate to 
structural thermal decomposition. Remaining mass at 
600 °C becomes ash [20]. Scanning electron microscopy 
(SEM) reveals a compact morphological structure with 
high aggregation [42], akin to ultrasonically extracted 
date flesh polysaccharides (DFP) [36]. High Mw and rigid 
structure imply UPS’s potential as a viscosity enhancer.

UPS particle size exceeds Ayyash et  al. [43] and Ali 
et  al. [16] is attributed to source, pretreatment, and 
extraction conditions. UPS zeta potential is similar to 

EPS-M41 (−249.63 mV), likely due to hydroxyl and car-
boxyl group presence. Negatively charged polysaccha-
rides are reported to possess significant bioactivities. 
Particle size and zeta potential vary among polysaccha-
rides due to differences in Mw, monosaccharide compo-
nents, and functional groups [44].

Dynamic measurement of viscoelastic properties, 
including storage (G’) and loss (G’’) moduli, effectively 
clarifies the predominance of elastic and viscous prop-
erties in polysaccharide behavior [45]. We characterized 
the solid and liquid properties of UPS using a frequency 
sweep test. The dominance of G’ magnitude over G’’ in 
both amplitude and frequency sweep tests suggests UPS 
is more elastic than viscous, aligning with previous stud-
ies [45]. These results are consistent with Liao et al. [45] 
but diverge from Han et  al. [46], possibly due to varia-
tions in monosaccharide moieties, Mw, glycosidic bonds, 
and functional groups [47]. Polysaccharides exhibit time-
dependent behavior, involving structural deterioration 
and recovery under strain-shearing time conditions. Our 
time-dependent test indicates UPS displays elastic prop-
erties under low shear and viscous properties under high 
shear, aligning with previous findings [16], UPS shows 
promise as a thickening agent in the food and pharma-
ceutical industries, withstanding rigorous industrial 
processes. Further exploration of UPS’s rheological prop-
erties in food systems with other solutes is warranted.

Biomacromolecules like lipids, proteins, and nucleic 
acids are susceptible to oxidative stress from excess free 
radicals, leading to inflammation, aging, and tumor 
growth [5]. Polysaccharides have emerged as natural anti-
oxidants for scavenging free radicals [36]. At 1000 mg/L, 
UPS exhibits higher DPPH activity (55.0%) compared to 
10 mg/mL [13]. Similarly, UPS shows greater ABTS activ-
ity than DFP [36]. Oxygen-dependent metabolic path-
ways generate reactive oxygen species (ROS), pivotal in 
signal transduction but harmful in excess. SD and SAS 
activities are comparable to previous study [16]. The 
presence of functional groups in polysaccharides makes 
them effective scavengers of hydroxyl radicals [8]. UPS 
exhibits higher HP and HRS activities at 1 mg/mL than 
the 25.5% and 26.6% inhibition at 5 mg/mL [36].

Polysaccharide chelation of metallic ions has garnered 
attention, influenced by hydroxyl group accessibility and 
cross-bridges with divalent ions [8]. The metal chelation 
(MC) assay shows UPS’s effective binding capacity with 
ferrozine, surpassing previous reports [48]. The FRAP 
assay evaluates UPS’s potential to donate electrons, with 
UPS exceeding 1.34 mM [13]. Reduction of Fe3+ to Fe2+ 
assesses UPS’s reducing power, similar to Shafie and Gan 
[13]. UPS demonstrates excellent TAC, which is signifi-
cantly higher than Adebayo-Tayo et al. [49]. In summary, 
UPS possesses broad-spectrum antioxidant capacity, 
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potentially serving as a natural antioxidant source. Low 
IC50 values indicate UPS’s effectiveness at low concentra-
tions with low system toxicity. Variations in antioxidant 
capacities result from factors like Mw, monosaccharide 
components, functional groups, and unmethylated acidic 
groups [33, 50]. In conclusion, UPS shows significant 
concentration-dependent in  vitro scavenging activities, 
promising as a functional food ingredient. Further inves-
tigation is needed to understand its bioavailability and 
bio-accessibility in the body.

Sugar-induced type-II diabetes mellitus and postpran-
dial hyperglycemia can be managed through α-amylase 
and α-glucosidase inhibition [44]. UPS’s inhibition of 
α-amylase and α-glucosidase aligns with Meng et al. [44]. 
Mechanisms of these enzymes are not fully understood, 
with factors like glycosidic bonds, functional groups, 
monosaccharide composition, and uronic acid content 
influencing enzyme–substrate interactions [44].

