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Abstract 

Green nanotechnology has significant potential for use in agriculture particularly due to their antifungal properties, 
ability to control fungal diseases and reduce the reliance on chemical fungicides. Biotic stresses in agriculture have 
caused widespread damage worldwide, and green NPs provided eco‑friendly alternatives to traditional chemical 
treatments, which are frequently toxic and harmful to the ecosystem. Green NPs could become an important tool 
in modern agricultural practices and environmental remediation if appropriate research is conducted to identify 
cost‑effective production methods as well as safe and sustainable applications. In order to understand the poten‑
tial of green NPs for sustainable agriculture and identify potential risks, research is ongoing into the effectiveness 
in agriculture sectors. Research update on green NPs is presented in this paper using data published on science 
direct over the last 15 to 20 years to clarify and understand the antifungal mechanisms of green metallic NPs, carbon 
and graphene nanotubes, nanocomposites as well as other type of nanomaterials. These green NPs are found to be 
more effective against pathogens on crops and humans than conventional fungicide approaches. They are very effec‑
tive against fungi that affect cereal crops, including Fusarium oxysporum, Botrytis cinerea, and Candida species, etc. The 
green NPs developed using green synthesis methods are both cost‑effective and environmentally friendly. Moreover, 
research is also required to identify the best methods for applying green NPs for crop production and sustainable 
agriculture. Furthermore, research should be undertaken to establish the most cost‑effective methods of making 
and deploying green nanoparticles at a large field size study where there is fungal attack that diminishes agricultural 
output and affects global crop production.
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Green nanotechnology: an overview
There is an imbalance in the world’s natural resources 
as a result of population growth and exploitation of 
ecosystem. Nanotechnology, according to researchers, 
can improve products by improving their performance, 
lowering manufacturing costs, and increasing resource 
efficiency. It is one of the most rapidly rising fields in sci-
ence and technology. Nanotechnology can create nano-
particles (NPs) with higher surface-to-volume ratios 
and a variety of chemical and physical characteristics. 
Nanoparticle are widely employed in chemistry, energy, 
healthcare, and cosmetics for environmentally friendly 
applications. Metal and semiconductor NPs include 
oxides, nitrides, and sulphides [1–3]. The creation of nan-
oparticles by living cells, especially via plant resources is 
the subject of the newly developing scientific field known 
as “green nanotechnology”. Numerous sectors rely on 
this field, including electronics, biotechnology, nuclear 
energy, fuel and energy, and pharmaceuticals as well as 
for the remediation of various environmental ailments 
[4–6]. Since biological procedures using green synthesis 
tools are safer, more environmentally friendly, non-toxic, 
and more economical than other similar approaches, they 
are better suited for synthesizing nanoparticles between 

1 and 100 nm. The top-down and bottom-up approaches 
use different physical, chemical, and biological processes 
to create the metal nanoparticles [7, 8]. Following Fig. 1 
explores the green synthesis routes along with the poten-
tial applications of green nanotechnology.

Greenly produced NPs have been shown to enhance 
the performance of solar cells, photocopiers, xerography, 
rectifiers, antioxidants, and photocatalysis [9]. According 
to Pansambal et  al. [10], green-produced cerium oxide 
nanoparticles have antioxidant, antidiabetic, antican-
cer, antibacterial, and antifungal properties in addition 
to photocatalytic dye degradation. Potential photocata-
lytic, antioxidant, and antibacterial properties of green-
produced stannic oxide nanoparticles make them useful 
for improving environmental and human health applica-
tions [11]. Applications in biomedicine and the environ-
ment are being developed with green-produced silver 
chloride nanoparticles [12]. Different plant parts are used 
to create green synthetic metal nanoparticles, which are 
also generated using economical, non-toxic, and envi-
ronmentally beneficial processes. In contrast to differ-
ent physical and chemical methods, environmentally 
friendly produced nanoparticles perform more actively 
in the removal of dyes, antibiotics, and metal ions from 
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the soil and water media. The most effective way to make 
nanoparticles is by green synthesis, which also happens 
to be a cost-effective, environmentally friendly, and very 
stable process. In environmental and biological applica-
tions, green synthesis techniques respond more favorably 
[13, 14]. Numerous phytochemical substances with oxi-
dation–reduction properties, such as flavonoids, pheno-
lics, terpenoids, and polysaccharides, are found in plants. 
For this reason, they are best used in the environmentally 
friendly creation of nanoparticles. The process of creat-
ing stable nanoparticles requires precise understanding 
of the phytochemical components, hence the synthesis of 
phytochemical compounds for nanoparticles is not a gen-
eral process [15, 16]. Most people feel that the important 

