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Abstract 

Introduction Boron (B) is critical for plant growth, yet its movement in soil is often hindered by leaching and adsorp-
tion, leading to deficiencies. Tackling these issues is essential for boosting agricultural productivity, especially in plants 
like Eucalyptus with high B needs. This paper aims to address these challenges by evaluating B-doped biochar 
composites (biochar-B) that enhance B distribution and stability in the soil, focusing on Eucalyptus grandis cultivation 
in two distinct oxisol types.

Materials and methods Biochar-B composites were created using shrimp carcass (FSC), chicken manure (FCM) 
and sewage sludge (FSS), combined with boric acid (BA) and borax (BX), and pyrolyzed at 300 °C and 550 °C. The 
experimental design was a completely randomized design (CRD) with three replicates.

Results Fourier transform infrared spectroscopy (FTIR) analysis confirmed successful B integration and interaction 
with organic matrices, highlighting functional groups responsible for composite properties. This facilitated the devel-
opment of highly predictive partial least squares (PLS) regression models (R2pred ~ 0.8). The FSC-BA composite 
at 300 °C showed notable thermal stability, B retention and availability, enhancing B release kinetics.

Discussion These findings emphasize the importance of considering the soluble B rate in composite applications 
for Eucalyptus cultivation. The use of these composites provides a sustainable method for gradual B release, poten-
tially outperforming conventional fertilization techniques. This approach may lead to improved plant growth and pro-
ductivity. Further field investigations are recommended in order to validate these findings and refine sustainable 
fertilization strategies; thus, benefiting a range of crops.
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Graphical abstract

Introduction
Boron (B) is a vital trace element for numerous bio-
chemical and physiological processes in plants. It plays 
a pivotal role in functions such as nucleic acid synthesis, 
chlorophyll formation, protein synthesis, carbohydrate 
transport, pollen tube growth and root development [1]. 
Its deficiency in soil can hinder water uptake, resulting in 
the desiccation of growth tissues. This scenario is espe-
cially evident in eucalyptus species during drought peri-
ods [2]. Such deficiency not only obstructs reforestation 
efforts but also diminishes the commercial value of euca-
lyptus timber, which requires a substantial amount of B 
to thrive [3]. However, ensuring adequate B levels in soil 
presents a significant challenge due to the swift deple-
tion of traditional B supplements, highlighting the urgent 
need for more reliable and effective B supplementation 
methods.

Boron availability in soil is influenced by factors like 
pH, B source solubility, adsorption, complexation and 
transportation involving organic matter, metal hydrox-
ides, and clay minerals [4]. The precise evaluation of B 
fractions faces challenges due to the intricate character-
istics of soils and constraints in extraction techniques. 
These challenges often result in inconsistent B release 
kinetics, having an impact on the nutritional manage-
ment of eucalyptus plantations [5]. B-doped biochar 
has shown promise in enhancing electron transfer rates, 

acting as an efficient carbon (C) catalyst without metal 
components [6]. However, research on the influence of 
composites on the solubility and stability of B–C com-
plexes within carbonized matrices, as well as the dynam-
ics of B release from these materials for fertilization 
purposes in different soil types, remains limited. The 
production of B-doped biochar focuses on stable B–C 
interactions through complexation [7] and chelation [8], 
affecting structural properties and functional group den-
sity [9], offering a novel approach to B fertilization effi-
ciency via the B adsorption mechanism when associated 
with biochar [10].

The selection of feedstocks and pyrolysis tempera-
tures is crucial, influencing B and C interactions and, 
thus, nutrient bioavailability in soil and plants [9]. 
Selecting ash-rich sources such as shrimp shells, 
chicken manure and sewage sludge is strategic, leverag-
ing their capacity to produce biochars with fertilizing 
benefits [11–13], which is key to advancing sustain-
able agricultural methods. Generally, these wastes are 
discarded in landfills or used for composting, animal 
feed and soil amendments. Nevertheless, converting 
them into biochar not only mitigates waste disposal 
issues but also fully harnesses their high-value proper-
ties. This process enhances nutrient cycling efficiency, 
improves soil health and reduces potential environ-
mental impacts. High-temperature processes enable B 



Page 3 of 20Chisté et al. Chem. Biol. Technol. Agric.          (2024) 11:154  

to form stable covalent bonds with C, enhancing bio-
char structural and functional qualities [14]. The incor-
poration of boric acid (BA) and sodium borate (borax) 
(BX) not only bolsters biochar’s thermal and physico-
chemical properties [15] but also holds an agricultural 
purpose as a nutrient. This research explores the B–C 
interaction within biochar, which is essential for con-
trolled releases and the improvement of soil fertility. 
Through the investigation of composites, we aim to 
redefine sustainable agriculture by fine-tuning biochar 
properties, showcasing innovation within agricultural 
functionalities and opening pathways for more sus-
tainable farming practices. Oxisol was selected for this 
study because it is the most common soil order in trop-
ical regions and is widely affected by B deficiency, pos-
ing significant challenges for B management in plant 
nutrition. This study examines the production of com-
posites from FCM, FSC and FSS doped with BA and 
BX, pyrolyzed at temperatures from 300  °C to 550  °C. 
The main intent is to assess the kinetics of B release to 
optimize its utilization by eucalyptus seedlings while 
minimizing leaching, thereby enhancing the efficiency 
of B fertilizers. Additionally, FTIR-based prediction 
models are utilized to understand chemical interac-
tions between B and C atoms during pyrolysis, with 
focus on elucidating environmental processes, remedi-
ation strategies, organic waste utilization and nutrient 
cycling management in Oxisols.

Material and methods
Preparation and characterization of the feedstocks
We selected three feedstocks for the synthesis of bio-
chars and their composites: chicken manure (FCM), 
shrimp shell (FSC) and municipal sewage sludge (FSS). 
The FCM was sourced from an agricultural facil-
ity in Nepomuceno, Minas Gerais, Brazil, (Latitude: 
−  21.236110° S; Longitude: −  45.234970° W). The FSS 
was obtained from a treatment facility at the Univer-
sidade Federal de Lavras, located in Lavras, Minas 
Gerais, Brazil (Latitude: −  21.23008° S; Longitude: 
− 44.98981° W). The FSC were procured from a marine 
processing enterprise in Linhares, Espírito Santo, Bra-
zil (Latitude: −  19.373030° S; Longitude: −  40.054680° 
W). Comprehensive specifications for each material are 
delineated in Table 1.

Initially, the feedstocks were subjected to air dry-
ing at room temperature in order to eliminate surface 
moisture. This was followed by subsequent dehydra-
tion in a forced air oven at 65 °C until a constant mass 
was reached. After drying, the samples were ground 
and passed through a sieve to obtain a uniform particle 

diameter of less than 0.25 mm. To inhibit rehumidifica-
tion, the processed materials were subsequently stored 
in hermetically sealed plastic containers.

Preparation of biochar and B‑doped biochar
Six distinct biochar specimens were produced utilizing 
the aforementioned feedstocks (FCM, FSC, and FSS) 
and two temperatures (300  °C and 550  °C). Addition-
ally, twelve composites doped with B were created by 
incorporating boric acid  (H3BO3) and borax  (Na2B4O7) 
obtained from ISOFAR and Exodus Scientific, aiming 
to reach a final B content of 7%. The pyrolysis process 
involved a controlled temperature increase at 10  °C/
min up to the target temperatures (300 or 550 °C), using 
a muffle furnace equipped with an airtight chamber to 
block oxygen infiltration. This temperature was main-
tained for 60 min, then gradually cooled to room tem-
perature before the furnace was opened. Subsequently, 
the biochar and composite samples were pulverized 
and sifted to obtain a particle size below 0.25  mm, 
which were then meticulously preserved for subsequent 
analysis.

Table 1 Identification of feedstocks, B sources and abbreviated 
temperatures of synthesized biochar composites

Acronym Feedstock B source

Temperature 60 °C

FCM Chicken manure No

FSC Shrimp carcass

FSS Sewage sludge

Pyrolysis temperature—300 °C

BCM Chicken manure No

BSC Shrimp carcass

BSS Sewage sludge

CCM-BA Chicken manure Boric acid

CCM-BX Borax

CSC-BA Shrimp carcass Boric acid

CSC-BX Borax

CSS-BA Sewage sludge Boric acid

CSS-BX Borax

Pyrolysis temperature—550 °C

BCM’ Chicken manure No

BSC’ Shrimp carcass

BSS’ Sewage sludge

CCM-BA’ Chicken manure Boric acid

CCM-BX’ Borax

CSC-BA’ Shrimp carcass Boric acid

CSC-BX’ Borax

CSS-BA’ Sewage sludge Boric acid

CSS-BX’ Borax
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Characterization of biochars and composites
Equations (1, 2 and 3) were employed to calculate vol-
atile matter (VM), moisture (M) and ash content (As) 
of biochar using a modified ASTM D1762-84 method 
designed specifically for biochar analysis. This adap-
tation included pre-firing crucibles, heating them to 
750 °C for six hours and cooling them to 105 °C to fully 
volatilize any remaining binders before the analysis 
took place [16]. The residue left after burning indicated 
the ash content (Ash) as described in Eq. (3). Fixed car-
bon (FC) was calculated based on Eq.  (4) and the bio-
char yield (Y) was assessed using Eq. (5) [17].