Regulating cardiovascular diseases such as hyperten-
sion can involve ACE-inhibition, which controls the 
conversion of angiotensin I to angiotensin II, a potent 
vasoconstrictor [8]. UPS demonstrated significant ACE-
inhibition, comparable to Ayyash et al. [51]. In summary, 
UPS exhibits notable enzyme inhibition activities related 
to diabetes and hypertension, suggesting its potential as 
a raw material for developing functional foods or drugs 
targeting hypoglycemic and hypotensive effects.

Carcinomas play a central role in cancer development 
and progression. The antiproliferative properties of UPS 
align with cytotoxicity assays against human carcinoma 
cells, with concentrations and IC50 values higher than 
our investigation [43]. While cytotoxicity mechanisms 
of polysaccharides require further study, potential con-
tributors include immune system stimulation, induced 
apoptosis, and oncogene expression alterations [52]. In 
summary, our study highlights UPS’s potential as a natu-
ral antitumor agent for human colon and breast cancer 
cells in vitro.

UPS demonstrated significant antibacterial activity 
against tested pathogens, with lower concentrations com-
pared to previous reports, though variations occurred 
among bacterial species. Our results indicated higher E. 
coli O157:H7 reduction than S. Typhimurium, aligning 
with Ali et  al. [16]. Additionally, UPS showed stronger 
inhibition of Gram-negative bacteria compared to Gram-
positive bacteria, consistent with Yu et al. [52]. Our MIC 
(500 mg/L) was lower than the reported 6.3 mg/mL [53]. 
These differences may relate to factors such as molecu-
lar weight, zeta potential, monosaccharide content, and 
functional groups [33]. While antimicrobial mechanisms 
of polysaccharides remain poorly understood, potential 
factors include auto-aggregation, hydrophobicity, cell 
wall disruption, and nutrient blockage [46]. In summary, 

UPS demonstrates potential as a broad-spectrum anti-
microbial agent suitable for applications in the food and 
pharmaceutical industries.

Functional indicators like WBC, FBC, and WSI are 
essential in food processing and texture development 
[22]. UPS exhibited a strong capacity to bind water and 
oil and water solubility, reflected in WBC, FBC, and WSI 
values. Our WBC exceeded Jia et al. [22] but aligned with 
Ali et  al. [16]. Similarly, our FBC was comparable to Jia 
et  al. [22] but higher than Noorbakhsh and Khorasgani 
[37]. High WBC reduces syneresis, modifies viscosity, 
and impacts texture, while FBC relates to flavor preser-
vation [16]. Our WSI matched Ali et al. [16]. Differences 
in WBC may stem from variations in Mw, conformation, 
functional groups, and glycosidic bonds, while FBC can 
be influenced by porosity, chemical components, and 
hypolipidemic activity, and WSI can vary due to factors 
like particle size and hydrogen bonding [16, 37].

Plant polysaccharides are recognized as natural prebi-
otics due to their resistance to upper gut digestion 
and metabolism by colonic microbiota [33]. Our find-
ings, consistent with Wu et al. [10], reveal the prebiotic 
potential of UPS through bacterial growth kinetics. This 
effect is characterized by selective stimulation of probi-
otic strains’ growth and survival, though outcomes vary 
with carbon sources and growth kinetics. The reduced 
lag phase for UPS suggests it serves as a readily metabo-
lizable energy source for probiotics, aligning with Noor-
bakhsh and Khorasgani [37]. Dynamic changes in gas 
production and pH may result from microbial degrada-
tion and utilization of polysaccharides, producing SCFAs 
[37]. Total and reducing sugar results reflect microbial 
utilization of polysaccharides to produce reducing ends, 
used by other specific microbes [46]. Microbial degra-
dation of plant polysaccharides yields prebiotic metabo-
lites, including acetic, propionic, and butyric acids, which 
modulate gut microbial ecology [10].

Our SCFA analysis results align with the observed 
low pH of UPS fermentation, attributed to the synthe-
sis of acidic SCFAs. Generally, UPS demonstrated SCFA 
production similar to GOS-P and significantly higher 
than the control group, suggesting UPS as a potential 
energy source for human gut microbiota. SCFA produc-
tion order from fermented UPS was acetic, propionic, 
and butyric acid, consistent with prior study [54]. Ace-
tic acid serves as an energy source in peripheral tissues, 
enhancing glucose tolerance and insulin production [10]. 
Propionic acid influences cholesterol modulation, insu-
lin metabolism, glucose uptake, and lipogenesis, while 
butyric acid is linked to preventing intestinal damage, 
obesity, and diabetes [54].