actors in the creation of environmentally friendly nano-
particle manufacturing are plant secondary metabolites, 
notably polyphenols, phenols, and other plant materi-
als that participate in the synthesis process. According 
to [17], green synthesis approach is more sophisticated, 
repeatable, safe, and inexpensive. Comparing plant-based 
green manufacturing of nanoparticles to other compara-
ble biological processes involving actinomycetes, bacte-
ria, fungi, and algae reveals certain advantages [18]. The 
presence of considerable phytochemicals in these artifi-
cially manufactured green nanoparticles raises concerns 
for numerous plant parts, including the roots, stem, leaf, 
seed, and fruit [19]. In various plant portions, squeeze, 
wait, and apply salt solutions after cleaning with tap or 
distilled water to produce plant-synthesized nanopar-
ticles. Using this method, metallic salts were added, 
and then the nanoparticles were eliminated using the 
required laboratory procedures. Among the industries 
that employ green nanoparticles are agriculture goods, 
food, aquaculture sciences, personal hygiene, medicine, 
and nano-enabled technology.

Green nanotechnology and agriculture
Green nanotechnology research has demonstrated a con-
siderable potential to alleviate major barriers to reaching 
sustainable agricultural production objectives. Utiliz-
ing environmentally friendly materials has the potential 
to transform food systems and address the global food 
security issue of today. With the magic of nanotechnol-
ogy, it has the power to change modern agriculture from 
the period of genetically modified crops to the exciting 
new era of atomically changed organisms [6, 20–23]. The 
excessive use of chemical fertilizers for higher yields give 
rise to growth of insects and microbes causing fungal dis-
eases in great numbers in the present day unsustainable 
agricultural practices. These fungal attacks can possibly 
impact both the crops growth and the crops yield impos-
ing economic losses to the farmer’s community.

On the other hand, the innovative GNT is based upon 
the applications of nanotechnology principles and tech-
niques applied in an eco-friendly mode for effective 
control of fungal activities of various pathogens in agri-
culture. The GNT involves the use of suitable materials 
on a microscopic scale of (0.1–100) nm size to effectively 
control the desired ailments from the start to the matu-
rity of the plants. Hence, their applications in agriculture 
can enhance crop production and improve resource effi-
ciency, offer innovative and eco-friendly approaches to 
control all possible antifungal activities in plants [24–26]. 
It is noticed during the research, that the use of GNT 
applications can greatly increase the stability of crops 
by reducing the losses due to abiotic and biotic stresses, 
producing higher crop yields by curtailing the production 

Fig. 1 Mechanism of green synthesis of nanoparticles by using plant 
materials and its sustainable applications in various sectors
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costs in agriculture [27]. The GNT involve the applica-
tions of following novel nanoparticles techniques in the 
field of emerging agriculture. The nano-coatings on seeds 
can speed up germination rates, protect against pests and 
diseases, and can provide controlled release of nutrients 
during early growth stages of plants in agriculture [28].

The nanotechnology can contribute to the develop-
ment of efficient nano-based water filtration and adsor-
bent systems that ensure pathogen and toxic free clean 
water for irrigation purposes. A lot of inorganic materi-
als, such as heavy metals, were present in the wastewa-
ter from the industries, posing serious health hazards to 
people. Nanobased filtration alleviates those effects. This 
technology can also be used to purify water from other 
sources, such as rivers and lakes. It can provide a cost-
effective and efficient way to clean contaminated water 
and make it safe for consumption [29–34].