The pH and electrical conductivity (EC) of the pyro-
lyzed matrices and feedstocks were measured using a 
digital pH meter (Toledo CE, Mettler-Toledo AG) pre-
calibrated with pH 4 and 7 buffer solutions [18]. C con-
tent was determined using a Vario TOC cube analyzer 
via the dry combustion method. Total nitrogen (N) con-
tent was quantified by the Kjeldahl method following 
digestion with concentrated sulfuric acid [19]. Nutrient 
content was analyzed using inductively coupled plasma 
optical emission spectroscopy (ICP-OES) after diges-
tion with a mixture containing sulfuric acid, potassium 
sulfate, copper sulfate and selenium (Table S1). Quality 
control was maintained using certified reference mate-
rials [19, 20] and blank samples in order to monitor for 
cross-contamination.

The levels of water-soluble B (W), 2% citric acid-
soluble B (CA%) and neutral ammonium citrate (NAC) 
soluble B were determined via clear filtrate, following 
established protocols [21]. B concentration in the sam-
ples was obtained using ICP-OES analysis. To compare 
the B solubility of the samples, a B index was calculated, 
taking into account the ratio of the soluble fractions of 
B (B-W, B-NAC and B-CA%) and the total B content of 
each matrix, according to (Eq. 6).

(1)VM(%) =
DWat 105 ◦C− DWat 950 ◦C

DWat 105 ◦C
× 100.

(2)M(%) =
RW− DWat 105 ◦C

RW
× 100.

(3)Ash(%) =
RW− DWat 750 ◦C

DWat 105 ◦C
× 100.

(4)
FC(%) =

DWat 105 ◦C− DWat 950 ◦C− DWat 750 ◦C

DWat 105 ◦C
× 100.

(5)Y (%) = 100×
Biochar mass

105 ◦Cdried biomass
.

Fourier transform infrared spectroscopy (FTIR)
Spectral signature characterization was performed in the 
mid-infrared region using an  Agilent® Cary 630 FTIR 
spectrometer with a ZnSe-ATR crystal (Agilent Tech-
nologies, USA), with a scanning resolution of 4   cm−1, 
in the wavelength range of 4000–650   cm−1. Each FTIR 
spectrum was normalized [22]. The interpretation of the 
spectra and the identification of their respective spectral 
bands detected by the FTIR apparatus employed specific 
libraries and bands of biochars treated with B, described 
in [23].

Scanning electron microscope (SEM)
The scanning electron microscope (SEM) analysis was 
conducted using a JSM-7610F Schottky field emission 
scanning electron microscope (JEOL, Tokyo, Japan) at 
the Electron Microscopy and Ultrastructural Analysis 
Laboratory, within the Universidade Federal de Lavras 

Department of Phytopathology. Samples were prepared 
by oven drying 0.5 × 0.5 × 0.5 cm non-conductive pieces, 
mounting them on stubs with double-sided C tape and 
applying a C bath.

Boron release kinetics
A controlled incubation experiment was conducted to 
evaluate the kinetics of B release from pyrolyzed matri-
ces. A composite sample weighing 1.0 g was transferred 
to a 50 mL container for incubation. Falcon tubes, com-
bined with 20 mL of 0.1 mol  L−1 citric acid (2% concen-
tration) were horizontally stirred at 90 rpm and leachate 
was collected at predetermined intervals: 15 min, 30 min, 
1 h, 2, 4, 12, 24, 48, 72, 120, and 250 h. After each extrac-
tion, the tubes were centrifuged for 5  min at 3500  rpm 
and the supernatant was collected for determination 
using ICP-OES.

Agronomic efficiency of the composites
The study was conducted at the Universidade Federal 
de Lavras, specifically in the Laboratory for the Study of 
Soil Organic Matter (LEMOS) at the Department of Soil 
Science, in Brazil. Eucalyptus seedlings were cultivated 
under greenhouse conditions using surface soil samples 
(0–20 cm) of representative Oxisols obtained within the 
university’s campus and named dystrophic red-yellow 

(6)B(%) =
Soluble B

(

g.kg− 1
)

Total B
(

g.kg− 1
) × 100.



Page 5 of 20Chisté et al. Chem. Biol. Technol. Agric.          (2024) 11:154  

latosol (RYL) and typical dystrophic red latosol (DRL). A 
detailed characterization is shown in Table 2.

The soil samples were air-dried, sieved (2  mm) and 
treated with calcium (Ca) and magnesium (Mg) car-
bonates  (CaCO3 and  MgCO3) in order to attain a pH of 
5.5 ± 0.2 [24], so as to optimize conditions for eucalyptus 
growth and ensure Ca and Mg availability in the soils. 
The study employed a completely randomized design, 
with three feedstocks pyrolyzed at two temperatures and 
enriched with two B sources, totalling 12 B composites. 
Boron was applied to 1.8 mg  kg−1 of soil using three rep-
licates. Seedlings were planted in pots containing 3 kg of 
soil, which had additional fertilization with macro and 
micronutrients and irrigation was maintained at ~ 70% of 
the maximum water-holding capacity.

Soil solution samples from each pot were collected 
using Suolo  Acqua® [25] at 1, 13, 28 and 70 days, filtered 
(< 0.45 μm) and measured for pH (Mettler Toledo bench-
top pH meter) and B content via ICP-OES. Also, available 
B in soil (extracted in hot water) was determined using 
a spectrophotometer at the beginning (day 3) and at the 
end (day 100) of the experiment [24]. Subsequently, the 
plants were harvested, oven-dried at 65 °C for 72 h, their 
shoot dry matter (SDM) and root dry matter (RDM) were 
recorded, then they were ground in a mill (< 1 mm) and 
digested in a mixture of nitric and perchloric concen-
trated acids [26] whilst B was measured in ICP-OES. B 
uptake in the shoot dry matter of Eucalyptus (g) was cal-
culated by multiplying the total nutrient content in the 
plant tissue (mg  g−1).

Statistical analysis
Data was submitted through a two-way ANOVA and 
when there was a significant difference (p < 0.05), the 
means of the treatments were compared with each other 
using Tukey’s test (p < 0.05) (after meeting the ANOVA’s 
analysis assumptions). Multivariate analyses were used 
to measure, explain and predict the relationship between 
B properties and pools in the composites. All statistical 
analyses were performed in R software using the agrico-
lae, factoextra, FactoMineR, pvclust, corrplot, tideverse 
and nlstools packages [27].

The ATR-FTIR spectral signatures of the samples 
were used to generate and validate the PLS regres-
sion models and a total of 54 observations were used 
for the calibration and generation of the PLS math-
ematical models. In contrast, 13 samples (20%) were 
used for independent random external validation. The 
models were evaluated by analyzing the square root 
of the mean calibration error  (RMSEcal), coefficient of 
determination (R2) and coefficient of calibration (R2

cal). 
The model was cross-validated, using cross-validation 
RMSE  (RMSEcv), y-randomization RMSE  (RMSEy-rand), 
cross-validation R2 (R2

cv) and y-randomization R2 (R2
y-

rand). The number of latent variables was determined by 
the lowest  RMSEcv value of the 54 observations used 
for validation and used to calculate RMSE  (RMSEpred) 
(Eq. 8) and R2 (Eq. 9) prediction (R2

pred) [28]. Other val-
idation parameters, such as R2 between experimental 
and predicted values for the test dataset (r2 m) and  R2 of 
randomization prediction y (r2

p) were calculated based 
on the equations (Eqs.  10 and 11) [29]. The graphic 
images of the FTIR were obtained using the Origin Pro 
8.5 software (OriginLab Co., Northampton, USA).

The dataset of B release kinetics in 2% citric acid—
CA% was adjusted for different nonlinear mathemati-
cal models as an output of the relationship between the 
incubation time versus the amount of B released from 

(7)
RMSE =

√

√

√

√

∑n
i=1

(

yi − Ŷ i
)2

n
.

