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Abstract 

Background Plant biostimulants constitute a promising environmentally friendly alternative for increasing crop yield 
and tolerance to unfavorable conditions. Among various types of such formulations, botanical extracts are gaining 
more recognition as products supporting plant performance. Moreover, novel tools such as cold‑plasma or low‑pres‑
sure microwave plasma discharge are being proposed as techniques that might improve their efficacy. Elucidation 
of the biostimulant’s mode of action requires complex research at a molecular level. Transcriptional changes occurring 
after biostimulant spraying might be investigated using RT‑qPCR. However, this technique requires data normalization 
against stable endogenous controls.

Results Here, we tested the expression stability of ten candidate genes in soybean plants exposed to various 
biostimulants treatment. Selection of the best‑performing reference genes was conducted using four algorithms 
(geNorm, NormFinder, BestKeeper, and ΔCt method). According to the obtained results, Bic-C2 (RNA‑binding pro‑
tein Bicaudal‑C) and CYP (cyclophilin type peptidyl‑prolyl cis–trans isomerase) showed highest expression stability, 
while expression of EF1B (elongation factor 1‑beta) fluctuated the most among a tested set of candidate genes.

Conclusions Overall, we recommend using Bic-C2 together with CYP for the RT‑qPCR data normalization in soybean 
biostimulation experiments. To our best knowledge, this is the first comprehensive study of reference genes stability 
in plants subjected to biostimulant treatment. The results of this study will aid in further biostimulant research in crop 
plants, facilitating analyses performed on the transcriptional level.
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Background
Changing climate conditions and growing world popu-
lation require novel solutions to meet the demand for 
food and feed production without negatively affecting the 
environment. Various strategies are being implemented 
to overcome these problems—one of them is the appli-
cation of biostimulants, which constitute a range of for-
mulations based on natural products used to promote 
the growth and stress tolerance of crop plants [1]. The 
main categories of biostimulants comprise humic sub-
stances, protein hydrolysates, beneficial fungi and bac-
teria, chitosan and other biopolymers, seaweed extracts, 
and botanical extracts [2]. Compared to others, botani-
cal extracts’ mechanism of action is much less character-
ized. Plant-based biostimulants are rich in biologically 
active compounds, such as different phytohormones, 
antioxidants, vitamins, and other secondary metabolites, 
which improve overall plant performance by acting on 
various levels and through different pathways [3]. The 
characterization of these complex multilayer interactions 
requires more research employing omics tools (transcrip-
tomics, proteomics, metabolomics, and phenomics) [4]. 
Yet, despite us not totally understanding how, botani-
cal extracts are effective in stimulating crop growth and 
development under both optimal [5–7] and stress condi-
tions [8–10].

Horsetail (Equisetum arvense L.), dog rose (Rosa 
canina L.), and common soapwort (Saponaria officinalis 