Numerous studies have demonstrated the potential of 
green nanotechnology to regulate stress-induced changes 
in plants. Moreover, the regulated and targeted release 
of nano-pesticides has been shown to be a highly suc-
cessful method of removing biotic stressors in agricul-
ture, particularly for wheat crops [35, 36]. Some possible 
green NPs measures for the agriculture sector’s sustain-
able farming practices are shown in Fig.  2 below. These 
actions include preserving water, enhancing soil health, 
and using fewer toxic pesticides and fertilizers. Using 
sustainable energy sources, including wind and solar 
energy, can also aid in lowering carbon emissions. These 
properties and futuristic approach of green nanotechnol-
ogy can enhance the crop production in agriculture [37, 
38]. The development of nano-scale formulations for pes-
ticides can improve their efficacy and reduce the amount 
of chemicals needed. Nano-encapsulation of active ingre-
dients enhances targeted delivery and reduces the envi-
ronmental contamination to the minimum level. The 
nano-based fertilizers aim to enhance nutrient uptake by 
plants, increasing the efficiency of nutrient utilization. 
Moreover, the controlled release mechanisms in nano-
based fertilizers can supply necessary nutrients to plants 
for wider periods and hence reducing the need of their 
frequent supply to the plants. Moreover, the use of nano-
carriers can improve the efficiency of delivering various 
agricultural inputs primarily pesticides, nutrients to the 
plants [39–42].

Antifungal activities of green nanoparticles
Techniques involving plants with nanotechnology called 
“green nanotechnology” offers an efficient, eco-friendly 
management and control of these fungal pathogens in 
agriculture. Plant-based nanotechnology is a cutting-
edge approach that will undoubtedly bring an era of 
agricultural technology innovation to solve such issues. 

Nanoparticles based on phyto-extracts demonstrate the 
potential of antimicrobial activities for effective fungal 
pathogen control compared to conventional fungicides. 
In addition to ensuring plant health, nanoparticles sat-
isfy agriculture’s growing need for high output. The lim-
its of chemicals and the potential of green nanoparticles, 
which provide fresh approaches to managing fungicides 
that cause fungal illnesses in agriculture, are the primary 
topics of this paper. Recent research showed that the rise 
of fungal diseases in plants resulted in economic losses 
in the agriculture. Chemical fungicide sprays are not an 
environmentally acceptable way to treat fungal illnesses 
since they pollute the environment and pose a risk to 
human health as well as other biotic life forms. However, 
these chemical fungicides appear  overused due to their 
affordability and ease of application [43]. According to 
Moore et al. [44], fungi account for 70–80% of the losses 
brought on by microbial diseases. It is believed that there 
are around 1.5 million species of kingdom fungus, and 
most of these fungal pathogens cause plant illnesses and 
production losses. Fungal infections have been respon-
sible for agricultural losses exceeding 200 billion euros 
annually [45]. Animal pests account for around 18% of 
agricultural crop losses, with microbiological diseases 

Fig. 2 Role of green nanoparticles for the agricultural services 
as crop production, crop protection, crop monitoring, soil quality, 
and crop sensing
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and weeds accounting for 16% and 34% of losses, respec-
tively. However, it is utmost essential to consider poten-
tial environmental and health impacts while employing 
green nanotechnology in agriculture. The overall sustain-
ability of agricultural practices requires careful develop-
ment of GNT and essentially should be done thorough 
valid risk assessments before its field application.

A variety of fungal infections were effectively inhibited 
by the ZnO NPs made from Parthenium hysterophorus 
plant extracts. For example, ZnO NPs based on parthe-
nium start to significantly slow down the growth of A. 
flavus and Aspergillus niger pathogens, respectively [46]. 
ZnO nanoparticles, which were produced with the help 
of Syzygium aromaticum bud extracts, shown efficacy 
against Fusarium graminearum, a pathogen that typically 
inhibits the growth of mycelial cells and the synthesis of 
mycotoxins such as zearalenone and deoxynivalenol. At 
the same time GNT treatments can raise lipid peroxida-
tion, reactive oxygen species (ROS) production and lower 
ergosterol matters of fungal membrane which is highly 
damaging to established pathogens in agriculture [47].