(8)R2
= 1−

∑n
i=1

(

yi − Ŷ i
)2

∑n
i=1

(

yi − Y i
)2

.

(9)r2m = R2

[

1−
(

R2
− R2

0

)
1
2

]

.

(10)r2p = R2
cal

(

R2
cal − R2

y−rand

)
1
2
.

Table 2 The main chemical, physicochemical and texture characteristics of Oxisols used in eucalyptus cultivation

*RYL—red yellow latosol (medium texture); DRL—dystroferric red latosol; pH in a soil–water-Ratio of 1:2.5; C: C determined (dry combustion) in an automatic 
TOC analyzer; clay, silt and sand analyzed by the Bouyoucos method. All methods are described in detail [24]; N: total nitrogen—Kjeldahl; P: available phosphorus 
determined by the resin soil test; K,  Fe2+,  Mn2+,  Cu2+ and  Zn2+: available determined by the  Mehlich−1 soil test; B: hot water extractor; exchangeable calcium  (Ca2+), 
exchangeable magnesium  (Mg2+) extracted by a 1 mol  L−1 KCl solution soil test

Oxisol pH C Clay Silt Sand N P K Ca2+ Mg2+ B
g  kg−1 mg  dm−3 Cmol  dm−3 mg  dm−3

RYL 4.7 4.5 460 85 455 329 6.1 218 0.8 0.4 0.1

DRL 4.5 19.8 770 100 130 2580 8.3 30.1 0.3 0.2 0.06
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each nutrient source. The following mathematical mod-
els were fitted to the kinetics B dataset: Elovich model 
(Eq.  11), simple exponential model (Eq.  12), power 
function (Eq. 13) and hyperbolic model (Eq. 14).

where Nt = fraction of B released at the evaluated time; 
a = initial content of B released; b = B released at a con-
stant rate; t = release time (hour); N0 = maximum amount 
of B released during the kinetic study. The best model 
was selected based on the highest coefficient of determi-
nation (R2), the lowest value of the root mean square of 
error (RMSE) and the lowest value of the Akaike infor-
mation criterion (AIC) [30]. Principal component analy-
sis (PCA) was performed to evaluate the relationship 
between the properties of the composites produced in 
this study.

Results and discussion
Chemical properties of biochar and composites
Research demonstrated that there were distinct varia-
tions in biochar characteristics influenced by feedstock 
type and pyrolysis temperature (Table  3). Elevated tem-
peratures generally increased biochar pH, ash content 
and fixed carbon (FC), enhancing the potential for soil 
amendment and C sequestration. Notably, the electrical 
conductivity (EC) of biochar decreased in BSC’ feedstock 
due to the formation of stable inorganic compounds at 

(11)Nt = a+ blnt

(12)Nt = N0
(

1− e−kt
)

(13)Nt = a× bt

(14)Nt =
N0× t

(N0× b+ t)

higher temperatures. Additionally, while higher temper-
atures reduced biochar yield and volatile matter across 
all feedstocks, the loss of C and N was particularly pro-
nounced in FSC due to its higher susceptibility to ther-
mal degradation. This phenomenon can be attributed 
to the composition of FSC, which is mainly amino acids 
and proteins and is prone to degradation at higher tem-
peratures due to the higher N content [31]. The tempera-
ture rise led to a decrease in VM, implying an increase 
in the concentration of inorganic elements in the pyro-
lyzed materials [32], due to the progressive loss of acidic 
surface functional groups, primarily aliphatic carboxylic 
acids [33]. This caused an increase in pH and aromatic 
character of the carbonized matrices at 550  °C [34]. 
However, the extent of this pH increase was found to be 
dependent on the pyrolyzed feedstock, as reported in 
other studies for FCM [35], FSC [36] and FSS [15].

There was an increase in EC with the rise of pyroly-
sis temperatures owing to the optimization of conduc-
tive properties possibly due to the greater presence of 
more soluble salts [33], except for BSC’, which reduced 
EC with the intensification of the carbonization process. 
Additionally, an increase in pyrolysis temperature led 
to a reduction in biochar yield, VM and C and N con-
tents across all biochars. These changes are attributed 
to enhanced thermal degradation, chemical transforma-
tions and volatilization of organic compounds from the 
feedstocks at higher temperatures [37]. The ash and FC 
content relatively increased with pyrolysis temperatures, 
possibly due to the accumulation and formation of com-
pounds such as hydroxide and carbonate, which elevate 
the FC [38] and the pH values for most biochars [37].

Our study investigated the impact of B sources, feed-
stock types and pyrolysis temperatures on biochar prop-
erties, as detailed in Table 4. The incorporation of B into 
biochars, specifically in the form of BA, led to a reduc-
tion in acidification across several samples (CCM-BA, 

Table 3 Biochar properties as influenced by feedstock

Values are mean ± standard deviation (n = 3), except yield (%) (n = 1); EC: electrical conductivity; VM: volatile matter; Ashes; FC: fixed carbon; C: carbon; N: nitrogen; 
C/N: carbon/nitrogen ratio. BCM: chicken manure biochar at 300 °C; BCM’: chicken manure biochar at 550 °C; BSC: shrimp shell biochar at 300 °C; BSC’: shrimp shell 
biochar at 550 °C; BSS: sewage sludge biochar at 300 °C; BSS’: sewage sludge biochar at 550 °C

Biochar pH EC Yield VM Ash FC Elemental composition C:N ratio

(dS  m−1) (%) (%)

C N C: N

BCM 9.1 6.4 69 57 52 9.3 35 2.1 16.6

BCM’ 10.7 8.2 53 56 60 11.1 26 1.9 13.1

BSC 9.2 7.3 81 72 32 3.9 41 6.5 6.4

BSC’ 10.4 2.9 60 53 60 12.5 25 2.4 10.7

BSS 6.2 1.3 88 34 71 4.8 16 2.1 7.6

BSS’ 7.1 1.5 69 28 78 5.4 12 1.2 10.3
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CCM-BA’, CSC-BA, CSC-BA’, CSS-BA, CSS-BA’), with 
decrease values ranging from 6.4% to 28.0% compared to 
controls. This reduction is linked to the swift removal of 
organic compounds and the introduction of basic cati-
ons. Elevated pyrolysis temperatures increased the pH 
in certain BA-doped samples (CCM-BA’, CSC-BA’, CSS-
BA’), with increase values between 7.0% and 16.7%.

Conversely, BX-doped biochars (CCM-BX’, CSC-BX’) 
exhibited pH reductions of 13.1% and 6.7%, respectively. 
In contrast, CCM-BX, CSS-BX and CSS-BX’ samples 
showed pH increase, indicating a shift towards alkaline 
conditions. The increased values were 2.2%, 48.4% and 
28.2%, respectively, with CSC-BX remaining stable. High 
pyrolysis temperatures slightly increased CSC-BX’ pH 
by 5.4%, while CSS-BX’ had a 1.1% decrease. The intro-
duction of B significantly influences the thermal decom-
position of biochars, affecting the functional group 
composition from feedstocks and the acid–base equi-
librium of the end product. These alterations impact the 
characteristics and stability of the biochar composites.

Investigating the catalytic effects of B-doped biochar 
during pyrolysis uncovers significant pH alterations 
and the creation of active chemical sites within the 
carbonized structures, as demonstrated by Chen et  al. 
[39]. The atomic radius similarity between B and C 
leads to unique structural interactions that are pivotal 
for enhancing the biochar composites’ physicochemi-
cal attributes, a concept further detailed by Kim et  al. 
[40]. BA application typically maintains the composite 

pH near neutrality due to its weak acid nature and is 
prone to donating  H+ ions. In contrast, BX shifts the 
environment towards alkalinity by releasing borate 
ions and elevating the  OH− ion concentration in the 
synthesis medium, corroborating other findings [41]. 
Such variations in pH modulation are crucial, given the 
influence of active sites on the composites’ physico-
chemical transformations [42]. Other researchers [43] 
point out that the distinct pH modulation effects of BA 
and BX underscore the nuanced impact of biochar-B 
properties. This emphasizes the criticality of choos-
ing appropriate B sources for targeted environmental 
applications, offering a comprehensive perspective on 
their role in enhancing soil health and environmental 
sustainability.