L.) are plants widely known for their therapeutic effects 
promoted by various bioactive compounds. Horsetail 
is distinguished by its high content of silicon within its 
aerial parts [11], which can be useful in two ways, includ-
ing improved absorption of liquid biostimulant by treated 
plant and induce the metabolic response of treated plant 
by the microscopic disruption of its tissues by silicon par-
ticles. Moreover, horsetail extract can exhibit antifungal 
properties [12] and thus can serve as the contact fungi-
cide in the biostimulant. Rosehip, as the fruit of dog rose, 
is a rich source of antioxidants, especially vitamin C and 
polyphenolic compounds [13]. Its role in biostimulants 
can lie in increasing the antioxidant status of treated 
plants and improving the stability of biostimulants. Soap-
wort is characterized by a high content of saponins and 
their glycosides [14]. These compounds are known for 
their potential toxicity, so their application in biostimu-
lants should be well considered. However, they represent 
non-ionic biosurfactants with excellent performance 
[15]. In general, the presence of a surfactant agent as a 
detergent adjuvant is important for the optimal formula-
tion of agrochemicals, leading to better adhesion on the 
surface of plants [16]. Except for this, biosurfactants may 
be applied in plant disease and pest control, boost plant 
growth through microbial interaction and enhance plant 
immunity [17]. Concisely, the specific properties of each 
of these plants predetermine their application within the 
complex biostimulant.
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Since the use of biostimulants has been recog-
nized as a viable method for enhancing crop resil-
ience and yield, scientists are looking for novel ways 
of improving their mode of action [3, 18]. A recently 
proposed strategy involves cold-plasma activation of 
plant-based extracts, including gliding arc plasma dis-
charge [19]. Thus far, non-thermal plasma technology 
has been applied in agriculture mainly for seed treat-
ment in terms of microbial inactivation and germina-
tion improvement [20, 21]. Another reported strategy 
is using plasma-activated water to enhance plants’ 
growth and tolerance to abiotic and biotic stresses [22, 
23]. This is attributed to the generation of a mixture 
of reactive oxygen and nitrogen species during plasma 
discharges, some of which act as signaling molecules in 
cells and activate plants’ defense systems [24]. Coupling 
plant-based biostimulants with cold-plasma activa-
tion is an innovative approach that has a high poten-
tial for improving crop yield in future [19]. Another 
alternative way that might influence the effectiveness 
of plant-derived biostimulants is the employment of 
microwave plasma discharge. This type of plasma treat-
ment can operate under atmospheric pressure so that 
it can be simply used for the treatment of various bio-
logical materials. Along with decontamination [25] or 
degradation of hazardous compounds, including myco-
toxins [26], microwave plasma discharge can be used to 
improve the extractability of bioactive compounds from 
plant materials [27]. The inhibition of adverse enzy-
matic degradation of plant materials was reported after 
their treatment by microwave plasma discharge [26]. 
The pretreatment of dried herbs by plasma discharge 
may potentially improve the chemical properties and 
stability of derived water extracts and biostimulants, 
respectively.

Nevertheless, it should be emphasized that the mech-
anisms underlying the plants’ response to such novel 
biostimulants have not yet been elucidated. Analysis of 
transcriptional changes occurring after biostimulant 
treatment might provide insights into its mode of action. 
The RT-qPCR technique allows the examination of the 
expression profiles of various genes related, for instance, 
to plant redox homeostasis and defense responses, which 
might be involved in the process. However, this tech-
nique is sensitive to various experimental inaccuracies 
occurring during analysis such as differences in sample 
quality and quantity, RNA integrity, reverse transcrip-
tion efficiency, dilution preparation, and pipetting errors. 
To correct for such non-biological variations, proper 
data normalization using reference genes (RGs) show-
ing stable expression in tested material are required [28, 
29]. Since many studies report spatiotemporal variation 
in the expression of commonly used reference genes, 

identification of reliable endogenous controls should 
precede analyses of genes of interest in every RT-qPCR 
experiment [28].

Here, we tested the expression stability of ten candidate 
reference genes in soybean plants sprayed with three dif-
ferent variants of novel plant-based biostimulants. Two 
variants of biostimulant were formulated using either the 
gliding arc plasma or low-pressure microwave plasma 
discharge. To our best knowledge, this is the first report 
on the identification of reference genes in biostimulant-
treated soybean. The results of this study will aid in fur-
ther biostimulant research in crop plants, facilitating 
analyses performed on the transcriptional level.

Materials and methods
Preparation of biostimulants
First, three different biostimulants were prepared. The 
biostimulants were made from the mixture of dried and 
milled field horsetail (Equisetum arvense L.) stems and 
branches, dog rose (Rosa canina L.) fruits and soapwort 
(Saponaria officinalis L.) roots in the following ratio 
(w/w): 95.3%: 4.6%: 0.1%, respectively. The biostimulants 
differed according to plasma treatment used. Untreated 
biostimulant (without plasma application) was prepared 
as follows: 25 g of the herbal mixture was mixed with 
250 ml of water and then extracted at 100 °C for 30 min. 
Second type of biostimulant was prepared in the same 
manner as the control biostimulant but was subsequently 
treated with gliding arc (GA) atmospheric plasma dis-
charge for 30 s with air as a working gas at a flow rate of 
30 standard cubic feet per hour. In the case of the third 
type of the biostimulant, microwave plasma discharge 
[30] was applied (500 W for 30 s) on the solid herbal mix-
ture. After the MW plasma treatment, the liquid extract 
was obtained under the same extraction conditions as 
mentioned above. Pure water served as control. The 
biostimulants preparation procedure is depicted in Sup-
plementary Figure S1.