Downy mildew, produced by Plasmopara viticola, 
reduces the crop production that effects the food secu-
rity. This illness can be efficiently managed with a 
nano-composite of graphene oxide (GO) and iron oxide 
 (Fe3O4) known as GO-Fe3O4. Pretreating leaf discs with 
this nano-composite before inoculating with P. viticola 
sporangium significantly reduces spore germination, 
most likely by restricting water routes in the sporangia. 
While ordinary Fe3O4 and GO have limited control on 
spore germination, the nano-composite is far more pow-
erful. Graphene oxide coated with silver nano-composite 
can cause antifungal effects by interacting with fungal 
cell membranes and disturbing their bonding severely as 
in case of pathogen F. graminearum [48].

The use of silver nanoparticles (Ag NPs) has demon-
strated a favorable impact by establishing direct con-
tact between the Ag ions and the pathogen’s spores and 
germ tubes, so stopping their negative influence. This 
confirms that Ag NPs are capable of curbing a variety 
of illnesses caused by plant pathogenic fungi. So AgNPs 
provide strong antifungal properties by disrupting fungal 
cell membranes and halting their cellular processes for 
further growth. They are effective against a broad spec-
trum of fungi, making them valuable in agriculture [49]. 
The Ag NPs are commonly utilized for sterilization pro-
cesses, such as waste-water treatments and water sani-
tization, because of their antimicrobial qualities [50]. By 
employing the green chemistry approach, Ag NPs may be 
synthesized to regulate the detrimental effects of certain 
fungal diseases. For example, Krishnaraj et al. [49] tested 
the efficacy of Ag NPs at varying concentrations against 
a variety of fungal plant pathogens, such as Rhizoctonia 

solani, Macrophomina phaseolina, Alternaria alternata, 
Curvularia lunata, Botrytis Cinerea, and Sclerotinia Scle-
rotiorum, using green AgO NPs utilizing the leaf extract 
of Acalypha indica. Amazingly Ag NPs with a concentra-
tion of 15  mg showed a remarkable inhibitory activity 
against all above pathogens in the field of agriculture. In a 
different study, Ag NPs (30 ppm) prepared from  AgNO3 
(5  mM) solution using Argemone mexicana leaf extract 
were shown to be extremely poisonous to the patho-
genic fungus Aspergillus flavus [51]. Also, Ag NPs can 
be manufactured by using seeds extract of T. peruviana 
(10%) mixed in chemicals of  AgNO3 (1 mM) in the pres-
ence of sunlight or autoclave method or combination of 
both techniques. The performance of Ag NPs is much 
bigger by careful treatment which may inspire the direct 
contact of Ag ions with germ tubes and spores to control 
effectively pathogen and fungi activities in agriculture 
[49]. The following Table  1 illustrates the use of several 
NPs for successfully reducing fungal attacks on different 
crops. The NPs used are commercially available and have 
proven their effectiveness in reducing the attack of fungi 
on crops. These NPs are applied directly to the plants, 
where they act by inhibiting the growth of fungi. In some 
cases, the NPs can also be used to prevent future fungal 
attacks.

In the field of plant pathology in agriculture, the green 
NPs may be effectively utilized to treat a range of fungal 
infections [106, 107]. Kumar et al. [108] reported on the 
use of Aloe Vera (Aloe barbadensis Miller) leaf extract 
for the production of Cu NPs, which shown antioxidant 
properties for plant diseases, including blackberry fruit. 
Also use of Citron juice (The Citrus Medica) for the bio-
synthesis of Cu NPs confirmed strong inhibitory proper-
ties against the pathogens of F. graminearum, Fusarium, 
culmorum, F. oxysporum and culmorum Fusarium, 
respectively. However, they proved less effective against 
pathogens of F. graminearum and F. oxysporum, respec-
tively [109].

The study of green synthesis of Cu NPs with the stem 
extract of  clove (Syzygium aromaticum) displays an out-
standing antifungal action against pathogens Aspergillus 
niger, Aspergillus flavus and Penicillium spp., respectively 
[110]. Further successful control of fungal activities by 
green Cu NPs was reported against the harmful phy-
topathogens including Penicillium digitatum, Fusarium 
oxysporum, Phoma destructiva, Phytophthora cinnamon, 
Alternaria alternata, Pseudomonas, Curvularia lunata, 
syringae, and Alternaria alternata, respectively [111].