In our study, the UPS group exhibited the highest 
Shannon index mean and the lowest Simpson index 
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mean. This suggests lower microbial diversity but higher 
evenness in the UPS-treated fermentation broth, in line 
with previous findings [46, 54]. The separation of UPS 
and GOS-P from the control group in NMDS and PCoA 
plots indicates a positive microbial association between 
UPS and GOS-P due to treatment and fecal microbiota 
metabolic activities. Analysis of OTUs, alpha and beta 
diversities revealed significant differences in gut micro-
biota diversity, distribution, microbial community char-
acterization, and species complexities.

The relative abundance of Firmicutes, Bacteroides, 
and Proteobacteria phyla constituted over 95% of the 
total microbiota, slightly different from studies report-
ing more than 90% of gut microbiota consisting mainly 
of Firmicutes and Bacteroides [54]. Notably, UPS exhib-
ited a low Firmicutes/Bacteroidetes (F/B) ratio, a key 
anti-obesity biomarker [55]. UPS and GOS-P had sig-
nificantly higher abundance of the Clostridiales and 
Bifidobacteriales orders, favoring SCFAs synthesis [54]. 
Compared to the control group, UPS and GOS-P showed 
higher abundance of Actinobacteria, important for anti-
cholesterol activities [55]. Similarly, at the genus level, 
UPS and GOS-P displayed higher relative abundance of 
Bifidobacterium and Blautia, essential SCFA producers 
and polysaccharide hydrolyzers, contributing to reduced 
hypercholesterolemia [55].

In summary, our microbial composition and abun-
dance during fermentation indicate changes in micro-
flora abundance across different taxonomic ranks. This 
suggests that including UPS in the fermentation broth 
acts as a prebiotic, promoting the proliferation and diver-
sification of gut microbiota. The observed differences in 
KEGG, COG, and MetaCyc prediction analysis imply that 
including UPS in the fermentation process exerts prebi-
otic potential on the gut microbiome, influencing the 
diversity of metabolic pathways and metabolites required 
for the survival and growth of beneficial bacteria con-
tributing to host health [55]. However, while UPS shows 
promise for developing functional foods targeting spe-
cific gut bacteria, metabolites, and metabolic pathways, 
further real-time experimental confirmation is needed to 
validate computer simulation results. The strong negative 
correlation of SCFA producers with opportunistic patho-
gens may be attributed to the treatment, enhancing the 
survival and proliferation of beneficial microbes and con-
tributing to gut homeostasis [54].

Conclusion
Physicochemical and structural analyses revealed that 
UPS is a high molecular weight (Mw) heteropolysaccha-
ride with diverse sugar moieties. Notably, at a concen-
tration of 1000  mg/L, UPS demonstrated potent radical 
scavenging activities, inhibited both Gram-positive and 

Gram-negative pathogens, reduced the activity of dia-
betic and hypertension indicator enzymes, and signifi-
cantly impeded the proliferation of colon and breast 
cancer cell lines. UPS exhibited remarkable prebiotic, 
bioactive, and functional properties, which were notably 
influenced by its structural features and monosaccha-
ride composition. Additionally, UPS displayed promis-
ing results as a carbon source, promoting the growth and 
survival of probiotics. The fermentation of UPS by 
colonic microbiota in human fecal matter was evident 
through the observed reduction in pH and increased 
gas production. This fermentation led to the synthesis of 
short-chain fatty acids (SCFAs), which played a crucial 
role in homeostasis and modulation of microbial com-
position, growth, diversities, abundances, and metabolite 
production. The health-promoting results obtained in 
this study are attributed to the unique chemical structure 
and functional groups of UPS. Therefore, UPS can be uti-
lized to formulate food and drugs for specific functions. 
Overall, our study provided a simpler and more envi-
ronmentally friendly method for extracting date pomace 
polysaccharides with excellent bioactivities and fecal fer-
mentation characteristics. These findings suggest poten-
tial applications as functional food ingredients for gut 
health. However, further in vivo investigations of UPS are 
necessary to confirm all the bio-functionalities identified 
in this study.
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