Experimental design of biostimulant application 
on soybean plants
The experimental material consisted of soybean plants 
(Abaca variety) growing separately in pots in controlled 
phytotron conditions (25/18 °C, photoperiod 16/8 h day/
night, with photosynthetic photon flux density (PPFD) 
at a plant level of 500–700 µmol  m−2  s−1 and 75% rela-
tive humidity). The plants were divided into four groups 
based on the biostimulant used: control (water only), 
untreated biostimulant, GA biostimulant and MW 
biostimulant. Each group consisted of 18 plants. The 
soybean seeds were pregerminated for three days on a 
moist filter paper. Subsequently, the seeds were sown into 
a sterile sowing substrate and were grown for a total of 
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24 days. First application of biostimulants (or water) was 
applied on 14th day in the form of spraying. After three 
days (day 17), first nine plants were harvested to col-
lect samples for the analyses. The second spraying of the 
biostimulants was performed on day 21. Again after three 
days (day 24), the remaining nine plants were harvested 
to obtain samples for the analyses. Roots and aerial parts 
of the plants were separated in both sampling points. The 
experimental design is shown in Fig. 1.

Every treatment was analyzed in three biological rep-
licates, with each sample consisting of pooled material 
from three randomly chosen independent plants. Col-
lected samples of leaves and roots were immediately fro-
zen in liquid nitrogen and stored at -80°C until further 
analysis.

RNA extraction and cDNA synthesis
RNA extraction, reverse transcription, and RT-qPCR 
reactions were performed using standard protocols 
which were described in our previous studies [31]. In 
short, collected samples were immediately homogenized 
in liquid nitrogen using a sterile mortar and pestle. The 
isolation of total RNA was performed using TRIzol rea-
gent (Invitrogen) according to the manufacturer’s recom-
mendations. Integrity and quality of RNA samples were 
evaluated electrophoretically on 1.5% agarose gel and 
spectrophotometrically with NanoDrop2000 (Thermo 
Scientific™). The Maxima First Strand cDNA Synthesis 
Kit for RT-qPCR, with dsDNase (Thermo Scientific™) 
was used to remove the genomic DNA contamination 
and conduct the reaction of reverse transcription. The 
cDNA synthesis was carried out in a final volume of 20 
µl using 3 µg of RNA. Obtained cDNA was used as a 
template in the following RT-qPCR reactions. The good 
quality of cDNA samples was confirmed via RT-qPCR 
reactions by analysis of amplification plots, mean Cq val-
ues, melt curves, and standard curves. Lack of genomic 

contamination in the samples was confirmed by NRT 
controls (no reverse transcriptase control).

RT‑qPCR reactions and data analysis
Based on the literature review, five commonly used ref-
erence genes CYP (cyclophilin type peptidyl-prolyl cis–
trans isomerase), EF1A (elongation factor 1-alpha), EF1B 
(elongation factor 1-beta), F-box (F-box protein), TUA  
(tubulin alpha) and five recently identified candidates 
showing stable expression in soybean Bic-C2 (RNA-bind-
ing protein Bicaudal-C), GPX (glutathione peroxidase), 
IGPS (indole-3-glycerol-phosphate synthase), TIA (apop-
tosis-promoting RNA-binding protein TIA-1/TIAR), 
ZnF (zinc finger) were chosen for the evaluation (Table 1) 
[28, 32–34]. Some of the traditionally used reference 
genes exhibited rather poor expression stability in several 
reports (e.g., GAPDH [32, 35], UBQ10 [36, 37]), therefore 
along testing the most promising conventional controls, 
candidates emerging from RNA-seq data [33, 34] were 
also included in the experimental setup.

Soybean CDS sequences and gene annotation data 
were retrieved from Phytozome (Phytozome genome 
ID: 275, annotation version: Glycine max Wm82.a2.v1) 
[30, 38]. Primers for RT-qPCR were designed with the 
PrimerBLAST tool (Supplementary Table  S1) [39]. The 
study employed only primer pairs which showed specific 
amplification (confirmed with dissociation curve analy-
sis—Supplementary Figure S2) and displayed amplifica-
tion efficiency of 90–110% and correlation coefficient  (R2) 
over 0.990 (determined via standard curve analysis). The 
RT-qPCR reactions were performed on the QuantStu-
dio™ 3 apparatus (Applied Biosystems) using PowerUp™ 
SYBR™ Green Master Mix (Applied Biosystems™). The 
reactions were conducted in three technical replicates on 
20 ng of template cDNA and 400 nM of each primer in 20 
µl total volume, using the cycling profile recommended 
by the supplier.