The gold nano particles (GNPs) can be successively 
synthesized by green method using variety of fresh leaves 
extract of Memecylon edule [112], Punica granatum [74], 
Capsicum annuum [113], Magnolia kobus and Artemi-
sia dracunculus [114]. They are also synthesized by floral 
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excerpts of Moringa oleifera [115]. These green nanopar-
ticles have also an effective antifungal agent when mixed 
with GNPs [116]. GNPs were found more effective when 
used with suitable non-toxic reducing agents, especially 
sodium boro-hydride and sodium citrate, respectively 
[117]. According to Mittal et al. a range of stabilizing and 
reducing agents for the management of fungal infections 
in agriculture may be made from plants [118]. Therefore, 
to prevent fungal illnesses, non-toxic, healthful, and envi-
ronmentally friendly sources must be developed [119, 
120]. Fungicides made of synthetic chemicals are poison-
ous and harmful to the environment, soil biodiversity, 
and human health. Accordingly, trends are changing in 
favor of using NPs to safely and effectively treat fungal 
infections in plants. It has been discovered that organic 
and inorganic NPs with a variety of biological purposes 
are effective against bacterial, viral, and fungal infec-
tions. Plant extracts are the most significant biologi-
cal material bio-reductant for the creation of NPs [121]. 
Since phyto-extracts control fungal infections, encourage 
plant development, and successfully lower agricultural 
illnesses, they may be utilized to synthesize environmen-
tally friendly NPs [122]. It is discovered that the several 
“green” produced NPs are lucrative, non-toxic, easy to 
use, and inexpensive. They are appropriate for curing 
agricultural plants of diseases. Compared to the several 
old approaches, the green synthesis using NPs produced 
more stable synthesized materials and is an essential 
component of agricultural sustainability [123].

Green nanoparticle manufacturing and use are likely 
to increase due to rising environmental consciousness, 
regulatory pressure to eliminate hazardous waste, and 
demand for sustainable solutions. The three categories of 
green nanoparticle synthesis are phytochemicals, extra-
cellular, and intracellular. Due to the availability of phy-
tochemical components in the extract, which can also 
function as reducing and stabilizing agents to turn metal 
ions into metal nanoparticles, the process of producing 
metal nanoparticles from plant extract is low cost and 
high yield [124]. Green nanoparticles, a fast-expanding 
sector, are experiencing substantial development due to 
increased demand for sustainable solutions across a vari-
ety of sectors. Global green nanotechnology market, esti-
mated to increase from 2020, is expected to grow more 
by 2030, with high contributions from various countries 
of the world. The consumption and production of green 
NPs synthesized by eco-friendly methods are growing 
rapidly, as industries seek sustainable alternatives for 
their businesses. Green nanotechnology global market, 
estimated valued at $8.3 billion in 2020, will be projected 
to reach $26 billion till 2028, with significant contribu-
tions from the Asia-Pacific region. The main contribu-
tions of green NPs are mainly used in environmental 

remediation, agriculture, medicine, and with the health-
care sector driving substantial growth [125–127]. 
Environmental and agricultural applications are also 
expanding and reflect huge demands for sustainable solu-
tions across these industries.

The global commercial production of green NPs faces 
challenges in scaling up despite growing interest in sus-
tainable synthesis methods. Plant-based green synthesis 
has been proposed as an alternative, it has yet to achieve 
large-scale commercial viability [128]. Green nanopar-
ticles are rapidly being employed in health, agriculture, 
and environmental remediation, with considerable mar-
ket growth predicted in these sectors. Nanoparticles are 
found in both organic and inorganic modules, including 
ferritins, liposomes, micelles, dendrimers, and magnetic 
NPs, as well as metal and semiconductor NPs such as 
oxides, nitrides, and sulfides [129]. These green nano-
particles are sprayed as foliar treatments to the targeted 
crops to reduce disease. Overall, nanoparticle-based 
treatments are potential alternatives to traditional fungi-
cides for controlling plant diseases in a variety of crops 
[130].