While conducting this research, we observed a 
general trend where higher pyrolysis temperatures 
increased the EC in all biochar composites except for 
the CSS-BA composite. This particular composite 
showed a 13.3% reduction in ash content compared to 
its non-B-doped counterpart. Conversely, the CCM-BA 
composite experienced a 6.7% increase in ash content 
relative to its biochar-B variant, indicating that pyroly-
sis temperatures generally boosts EC.

Contrastingly, BA composite EC diminished with 
rising pyrolysis temperatures, an effect that was not 
observed when BX was used for doping, potentially 
due to increased deprotonation of groups. This process 
likely facilitates a new electronic structural modulation 

Table 4 Basic characterization of the composites

Values are mean ± standard deviation (n = 3), except yield (%) (n = 1); VM: volatile matter; Ashes; FC: fixed carbon; C: carbon; N: nitrogen; C/N: carbon/nitrogen ratio. 
Composites: CCM-BA: chicken manure + boric acid at 300 °C; CCM-BX: chicken manure + borax at 300 °C; CCM-BA’: chicken manure + boric acid at 550 °C; CCM-BX’: 
chicken manure + borax at 550 °C; CSC-BA: shrimp waste + boric acid at 300 °C; CSC-BX: shrimp carcass + borax at 300 °C; CSC-BA’: shrimp carcass + boric acid at 550 °C; 
CSC-BX’: shrimp carcass + borax at 300 °C; CSS-BA: sewage sludge + boric acid at 300 °C; CSS-BX: sewage sludge + borax at 300 °C; CSS-BA’: sewage sludge + boric acid 
at 550 °C; CS-BX’: sewage sludge + borax at 550 °C

Composite pH EC Yield VM Ashes FC Elemental composition C:N ratio

(dS  m−1) (%) (%)

C N C:N

CCM-BA 6.6 ± 0.1 9.0 ± 0.0 70 45 ± 0.0 47 ± 0.0 6.0 ± 0.0 19.9 ± 0.1 3.6 ± 0.0 5.6

CCM-BA’ 7.7 ± 0.0 9.6 ± 0.0 55 37 ± 0.0 35 ± 0.0 24.0 ± 0.0 20.2 ± 0.1 1.9 ± 0.0 10.7

CCM-BX 9.3 ± 0.0 16.3 ± 0.0 72 54 ± 0.0 43 ± 0.0 1.4 ± 0.0 21.6 ± 0.1 3.4 ± 0.0 6.3

CCM-BX’ 9.3 ± 0.1 16.0 ± 0.0 53 38 ± 0.0 28 ± 0.0 33.0 ± 0.0 19.5 ± 0.1 1.5 ± 0.0 13.4

CSC-BA 7.1 ± 0.0 9.0 ± 0.0 72 52 ± 0.0 40 ± 0.0 5.8 ± 0.0 21.1 ± 0.1 5.3 ± 0.0 3.9

CSC-BA’ 7.6 ± 0.1 5.6 ± 0.0 48 60 ± 0.0 22 ± 0.0 18.0 ± 0.0 16.5 ± 0.1 2.6 ± 0.0 6.4

CSC-BX 9.2 ± 0.0 14.9 ± 0.0 70 52 ± 0.0 41 ± 0.0 3.7 ± 0.0 18.2 ± 0.1 2.6 ± 0.0 6.9

CSC-BX’ 9.7 ± 0.0 11.0 ± 0.0 47 30 ± 0.0 26 ± 0.0 42.0 ± 0.0 16.7 ± 0.0 2.2 ± 0.0 7.5

CSS-BA 5.8 ± 0.0 3.2 ± 0.0 75 39 ± 0.0 38 ± 0.0 20.0 ± 0.0 9.7 ± 0.1 3.4 ± 0.0 2.8

CSS-BA’ 6.3 ± 0.1 1.30 ± 0.0 62 36 ± 0.0 15 ± 0.0 49.0 ± 0.0 8.7 ± 0.0 1.0 ± 0.0 8.3

CSS-BX 9.2 ± 0.0 14.0 ± 0.0 77 13 ± 0.0 37 ± 0.0 53.0 ± 0.0 12.1 ± 0.1 1.7 ± 0.0 6.9

CSS-BX’ 9.1 ± 0.0 8.5 ± 0.0 63 21 ± 0.0 12 ± 0.0 66.0 ± 0.0 9.7 ± 0.0 1.0 ± 0.0 9.9



Page 8 of 20Chisté et al. Chem. Biol. Technol. Agric.          (2024) 11:154 

of the C matrix, as suggested by Chen et al. [39]. Sup-
porting literature indicates that pH elevation leads to 
deprotonation, altering EC by enhancing the medium’s 
conductivity through the introduction of charged ions 
[44]. This is significant because EC is directly influ-
enced by charged ions, suggesting a more efficient elec-
tron conduction pathway.

Our analysis demonstrated a notable improvement in 
composite yields when B was incorporated into FCM C 
matrix composites. Specifically, B-doping at a pyrolysis 
temperature of 300 °C resulted in a 5.1% increase in yield 
with the BX-doping method, while at 550 °C, BA-doping 
led to a 4.4% increase. Conversely, the beneficial effects 
of B-doping were not evident in biochars from alternative 
feedstocks, where yields declined regardless of the dop-
ing method. Minimal impact on yields was observed from 
B-doping in feedstock-B mixtures. What is noteworthy 
is that the composites CCM-BX, CSC-BA and CSS-BX 
recorded the highest average yields of 72.5%, 71.8% and 
77.3%, respectively. This suggests that B acts as a potent 
chemical activator in the carbonization process, promot-
ing the development of a more favorable pore structure 
within the biochar, thereby enhancing yield. Our findings 
align with those of Zhang et  al. [5], who also identified 
B sources as advantageous activators for biochar yield 
enhancement.

The VM content in CSC-BA’, CSS-BA and CSS-BA’ 
composites was increased by 13.7%, 14.7% and 28.8%, 
respectively, compared to their unmodified biochar 
counterparts, reaching levels of 60%, 39% and 36%. Typi-
cally, the VM content decreases as the pyrolysis temper-
ature increases. However, an unexpected rise in VM by 
15% and 68.5% for CSC-BA’ and CSS-BX’, respectively, 
from 300  °C to 550  °C, indicates more intense pyrolysis 
conditions. This suggests that B-doped biochars might 
follow unique thermal decomposition pathways, increas-
ing VM production at higher temperatures.

Furthermore, while VM preservation usually increases 
with pyrolysis temperatures, reducing the emissions of 
volatile gases and liquids, CSC-BA’ and CSS-BA’ showed 
an increase in VM. This increase could be due to the 
preferential loss of less stable molecular oxygen (O), 
while more stable B structures remain [45]. Addition-
ally, an increase in aromaticity, associated with higher 
losses, reduces substance volatility. This process results 
in a more stable and less volatile composition, potentially 
offering benefits for using B to improve catalytic activity 
[45] and proposing a non-radical degradation pathway 
based on direct electron transfer, especially for FSC and 
FSS matrices.

Composites CCM-BA, CSC-BA and CSS-BA, produced 
at 300  °C, exhibited the highest ash contents, with 47%, 
40.1% and 38.5%, respectively. These contents decreased 

as the temperature increased, showing an inverse rela-
tionship between temperature and ash content. This 
phenomenon contrasts with the increases in ash content 
observed in another feedstock-derived biochar (CSC-BA 
and CSC-BX), which were 26.5% and 30.3%, respectively. 
This underscores the significant impact of the property of 
sugarcane FSC feedstock, enriched with minerals such as 
Ca, P and Mg, which show greater resistance to volatili-
zation during pyrolysis [46].

The unique mineral composition of FSC feedstock is 
crucial for the varied ash content outcomes following 
pyrolysis. Due to their thermal stability, these minerals 
tend to accumulate in higher concentrations after pyroly-
sis at elevated temperatures [47]. Specifically, calcium 
carbonate  (CaCO3) present in FSC decomposes into cal-
cium oxide (CaO) and carbon dioxide  (CO2) during the 
process, with CaO contributing significantly to the high 
ash content of the biochar. In contrast,  CO2 is volatil-
ized [48]. Additionally, the thermal degradation of chitin 
found in FSC results in an ash-rich residue due to its N 
and mineral content [48]. These variations in ash content, 
especially the notable increases in CSC-BA and CSC-
BX, highlight the influence of feedstock composition on 
pyrolysis and the resulting characteristics.