Fig. 1 Experimental design of biostimulant application on soybean plants
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Gene expression stability was determined using 
geNorm [44], NormFinder [45], BestKeeper (46), and 
ΔCt method [47]. Obtained results were subsequently 
compiled into the overall ranking generated as described 
in Velada et  al. [48]. In short, each gene was assigned a 
weight according to its stability as assessed by above-
mentioned algorithms (weight of 1 assigned to the 
best-performing gene, weight of 10 assigned to the worst-
peforming gene). Next, the geometric means of these 
weights were calculated and the comprehensive ranking 
was obtained. Three datasets were used in the analy-
sis—the roots samples dataset, the leaves samples data-
set, and the full dataset comprising all roots and leaves 
samples analyzed together. For the validation of selected 
reference genes, the expression level of target gene SOD 
encoding superoxide dismutase  [Cu/Zn] (NCBI Refer-
ence Sequence: NM_001249007.3) was analyzed under 
tested experimental conditions. The RT-qPCR reactions 
were conducted as described above using the following 
primers F: TCC TCT CAC TGG ACC AAA CAA and R: 
TCA TGA CCA CCT TTC CCA AGA TCA . The transcript 
level of SOD was normalized against the best-perform-
ing and the worst-performing candidate reference genes 
according to the obtained results. The relative expression 
level of the target gene was calculated using the  2−∆∆Ct 
method with control samples being used as calibrator.

Results
Determination of candidate RGs expression stability
The average expression stability value (M) of reference 
genes was calculated by the geNorm algorithm. Can-
didate genes showing stable expression in the tested 
material have low M values, while those showing vari-
able expression are characterized by high M values [44]. 

As shown in Fig. 2a, Bic-C2 and CYP were the best-per-
forming pair of genes across all tested samples in this 
experiment, while EF1B was the worst-performing gene 
in the full dataset. In the leaves of the soybean plants 
treated with various biostimulants, the highest expres-
sion stability was exhibited by F-box and ZnF, while 
in the roots CYP and EF1A were considered to be the 
most stable (Supplementary Table S2).

Analysis performed by NormFinder includes intra- 
and intergroup variations in the calculation of the 
stability values (SV), with low SV indicating low expres-
sion variability [45]. According to the obtained results, 
Bic-C2 was identified as the best-scoring gene in full 
dataset (Fig. 2b) and ranked as second-best when roots 
and leaf samples were analyzed separately. In both 
of these datasets, the lowest variation of expression 
among all tested candidates was demonstrated by F-box 
(Supplementary Table S2).

The expression stability of tested genes was subse-
quently evaluated by the BestKeeper algorithm, which 
determines the correlation coefficient (r) of each candi-
date with the BestKeeper index (the geometric mean of 
all candidate genes). High values of correlation coeffi-
cient indicate high expression stability of the gene [46]. 
On the other hand, the ΔCt method ranks the genes 
based on the average standard deviation (mean SD). 
Both BestKeeper and ΔCt method produced identical 
results regarding the two most stably expressed genes 
in a given dataset. In full dataset, Bic-C2 and CYP were 
identified as most stable after the biostimulants treat-
ment. Likewise, both calculation methods indicated 
EF1B as the worst reference gene among all candidates. 
In the leaves dataset and roots dataset, F-box together 
with Bic-C2 was designated as the two most stable ref-
erence genes. Nevertheless, the gene order in stability 

Table 1 Candidate reference genes details

Gene acronym Name of the gene Functional annotation References

Bic-C2 RNA‑binding protein Bicaudal‑C Regulation: RNA‑binding, protein binding [33]

CYP Cyclophilin type peptidyl‑prolyl cis–trans isomerase Intra‑cellular processes: protein modification, protein 
folding

[29, 32, 34, 36, 37, 40]

EF1A Elongation factor 1‑alpha Information: translation, translation elongation factor 
activity