The incorporation of BX into the FSS matrix signifi-
cantly catalyzed an increase in FC content, achieving 
a rise of over 1000% when compared to traditional bio-
chars. This notable enhancement was especially evident 
in the CCM-BX’ and CSC-BX’ composites at higher tem-
peratures. The relationship between pyrolysis tempera-
tures and the FC content is strongly positive, highlighting 
the effectiveness of C preservation within the matrix. 
This relationship indicates that at higher temperatures, 
C forms more robust bonds with the matrix, which 
enhances stability. This effect is crucial for the function-
ality of BA-based composites for thermal stability [5], 
where B atoms substitute C atoms. This substitution is 
facilitated by the similarity in their atomic radii and the 
integration of B into the C  sp2 network [49], thereby 
enhancing structural integrity and C preservation dur-
ing pyrolysis, boosting the FC content. Additionally, this 
finding paves the way for optimizing C structuring at 
various scales, including morphology, crystalline param-
eters and the B-doping environment [50], underlining the 
materials’ versatility and efficacy in C preservation.

At the pyrolysis temperature of 550  °C there was a 
decrease in the total N content in the biochar (Table 3). 
However, BA-containing composites, specifically CCM-
BA, CSC-BA and CSS-BA, exhibited N preservation, 
with increases of 71%, 8.3% and 62%, respectively, com-
pared to pristine biochars. This preservation can be 
attributed to the ability of B to act as a stabilizing agent 
for N. B forms complexes with nitrogen molecules, 
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reducing volatilization during pyrolysis due to the inter-
action between the empty p orbital of B and the partially 
filled p of elements such as N and O [51].

On the other hand, adding BX reduced N content, 
except for CCM-BX, which recorded an increase of 62%. 
High-temperature treatment at 550  °C with BX-doping 
resulted in composites with a high C/N ratio, notably in 
CCM-BX (13.4), CSC-BX (7.5) and CSS-BX (9.9), when 
compared to pristine biochars. BA-doping led to lower 
C/N ratios, suggesting that the association of N content 
with the porous structure of the biochar helps preserve 
N during pyrolysis or minimizes the loss of nutrients to 
the gas phase during carbonization. Conversely, com-
positions that exhibited decreased ash, C and N content 
indicated that the residues were more readily volatilized 
or converted into gases, thereby diminishing B levels in 
alkaline composites due to reduced polymerization. Con-
sequently, this leads to a less condensed C structure that 
is more vulnerable to thermal degradation [46].

The FSC feedstock is rich in proteins, chitin and N, 
which decompose during pyrolysis, potentially releasing 
N as ammonia  (NH3) or incorporating it into the bio-
char structure, enhancing the adsorption and retention 
of nitrogenous functional groups. The presence of BA-
doping revealed a chemical bonding between B and N, 
forming amino-borane complexes and the interaction of 
nucleophilic sites in amides with boranes, creating ther-
mally stable bonds [52]. This stability is influenced by the 
electronic value [52] of B-substituted groups, reducing 

the likelihood of decomposition and preserving the con-
tent within the matrix.

This research demonstrated that the behavior of B in 
doped materials significantly varies based on the feed-
stock type and the doping agent used, as well as the 
pyrolysis temperatures employed. It was noted that 
CCM-BA showed a 16.8% reduction in B content. The 
FCM, being rich in volatile organic compounds, sug-
gests that chemical reactions or thermal decomposition 
of certain manure components may affect B retention, 
attributing to the higher volatility of BA at elevated 
temperatures which facilitates B loss during pyroly-
sis. Conversely, CSC-BA (138  g   kg−1) and CSS-BA 
(146  g   kg−1) exhibited increases in B content of 3.4% 
and 14.4%, respectively (Table  5). This phenomenon 
could be explained by the formation of more stable 
structures that incorporate B, possibly due to the inter-
action of BA with specific components such as chitin 
and various organic and inorganic compounds, which 
may form structures that encapsulate B, preventing its 
volatilization and potentially forming stable B-organic 
compounds at high temperatures.

Both CCM-BX and CCM-BX’ maintained stable B 
levels when doped with BX. BX, being a thermally more 
stable B compound than BA, tends to integrate into the 
matrix more efficiently, preventing loss during pyrolysis. 
In contrast, CSC-BX and CSS-BX showed decreases of 
19.4% and 4.4%, respectively, while CCM-BX’ displayed 
thermal stability differing from the other composites. 

Table 5 Boron pools in biochar-based composites

Values are mean (n = 3); B in  H2O was determined ± 0.01 in a solution of  H2O at a ratio of 1:10 (w/v); content of soluble B in total (T) was determined by total digestion 
of the composites; B in neutral ammonium citrate water (NAC); B in content of B soluble in citric acid at 2% (CA%);  H2O Index, NAC Index and CA% Index represent 
the B content in relation to the extractors and the total B content. Composites: CCM-BA: chicken manure + boric acid at 300 °C; CCM-BX: chicken manure + borax 
at 300 °C; CCM-BA’: chicken manure + boric acid at 550 °C; CCM-BX’: chicken manure + borax at 550 °C; CSC-BA: shrimp waste + boric acid at 300 °C; CSC-BX: shrimp 
carcass + borax at 300 °C; CSC-BA’: shrimp carcass + boric acid at 550 °C; CSC-BX’: shrimp carcass + borax at 300 °C; CSS-BA: sewage sludge + boric acid at 300 °C; 
CSS-BX: sewage sludge + borax at 300 °C; CSS-BA’: sewage sludge + boric acid at 550 °C; CS-BX’: sewage sludge + borax at 550 °C

Boron (B)

Composite W T NAC CA% W Index NAC Index CA% Index

(g  kg−1) (%)

CCM-BA 1.6 ± 0.1 166.7 ± 0.1 101.5 ± 4.9 80.9 ± 0.2 0.9 ± 0.1 60.9 ± 2.9 48.5 ± 0.1

CCM-BX 0.9 ± 0.1 75.6 ± 0.1 53.2 ± 1.9 70.7 ± 0.3 1.2 ± 0.1 70.5 ± 2.6 93.6 ± 0.4

CCM-BA’ 2.1 ± 0.1 138.7 ± 0.1 100.0 ± 3.1 86.6 ± 6.3 1.5 ± 0.1 72.1 ± 2.2 62.4 ± 4.6

CCM-BX’ 1.0 ± 0.1 75.5 ± 0.1 55.5 ± 0.8 56.3 ± 4.0 1.4 ± 0.1 73.5 ± 1.0 74.5 ± 5.4

CSC-BA 2.4 ± 0.1 133.2 ± 0.1 125.9 ± 4.8 90.0 ± 1.1 1.8 ± 0.1 94.5 ± 3.6 68.2 ± 0.8

CSC-BX 1.6 ± 0.1 91.3 ± 0.1 88.3 ± 0.8 89.8 ± 1.0 1.8 ± 0.1 96.8 ± 0.9 98.4 ± 1.2

CSC-BA’ 2.6 ± 0.1 137.7 ± 0.1 132.5 ± 1.9 83.5 ± 3.1 1.9 ± 0.1 96.2 ± 1.3 60.7 ± 2.3

CSC-BX’ 1.6 ± 0.1 73.6 ± 0.1 70.8 ± 0.7 56.3 ± 0.1 2.2 ± 0.1 96.2 ± 0.7 61.7 ± 0.2

CSS-BA 2.2 ± 0.1 127.5 ± 0.1 114.9 ± 3.1 83.2 ± 6.4 1.7 ± 0.1 90.1 ± 2.5 65.2 ± 5.0

CSS-BX 1.1 ± 0.1 66.2 ± 0.1 57.0 ± 0.9 50.0 ± 1.0 1.7 ± 0.1 86.0 ± 1.3 75.5 ± 1.5

CSS-BA’ 2.0 ± 0.1 145.8 ± 0.1 113.6 ± 2.6 64.1 ± 5.8 1.3 ± 0.1 77.9 ± 1.8 44.0 ± 3.9

CSS-BX’ 1.1 ± 0.1 63.3 ± 0.1 61.2 ± 1.0 35.8 ± 0.3 1.8 ± 0.1 96.8 ± 1.6 56.6 ± 0.4
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These results suggest that although BX forms stable 
structures with some organic components, it may not 
interact as effectively with substances in these other feed-
stocks; otherwise, these substances may facilitate the 
degradation of BX at higher temperatures.

Furthermore, the increase in total B content with rising 
pyrolysis temperatures in BA-doped composites, which 
enhances the microstructure and improves oxidation 
resistance, aligns with the observations of Smith et  al. 
[53], who noted improved nutrient stabilization in bio-
char under high thermal conditions. However, the reduc-
tion in total B content in BX-doped composites at higher 
temperatures highlights the complex interactions during 
pyrolysis that may involve decomposition and chemical 
transformations [54], potentially affecting how B is incor-
porated into biochar [55]. The observed volatilization of 
B at elevated temperatures reflects the findings of Jones 
et al. [54], who documented the susceptibility of certain 
B compounds to thermal degradation, thereby reducing 
the amount of B retained in biochar and impacting its 
stability.

Water solubility assessments showed that CSC-
BA and CSC-BA’ composites have higher immediate 
B availability, making them particularly effective for 
soil applications. The enhanced total B content due to 
BA-doping suggests that these composites could offer 
prolonged B supplementation. The solubility and avail-
ability metrics, specifically NAC and CA%, indicate that 
CSC-BA and CSC-BA’ are well-suited for agricultural 
applications, with CSC-BX demonstrating an impres-
sive CA% of 98.4%, showcasing its effectiveness in B 
solubility and its potential to facilitate B distribution in 
acidic soils.

The water solubility of B in the CSC-BA and CSC-BA’ 
composites suggests they can provide immediate B avail-
ability to plants, which aligns with the findings of Shireen 
et al. [56], who emphasized the importance of micronu-
trient accessibility for plant health. The rapid solubility 
of B in these composites indicates their utility in quickly 
addressing B deficiencies in agricultural settings, poten-
tially enhancing soil fertility and crop yield.

The significant CA% index observed in the BX com-
posites suggests their capacity to interact with metal 
ions, enhancing the solubility of these metals through 
the formation of chelated complexes. This is in line 
with another paper [57], which emphasized the role of 
biochar composition and modification in effective dye 
degradation. Meanwhile, the NAC index observed in 
the BA composites indicates that these composites can 
form soluble complexes under neutral pH conditions 
without necessarily undergoing an acidification reac-
tion [58].

Infrared spectroscopy
The detection of hydroxyl groups (–OH) with peaks 
spanning 3.100 to 3.500   cm−1 indicates the presence of 
carboxyl, phenols, alcohols and water (Fig. 1). This range 
suggests possible changes in amide compounds, such as 
dehydration or decomposition, illustrated in Fig.  1a, c. 
The retention of hydroxyl groups and the distinct peak 
linked to the B-O/B-C bond, as shown in Fig. 1a, b, indi-
cate the effective integration of B atoms into the pyro-
lyzed matrix. This integration not only enhances the 
composite’s physicochemical properties but also con-
tributes to increased B solubility in water, as observed by 
Zhang et al. [15].

The observation of CH aliphatic stretching vibra-
tions between 2.920 and 2.885  cm−1, alongside a specific 
vibration at 2.351   cm−1 indicating C–CO2 stretching, 
validates the presence of porous structures with signifi-
cant graphitization. This observation, indicating disor-
dered defects, is further confirmed by characteristic CH 
stretching peaks at 3220   cm−1 in CSC-BA’ and CSS-BA’, 
and by our SEM findings [59].

An intensified band near 1600  cm−1 points to the pres-
ence of aromatic (C=C, C=N), ketonic/aldehydic (C=O) 
and steric (–COO) vibrations, according to Ateş et  al. 
[60], crucial for the composite’s chemical characteriza-
tion, as depicted in Fig.  1b, d. The B–C bond vibration 
observed at 1020  cm−1 aligns with previous research [61], 
highlighting the significance of infrared vibrations asso-
ciated with B–C bonds. This suggests that a meaningful 
interaction occurs in these groups within the compos-
ites’ structures and confirms the origin of the aromatic 
C=C bond at 1430  cm−1, essential for understanding the 
physicochemical transformations triggered by functional 
group modifications at the lower pyrolysis temperature of 
300 °C.

Notably, amide groups are distinguishable in the 1650–
1700  cm−1 range, as detailed in Fig. 1c. Moreover, Zhou 
et al. [62] emphasized the enhancement in performance 
and stabilization of B when associated with N-contain-
ing borate ester groups, facilitated by the lone electron 
pairs on N that complex B empty 2p orbit. This interac-
tion, revealing a substantial presence of B and N elements 
(Table  3), demonstrates the functional groups’ superior 
activity in BA-doped composites at both 300  °C and 
550 °C.

Signals around 1435  cm−1 might indicate carbonyls or 
carbonates, with stretching in carboxylic acids between 
1319 and 1232   cm−1, especially notable in composites 
produced at 300 °C. The B-doped C-rich materials exhibit 
configurations in both the graphitized and surface edge 
regions, more so with BA-doping at 550  °C. This out-
come, likely due to carbonyl-like groups (C=O) that 
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form C–O–B type bonds and groups, alongside carbox-
ylic acids (–COO), suggests enhanced oxygen activation 
compared to BX-doping, which displays less interaction 
with C under pyrolysis [63].

The role of B in O activation, improving surface charge 
distribution and inducing polarization, is well docu-
mented [64, 65] and leads to the formation of acidic func-
tional groups. Conversely, BX-doping tends to make the 
composites more alkaline by introducing unpolarized 
basic groups. The presence of B–O and B–O–B bonds 
around 1390   cm−1, indicative of B incorporation via 
borates or esters, is particularly prominent in compos-
ites processed at 300 °C. This enhances interactions with 
certain feedstocks, improving the composite’s chemi-
cal properties like acidity and polarity, as elaborated in 
Fig. 1b [66] and highlighted by recent findings that high-
light the importance of these bonds in biochar activation 
with BA.

Spectral analysis within 800–1200   cm−1 and 1200–
1600   cm−1 showcases interactions of B–C and B–O 
groups, respectively, without evidence of B-B bonds. 
Changes in the 1180–950 and 950–750   cm−1 regions 
hint at P–O–B bonding in BX-doped samples, with 
significant shifts observed for pyrolysis tempera-
ture changes, as shown by the absorption peaks at 
3419   cm−1 for (–OH) in BX-doped composites pro-
duced at 300  °C and water stretching vibration defor-
mation around 1330   cm−1 with temperature increase, 
as illustrated in Fig. 1c, d. Considering this relationship, 
using BA with its B–A symmetric stretch should yield 
an active peak at around 1200–1600   cm−1, while BX 
has a broad band of asymmetric stretching with a peak 
around 800–1000  cm−1 [67].

Principal Component Analysis (PCA) and cluster 
analysis revealed significant effects on the compos-
ites, indicating that B is incorporated into the matrix 

Fig. 1 Fourier transform infrared spectroscopy (FTIR) and the main peaks and characteristics of the chemical groups found in composites produced 
from biochar doped or not with boric acid or borax. a composites doped with boric acid at 300 °C; b composites doped with boric acid at 550 °C; c 
Composites doped with borax at 300 °C and (d) composites doped with borax at 550 °C
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via borate ester bonds (Fig. 2). Variations in the water 
solubility of B across different composites displayed 
unique patterns influenced by the doping material 
used. In composites extracted by neutral ammonium 
citrate (B-NAC), an increase in B solubility was noted, 
whereas those doped with BX showed reduced solubil-
ity. This variation is further highlighted by an observed 
inverse relationship between solubility and other com-
posite properties, such as pH, VM, ash content and C 
content.

For the CSC-BA there was an increased availability and 
solubility of B, especially when in the NAC form. This 
interaction aligns well with the composites’ properties 
such as N, VM, FC and EC (Tables  3 and 4). Addition-
ally, doping with BX modified the solubility of B-CA% at 
300 °C and enhanced the solubility of B-NAC at 550 °C. 
These changes in solubility were associated with shifts 
in electrical conductivity and ash content, ultimately 
leading to a decrease in the total B content within the 
composite.

CA%, acting as a mimic of natural root exudates, 
proved effective in enhancing B release, especially in 
the CCM-BX, CCM-BX’ and CSC-BX composites under 
alkaline pH conditions that favor the solubilization of 
borate ions. The presence of CA% facilitated the forma-
tion of soluble B complexes with metal ions, thereby 

enhancing B bioavailability. These alkaline conditions 
also led to an increase in ash content and the C/N ratio, 
which helped stabilize B within the composite. This sta-
bilization was further supported by the promotion of BO 
functional group formation, alongside an increase in the 
content of B and N [62].