[29, 34, 40, 41]

EF1B Elongation factor 1‑ beta Information: translation, translation elongation factor 
activity

[28, 33, 36, 37, 40, 41]

F-box F‑box protein General: protein interaction, protein binding [32, 33, 40, 42, 43]

GPX Glutathione peroxidase Metabolism: redox, antioxidant activity [33, 34]

IGPS Indole‑3‑glycerol‑phosphate synthase Metabolism: nucleotide metabolism and transport [33, 34]

TIA Apoptosis‑promoting RNA‑binding protein TIA‑1/TIAR Regulation: RNA‑binding, metabolism and transport [33, 34]

TUA Tubulin alpha Intra‑cellular processes: cell motility, structural con‑
stituent of cytoskeleton

[29, 32, 37, 41, 42]

ZnF Zinc finger, CCCH‑type Regulation: DNA‑binding [33, 34]
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Fig. 2 Expression stability of RGs in soybean plants after biostimulant application (full dataset) evaluated by: a geNorm algorithm (based 
on expression stability values M); b NormFinder algorithm (based on stability values SV); c BestKeeper algorithm (based on correlation coefficients r)
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rankings generated by both approaches varied in fur-
ther positions (Fig. 2c, Supplementary Table S2).

To determine how many reference genes should be 
used for reliable normalization of RT-qPCR data, the 
additional analysis of pairwise variation  (Vn/n+1), was 
performed in the geNorm algorithm. The pairwise varia-
tion value below 0.15 indicates no need for the inclusion 
of an additional reference [44]. Results obtained in the 
present study show that a pair of best-performing refer-
ence genes is sufficient for accurate normalization of the 
expression data, regardless of the samples being analyzed 
in full or separate datasets (Supplementary Figure S3.).

As a final point, the obtained results were compiled 
into a comprehensive ranking (Table 2). In general, F-box 
and Bic-C2 were the most stable reference genes in the 
soybean leaves subjected to the biostimulants treatment. 
Out of all tested genes, the expression of TUA  was the 
most affected by the experimental conditions used in 
this study. In roots, Bic-C2 was shown to display more 
stable expression than F-box, while expression of IGPS 

fluctuated the most among a tested set of candidate 
genes. Nevertheless, for the experiments involving both 
leaves and roots samples of soybean, Bic-C2 together 
with CYP is recommended as the best pair of controls for 
the normalization of RT-qPCR data.

Validation of candidate reference genes
The expression of SOD gene was estimated using the 
best- and the worst-performing reference genes identi-
fied in this study. When Bic-C2 and CYP were used as 
internal controls, the SOD expression in leaves of plants 
sprayed with different variants of biostimulant remained 
stable (Fig. 3a). However, when EF1B was used for data 
normalization, obtained results suggested downregu-
lation of SOD transcription. Moreover, contradictory 
trends were shown in the roots (Fig.  3b) of the plants 
treated with biostimulant activated with cold plasma. 
Depending on the reference genes used in the calcula-
tion, SOD expression was either upregulated or down-
regulated by biostimulant application. This demonstrates 

Table 2 Comprehensive rankings of RGs stability based on the results obtained from all algorithms

Dataset Best Good Average

1 2 3 4 5 6 7 8 9 10

Leaves F-box Bic-C2 ZnF GPX EF1A CYP IGPS TIA EF1B TUA 

Roots Bic-C2 F-box CYP EF1B EF1A GPX TUA TIA ZnF IGPS

Leaves and roots Bic-C2 CYP GPX EF1A F-box TUA ZnF TIA IGPS EF1B
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Fig. 3 The expression profiles of SOD gene in soybean plants after biostimulant treatment. Relative expression level in leaves after first treatment (a) 
and in roots after second treatment (b). Normalization was performed using a pair of the most stable reference genes (Bic-C2 + CYP) in comparison 
to the most unstable reference gene (EF1B). Control: water (used as calibrator), Bio: untreated biostimulant, Bio MW: microwave plasma pre‑treated 
biostimulant, Bio GA: gliding arc plasma pre‑treated biostimulant. Data represents mean ± SD (n = 3), asterisk represents significant difference 
(P < 0.05, student’s t‑test)
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the significance of proper reference gene selection and 
the influence it might have on the reliability of observed 
expression changes of genes of interest.