The CSS-BA doping was found to promote cluster-
ing of B solubility in NAC, linked to VM. There was an 
increase in the VM content and N preservation in CSC-
BA’, consequently increasing the VM and B levels. The 
spectral feature retention at 3220  cm−1, associated with a 
bend around 1630  cm−1 as observed in CSS-BA’ samples, 
might be due to the preservation of hydroxyl groups even 
at raised pyrolysis temperatures. These findings suggest 
that specific functional groups such as C–OH and B–OH 
found at 3446   cm−1 and 3220   cm−1 are conserved while 
reducing the B–C bonding at 1020   cm−1. This change 
corresponds to the presence of monocrystalline B car-
bide in covalent organic structures and amorphous B car-
bide, crucial for composites’ structural integrity [68]. In 
conclusion, the PCA provided valuable insight regarding 
the physicochemical dynamics of B incorporation into 
different matrices. These findings showcase the interac-
tion between doping agents, pyrolysis temperature and 
matrix composition, collectively influencing the solubility 
and bioavailability of B in the resulting composites.

Fig. 2 Principal component analysis (PCA) of compounds produced in relation to the absence or source of B
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Prediction capacity of PLS models
Modeling through FTIR-PLS proved to be far superior 
when forecasting specific properties, highlighting the 
efficacy of the suggested approach for accurately deter-
mining key characteristics. Traditionally, this process 
has involved significant manual effort and substantial 
consumption of laboratory resources (Table S2). In par-
ticular, the introduction of B into biochar derived from 
chicken manure, shrimp carcass and sewage sludge 
matrices led to composites exhibiting diverse nutrient 
profiles and a broad spectrum of chemical and physi-
cal–chemical traits. The models we developed, based 
on ATR-FTIR, were notably successful in predicting the 
B concentration within these composites, furnishing 
dependable estimates of their properties (Fig. 3).

The calibration phase for our PLS models revealed 
exceptionally high correlation coefficients (R2), all sur-
passing 0.93, while in some instances, reaching an R2 of 
0.60, which is considered satisfactory according to Kiralj 

et al. [28]. This strength was also apparent in cross-vali-
dation phases, where R2 values exceeded 0.81 alongside 
minimal RMSE, as supported by others [69]. Notably, 
y-randomization test results for  R2 values exceeded the 
0.5 thresholds, except for B-NAC, which neared 0.49, still 
within the acceptable range as defined by Roy et al. [29]. 
The discrepancy between  R2 values for calibration and 
prediction in each PLS model was consistently less than 
0.2, showing no overfitting, in line with the criteria set 
by Kiralj et  al. [28]. Furthermore, employing FTIR-ATR 
spectrum database-based PLS models for pH prediction 
showcased R2 calibration values of 0.73 and prediction 
values between 0.71 and 0.73, with calibration RMSE of 
0.11 and prediction RMSE of 0.27, indicating an accuracy 
comparable to existing literature [70].

The application of near-infrared reflectance spectros-
copy for quick analysis of manure composites yielded 
calibration and validation determination coefficients of 
0.788 and 0.615, respectively, with associated standard 

Fig. 3 PLS regression based on ATR-FTIR in order to predict the properties and nutrient pools found within the composites
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errors (SEE for pH being 0.48 and SEP 0.60), demon-
strating the potential of this approach [7]. For EC specifi-
cally, calibration R2 stood at 0.8704, with validation R2 at 
0.8953, complemented by SEE of 1.74 and SEP of 1.87, 
underlining the method’s effectiveness [7].

The robustness of the technique in predicting C con-
tent was confirmed with a calibration R2 of 0.9610 and 
validation R2 of 0.9128, highlighting the model’s accuracy 
(SEE of 16.46 and SEP of 26.34) [7]. The NIR spectrum 
model for predicting biochar ash content was reported 
to have a prediction of R2 of 0.92 and a cross-validation 
RMSE of 0.26 [71], while another study using NIR spec-
troscopy for biochars processed at various temperatures 
obtained a calibration R2 of 0.99, RMSEC of 0.3, cross-
validation R2 of 0.94 and cross-validation RMSE of 0.8 
[72].

Lastly, infrared spectroscopy provided substantial 
predictive accuracy for N content in NPK minerals and 
organic mineral fertilizers (OMFs), with calibration and 
cross-validation of R2 values of 0.98 and 0.97 and corre-
sponding RMSEs of 1.91 g  kg−1 and 2.00 g  kg−1, respec-
tively [70]. Near-infrared reflectance spectroscopy for 
manure composites showcased calibration and cross-val-
idation coefficients of 0.9874 and 0.9735, with an SEE of 
1.61 and SEP of 3.96 [7].

Kinetics of B release
The B release kinetics from biochar composites synthe-
sized at 300  °C and 550  °C were detailed and assessed 
through an FTIR spectroscopic approach (Fig.  4). The 
application of an Exponential model described the release 

over time, with the Elovich model better characterizing 
the release for specific composites, offering insight into 
the nutrient release patterns essential for optimizing fer-
tilization processes.

At 300  °C, biochars exhibited distinct release behav-
iors, with CCM-BX showing a striking 100% B release 
between 2 and 4 h, suggesting high solubility and mini-
mal organic matrix binding. The order of B release 
was recorded as CCM-BX > CSC-BA > CSC-BX > CSS-
BA > CSS-BX > CCM-BA. This is indicative of the influ-
ence a B source holds on nutrient release in chicken 
manure-based composites. For CCM-BA, an initial rapid 
release was observed, reaching a 10% release within the 
first hour and stabilizing thereafter.

With an increase in pyrolysis temperature to 550  °C, 
the B release was generally rapid, potentially due to 
modifications in surface adsorption characteristics. For 
composites doped with BX, the CCM-BX’ showed an 
impressive 100% B release within the 24–48-h range. The 
B release trend for 550 °C biochars was: CCM-BX’ > CSC-
BX’ > CSS-BA’ > CSC-BA’ > CCM-BA’. The elevation of 
pyrolysis temperature contributed to an 11% increase 
in the release rate for CCM-BA, while CSC-BA showed 
no significant difference, and CSS-BA presented a 10% 
increase.

With an increase in pyrolysis temperature to 550 °C, B 
release was generally rapid, potentially due to modifica-
tions in surface adsorption characteristics. These results 
suggest that doping with B significantly influences the 
nutrient release in chicken manure-based composites. 
The presence of B–O bonds, evidenced by the spectra at 

Fig. 4 Kinetics of B Release (B) as related to composites produced at 300 °C (a) and 550 °C (b) with the mixture of chicken manure, shrimp carcass 
and sewage sludge plus boric acid and borax prior to pyrolysis
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550 °C, indicates a greater interaction at this temperature 
[40, 73]. This interaction of B with organic compounds, 
whether through complexation or adsorption into the 
composites [74], contributes to the gradual release of B 
[75], which aligns with the patterns observed throughout 
our research (Fig. 5).

The doping also provides acidic Lewis sites and alters 
the electronic structure of the C matrix, enhancing the 
electron transfer rate and catalytic capacity, albeit influ-
enced by thermal degradation [6]. This underscores the 
importance of carefully selecting the pyrolysis tempera-
ture to ensure the stability and functional efficacy of the 
biochar composites, as it modulates B release over time, 
which is crucial for sustainable agricultural practices.

Fourier transform infrared spectroscopy (FTIR)
SEM images depict variations in particle size and surface 
morphology among feedstocks, biochars, BA-based and 
BX-based (Fig. 4). BCM exhibits a heterogeneous, amor-
phous structure with a rough and porous surface, indi-
cating diverse pore sizes and shapes. BCM’ demonstrates 
structural loss and thermoplastic properties at 550  °C, 
leading to complete destruction during pyrolysis.

For CCM-BA, the SEM revealed elongated pores akin 
to channels, indicating a structure conducive to the 
release of gases and volatiles, aligning with the observed 
preferential release patterns. In contrast, the CCM-BA’ 

sample, when subjected to higher temperatures, showed 
rounded pores, indicative of structural compromises 
such as pore collapse and overall matrix deterioration. 
CCM-BX biochars possessed shallow pores, consistent 
with a rapid 100% B release profile, whereas CCM-BX’ 
displayed elongated but obstructed pores, potentially 
hindering the exchange of substances and ionic interac-
tions, as confirmed by kinetic analyses.

CSC-BA biochar showed surface pores reminiscent 
of volcanic textures, augmenting pore orientation and 
connectivity, which likely contributed to a reduction in 
VM. Conversely, CSC-BA’ was characterized by a highly 
porous structure with a hexagonal motif, while CSC-BX’ 
retained a porous surface integrated with lamellar zones. 
The CSC-BX’ variant, however, appeared massive and 
monolithic with a notable absence of discernible pores 
and cavities. The surface morphologies of both CSS-BA 
and CSS-BA’ were rugged and porous, with high-temper-
ature pyrolysis fostering the formation of surface precipi-
tates. Similarly, CSS-BX and CSS-BX’ biochars exhibited 
homogeneous surfaces as temperature escalated, lacking 
conspicuous porosity, and were peppered with opaque 
impurities owing to the synthesis of B compounds during 
pyrolysis [76].