Discussion
Biostimulatory effects of plant extracts have been exten-
sively studied in recent years as an alternative approach 
for promoting crop growth in sustainable agricultural 
production [3, 49–52]. Until now, no relevant studies 
have described the use of horsetail, dog rose, and soap-
wort in biostimulants to promote soybean plants growth 
and stress tolerance. Horsetail, as the main component 
of biostimulant in this study, is often used in organic 
farming for various claimed activities [53]. Its use in 
plant protection products was approved under Regula-
tion of European Commission No. 1107/2009 as a basic 
substance since it has a preventive effect against fungal 
diseases due to its high silicon content. As a practical 
example, horsetail macerate was shown to be a prom-
ising Cu-free fungicide effective in protecting tomato 
plants against late blight [54]. Another study reported 
that horsetail extract increased the yield and improved 
the composition of basil essential oil, suggesting its posi-
tive effect on the quality of medicinal plants [55]. Poly-
phenol-rich rosehips, on the other hand, are neither 
commonly used nor approved for biostimulant produc-
tion. However, polyphenol-based biostimulants can posi-
tively affect plant growth, especially at the root level [56], 
which is in coherence with using rosehip extracts as the 
biostimulant constituent in this study. Soapwort extract, 
as the material loaded with various saponins, is supposed 
to serve as an adjuvant in biostimulant. It occurs in this 
research-related biostimulant only to a minor extent, and 
its main purpose is to increase the efficiency of biostim-
ulant. However, due to its properties, it may also partly 
act as a biocide. Application of common soapwort in 
biostimulants has not yet been reported in the scientific 
literature.

Better understanding of biostimulants’ mode of action 
requires complex studies conducted on a molecular level 
[57, 58]. Investigating transcriptional changes occurring 
after the exogenous application of biostimulatory sub-
stances might provide insight into the complex processes 
leading to the beneficial effects of improved growth, 
yield and increased resistance to adverse environmental 
factors [57, 58]. The RT-qPCR is a valuable and precise 
tool for evaluating changes in gene expression. How-
ever, in order to obtain accurate results proper data nor-
malization is required. Thus, the step of reference genes 
selection is crucial in every experiment involving this 
technique [59, 60].

Previous studies conducted on soybean regarding ref-
erence gene selection focused on evaluating candidate 

genes’ stability under various abiotic and biotic stresses, 
in different organs, cultivars, or developmental stages 
[28, 32, 37, 40–42]. Although these results were obtained 
within the same species, they often are inconsistent or 
even contradictory, which might be attributed to a par-
ticular experimental setup. After testing soybean under 
different conditions, Wan et al. [28] reported that not a 
single gene displayed constant expression across all sam-
ples. Consequently, as ideal reference might not exist 
[61], it becomes crucial to precede each gene expression 
experiment with the identification of proper internal 
controls.

In this study, we evaluated the expression stability 
changes occurring in soybean plants subjected to foliar 
application of different variants of biostimulants. The 
experimental setup involved expression analysis of genes 
in both leaves and roots. We tested a set of ten potential 
reference genes—half of them represented commonly 
used internal controls (CYP, EF1A, EF1B, F-box, TUA 
), half comprised less-known but promising candidates 
(Bic-C2, GPX, IGPS, TIA, ZnF). Obtained data were 
analyzed via four different approaches (geNorm, Nor-
mFinder, BestKeeper, and ΔCt method), and the results 
were compiled into a comprehensive ranking of gene 
expression stability in leaves samples, roots samples and 
in the full dataset.

The results show that, regardless of the dataset, a pair 
of best-performing genes would be sufficient for gene 
expression normalization. Overall, Bic-C2 and CYP 
outperformed all other tested candidates in terms of 
expression stability in whole plants after biostimulants 
treatment. In fact, CYP was previously reported as being 
the most stable in different soybean organs [29], which 
corroborates our results. At the same time, when the 
leaves and roots samples were analyzed separately, other 
gene than CYP was classified as better candidate for data 
normalization. Along Bic-C2, high expression stability in 
sample subgroups was exhibited by F-box. In the study 
by Sharma et  al. [43], F-box also showed stable expres-
sion in both root and shoot samples of soybean exposed 
to macronutrient stress (irrespective of the datasets being 
analyzed together or separately). Likewise, F-box was 
reported to display stable expression in soybean under 
other abiotic stresses, such as high salinity (shoots), low 
temperature (shoots) and dehydration (roots and shoots) 
[40].

To our best knowledge, this is the first comprehensive 
study of reference genes stability in plants subjected 
to biostimulants treatment. Even though gene expres-
sion changes in plants caused by biostimulants have 
been reported before, typically one [62–64] or at best 
three traditional reference genes [65–67] were used for 
data normalization without previous confirmation of 
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their stability in the given experimental setup. Only few 
studies report testing a small set of three [68] or four 
[69] internal control candidates before analyzing genes 
of interest. Using unverified internal controls poses a 
risk of miscalculating the real expression changes of 
genes of interest and drawing false conclusions [70]. 
Therefore, the step of identification of accurate and 
reliable reference genes should not be omitted in gene 
expression studies. For instance, here F-box was shown 
to display the highest expression stability in the soy-
bean leaves treated with biostimulants. Similarly, it was 
reported as the most stable gene in soybean subjected 
to viral stress [32]. Nevertheless, in the leaves of soy-
bean exposed to Cd stress, it was ranked as the most 
unstable candidate [42]. Likewise, ACT  was reported 
as highly stable in adzuki bean (Vigna angularis) under 
waterlogging stress and rust infection [71], yet it per-
formed poorly when the plants of this species were 
growing under iron deficiency [72].

Many times some of the traditionally used reference 
genes, such as GAPDH, have been proven to show 
rather poor expression stability under given experimen-
tal conditions [32, 35, 73]. Therefore, there’s a need to 
find new candidates for reliable reference. Using RNA-
seq datasets might significantly aid in this process. 
Transcriptome-based identification of novel reference 
genes has already been conducted in some plant spe-
cies, e.g., Gossypium hirsutum [74], Allium tuberosum 
[75], Lactuca sativa [76] or Ardisia kteniophylla [77]. 
Yim et  al. [33] also employed such strategy in order 
to find better internal controls for soybean studies. 
One of their newly identified candidates, Bic-C2, out-
performed all of the genes tested in this experiment. 
Another one, GPX, also showed good overall perfor-
mance as it ranked third in the full dataset. Likewise, 
Machado et  al. [34] analyzed 1298 RNA-seq soybean 
samples and found 452 genes displaying uniform and 
constant expression, which might potentially serve as 
reference gene candidates. Six of them were also tested 
in this study. While CYP, EF1A and GPX remained 
stable after biostimulants exposure across both leaves 
and roots, ZnF, TIA and IGPS exhibited rather average 
expression stability. Therefore, the verification of candi-
dates emerging from RNA-seq is still needed.

Since being identified as constitutively expressed 
in soybean [33], Bic-C2 has been used several times 
for RT-qPCR data normalization [78]. Yet, until now, 
its stability has not been confirmed by other authors. 
Based on the obtained results, we recommend Bic-C2 
to be used in pair with CYP as reliable internal control 
in biostimulant-soybean research and to be considered 
as a worthy candidate for studies conducted in different 
species.

Conclusions
In summary, in this experiment, we tested the expression 
stability of ten candidate genes in soybean plants treated 
with three novel variants of plant biostimulants. The 
selected candidate genes included five commonly used 
reference genes: CYP, EF1A, EF1B, F-box, TUA ; and five 
recently identified candidates showing stable expression 
in soybean: Bic-C2, GPX, IGPS, TIA, ZnF. Comprehen-
sive analysis conducted with four algorithms points to 
Bic-C2 and CYP as the best-performing pair of reference 
genes in tested experimental material. The lowest expres-
sion stability was shown by one of the traditionally used 
reference genes, EF1B. Our results confirm that a pair of 
best-scoring genes will be sufficient for reliable RT-qPCR 
data normalization. Overall, we recommend Bic-C2 to be 
used together with CYP as a good internal control in the 
research of biostimulant applications on soybean plants. 
Moreover, these two candidate genes could be consid-
ered for biostimulation studies conducted in other plant 
species. The results of this study will aid in elucidating 
the biostimulant’s mode of action on the transcriptional 
level.
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