Selected for greenhouse trials with Eucalyptus due to 
their substantial total B content, C, ash and VM, CSS-BA’, 
CSC-BA and CSS-BX composites also demonstrated the 

Fig. 5 Scanning microscopy obtained by FCM, FSC and FSS both under the influence of temperature 300 and 550 °C, as well as enriched with BA 
and BX. Magnified images at 10 μm
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retention of functional groups associated with B com-
plexation. The slow B release, as indicated in the kinetic 
study, places these composites as promising candidates 
for meeting the nutritional requirements of eucalyptus 
seedlings over different growth stages.

The SEM images captured in Fig.  5 illustrate the bio-
chars and their composites, highlighting the morphologi-
cal variances instrumental in B species implantation, as 
evidenced by the distinctive textural and structural char-
acterizations when doped with BA and BX. The promi-
nent peak attributed to C–B/B–O/C–O compounds [77] 
underscores the unique porosity and structural arrange-
ment of CSC-BA (Fig.  1a), CSS-BA’ (Fig.  1b) and CSS-
BX (Fig. 1c). CSC-BA exhibits profound porosity akin to 
volcanic formations [60] and clearly defines the borate 
ester structure [42]. Simultaneously, CSS-BA’ emphasizes 
surface precipitates with elevated pyrolysis temperatures 
and CSS-BX accentuates the valorization of compounds, 
maintaining structural integrity without noticeable 
porosity or cavities [60].

Agronomic efficiency of composites: nutrition and growth 
of eucalyptus
The results obtained in the cultivation of eucalyptus in 
Oxisols showed an increase in the production of shoot 
dry matter (SDM) when compared to the control without 
B addition (NB) (Fig. 6). The addition of composites not 
only increases the total dry matter (TDM) in comparison 
to plants treated only with B (BA p.a.), but also promotes 
a significant increase in root dry matter (RDM), which 
ensures an increase in vigor and establishment capacity 

of the seedlings, which is an important contribution to 
agricultural practices and eucalyptus cultivation manage-
ment as described elsewhere [78].

The CSC-BA composite demonstrated a marked 
improvement over the BA treatment in enhancing dry 
matter production in eucalyptus grown in Oxisols. Spe-
cifically, in the RYL soil, there was an increase of 71.9% 
in Root Dry Mass (RDM), 106% in stem dry mass (SDM), 
and 96.9% in total dry mass (TDM). Similarly, in the DRL 
soil, the CSC-BA composite facilitated increases of 139% 
in RDM, 99.2% in SDM and 107% in TDM. Moreover, 
the treatment also led to a significant enhancement in B 
accumulation in eucalyptus leaves, with increase values 
of 69.7% in RYL Oxisol and 84.5% in DRL Oxisol. These 
results clearly exceed the performances of treatments 
using BA alone, showing remarkable productivity with 
dry matter yields reaching 31 (g  pot−1) in RYL Oxisol 
and 36 (g  pot−1) in DRL Oxisol. This highlights the com-
posites’ efficacy in improving nutrition and growth in 
eucalyptus plants. It is important to note, however, that 
while the composites contribute significantly to growth, 
the total N content delivered via the composites is rela-
tively low. Furthermore, the N available from these com-
posites is either unavailable or only minimally available to 
eucalyptus.

The dynamics of B availability in soil, a critical fac-
tor for root absorption, varied significantly in the first 
30 days, underlining the importance of composite choice 
for sustained B release, illustrating the importance of 
precipitation-dissolution and adsorption–desorption 
processes [79] and/or organic complex formation and 

Fig. 6 Impact of fertilization with composites on eucalyptus growth characteristics and B nutrition in contrasting Oxisols: a study of aerial (SDM) 
and root dry matter production (RDM), B-accumulation in Eucalyptus and total production. In the graph, the solid bar represents total dry matter 
production (TDM). Dystrophic red-yellow latosol (RYL) and Dystrophic red latosol (DRL). Lowercase letters were used to compare the means of each 
parameter evaluated between treatments using the Tukey test (p < 0.05)
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soil organic matter [80]. RYL showed higher B availability 
compared to DRL soil, affecting the extraction sequence 
by the composites (Fig. 7).

Doping the FSC biochar matrix with B benefited the 
eucalyptus plants. B ensures greater preservation of N in 
the biochar and possibly increases chemical stability of C 
functional groups in the carbonized matrices, as shown 
in previous studies [14]. Moreover, groups ensuring 
higher CEC and adsorption capacity of composites are 
preserved when B is adsorbed through complexation due 
to the high ionization and selectivity of adsorbents [14]. 
Thus, synergy can accelerate eucalyptus development, 
ensuring a greater offer of B in controlled optimization 
of crop nutrition. Moreover, the composite can directly 
impact nutrient absorption and physiological processes, 
possibly improving drought tolerance through modu-
lation of  H+ and ATP activity. This function of B con-
tributes to B accumulation by the crop, with treatments 
surpassing NB [81]. The capacity of B-doped biochar 
composites to promote chemical stability and increase 
CEC reinforces the viability these materials possess in 
improving the nutrition and growth of Eucalyptus [14].

The availability of B in the soil was significantly 
impacted in the NB treatment, but the application of 
composites enhanced B availability. This contributed 
to the soil’s ability to maintain optimal B levels for suc-
cessive harvests [44], particularly those enriched with B 
sources [82]. Nevertheless, the significance of B extends 
beyond its role as a plant nutrient; it also contributes to 
the formation of organic composites that exhibit pro-
longed stability in the soil.

In this study, applications of CSC-BA were observed 
to enhance TDM and RDM significantly (Fig. 6). Addi-
tionally, this treatment markedly improves the solu-
bility and accumulation of B in plants (Fig.  7). These 
findings indicate a high adaptability of CSC-BA to 
various soil conditions, which is crucial for effective 

nutrient management. The noted improvements in 
plant growth and photosynthetic efficiency can largely 
be attributed to the increased mobility of B—a criti-
cal element in soils susceptible to nutrient leaching. 
Customizing these treatments enhances soil quality 
significantly, promotes C sequestration and reduces 
dependence on chemical fertilizers, thereby bolstering 
sustainable agricultural practices [83]. Adapting agri-
cultural management strategies to integrate precise 
B treatments according to local soil characteristics is 
vital for promoting the sustainable growth of eucalyp-
tus plantations. Future research should focus on cor-
roborating these findings in diverse environmental 
conditions and extending observational periods to fully 
ascertain the long-term impacts and efficacy of such 
tailored treatments.

Conclusions
This study demonstrates that the efficiency of boron 
(B) solubilization and release is significantly influenced 
by feedstock type, pyrolysis conditions and the form 
of B utilized. Nitrogen-rich feedstocks, particularly 
at 300  °C, were found to enhance B stabilization and 
performance in composites, effectively reducing vola-
tilization losses. FTIR spectroscopy confirmed success-
ful B integration into the carbon matrix via B–O and 
B–C bonds. Composites derived from boric acid (BA) 
exhibited superior molecular configurations, enhanc-
ing B release dynamics compared to those derived from 
borax (BX). Predictive PLS-FTIR models provided 
rapid and non-destructive characterizations of B within 
composites.

Incorporating B via BA before pyrolysis significantly 
improved composite properties, moderating B leachate 
in water and enhancing solution release dynamics. 
This showcases the potential these composites have of 
enhancing eucalyptus nutrition and growth in Oxisols. 

Fig. 7 Impact of fertilization with composites and boric acids on the availability of B (mg  L−1) and B in contrasting Oxisols cultivated 
with Eucalyptus (mg  kg−1). CSS-BA’: sewage sludge + boric acid at 550 °C; CSC-BA: shrimp waste + boric acid at 300 °C; CSS-BX: sewage 
sludge + borax at 300 °C; BA: Boric Acid; NB: No B. Dystrophic red-yellow latosol (RYL) and Dystrophic red latosol (DRL). Lowercase letters were used 
to compare the means of each parameter evaluated between treatments using the Tukey test (p < 0.05)
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CSC-BA composites, in particular, maintained B avail-
ability in Oxisols with low organic matter, supporting 
extended cultivation periods and successive plantings.

Future investigations should validate these findings 
through field applications under practical agricultural 
conditions. Research should also focus on formulating 
application methods for composites in different cropping 
systems. Additionally, long-term studies are needed to 
assess the environmental impacts and economic viability 
of B-biochar composites in sustainable agriculture.
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