Antifungal activity of other nanocomposites 
synthesized by conventional methods
The overuse of pesticides and other chemicals, along with 
conventional methods for nanoparticle synthesis, has 
detrimental impacts on soil fertility, soil microorganisms, 
and the health of people, plants, and animals. By alter-
ing metabolic and physiological processes, the increasing 
use of conventional fertilizers has led to the emergence of 
pathogen strains that are resistant to them and delays the 
growth of photosynthetic pigments and plant reproduc-
tive organs. They also prevent plants from going through 
mitosis, forming microtubules, and respiring their cells. 
Engineered nanoparticles exhibit promise antifungal 
effectiveness against a variety of fungal species, includ-
ing drug-resistant Candida albicans. Silver nanopar-
ticles (Ag-NPs) have considerable antifungal activity, 
equivalent to traditional antifungal treatments [131]. 
Polyvinylpyrrolidone-coated Ag-NPs, when coupled with 
azole antifungals, have synergistic effects on resistant 
C. albicans, compromising cell membrane integrity and 
preventing budding processes. Amphotericin B-conju-
gated silica nanoparticles have fungicidal action against 
Candida sp. and may be reused repeatedly without los-
ing efficacy [132]. Sub-lethal doses of different nanopar-
ticles, such as Ag,  SiO2,  TiO2, and ZnO, might improve 
the antifungal activity of beneficial bacteria such as Pseu-
domonas protegens CHA0 by increasing the formation of 
antifungal chemicals [133]. These findings indicate that 
tailored nanoparticles may have significant benefits in 
fighting fungal infections and developing novel antifungal 
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strategies. The research with carbon-nano tubes (CNTs) 
verified that multi-walled-carbon nanotubes (MWCNTs) 
can greatly enhances both the ability of seed germina-
tion and plant growth by control of antifungal activities. 
Furthermore, Tripathi and Sarkar [41] found that apply-
ing water-soluble CNTs helped wheat plants expand their 
roots and shoots in both light and dark environments. 
Additionally, it has been confirmed that industrial-grade 
MWCNTs (2560  mg   kg−1) significantly increased crop 
germination and root elongation [42]. The following 
Table  2 explores the antifungal/antimicrobial action of 
various other nanomaterials that are being applied for 
antifungal activities on different crops.

Mechanism involved in the antifungal activity 
of green nanoparticles
Applying nanoparticles as a foliar spray on the cereal 
crops provide a multifaceted approach to fighting fun-
gal infections, leveraging both direct antifungal proper-
ties and indirect benefits through soil and plant health 
improvement. When cells were exposed to NPs, they 
produced more ROS and OH radicals, reducing regula-
tion of antioxidant machinery and oxidative enzymes, 
disrupting cellular integrity and osmotic balance, and 
decreasing pathogenicity. As a result, lipid peroxidation 
increased, inflammation developed, mitochondrial func-
tion declined, and cell death succeeded [141, 142]. There 
was evidence that NPs caused cell death by a caspase-
dependent pathway, suggesting they could induce apop-
tosis. As a result of NPs, ROS were generated more and 
antioxidant enzyme activity decreased. Antifungal effects 
of metallic nanoparticles are attributed to their elec-
tropositive surfaces, which oxidize plasma membranes 
and allow entry into the pathogen body [142–144]. The 
results of Zhang [145] provide more evidence for this, 
since they address the reversible conversion of Ce (III)/
Ce (IV) between two valence states as a unique antibac-
terial mechanism. The role of ROS in the antibacterial 
activity of  CeO2 NPs is also highlighted by Kuang et  al. 
[146] who found that exposure to these particles can 
increase intracellular ROS levels in E. coli. However, the 
specific mechanism of the antifungal activity of  CeO2 
NPs and biochar is not fully elucidated and requires fur-
ther research. It is possible that ROS generated by  CeO2 
NPs are involved in the disruption of cell walls, leading 
to the death of fungal cells. It is also likely that ROS can 
activate the immune system, aiding in the fight against 
fungal infections. ROS may also damage the fungal 
membrane, preventing the transport of essential mol-
ecules such as oxygen and nutrients. Additionally, ROS 
can react with fungal enzymes, damaging their ability to 
catalyze important reactions. ROS can also damage the 
DNA of fungal cells, leading to mutations that prevent 

the cells from reproducing and spreading. Furthermore, 
in one of its foliar applications to wheat seedlings, ZnO 
NPs of  nAl2O3 (< 50 nm) shown reducing the root length 
of the plants owing to oxidative stress activity of superox-
ide dismutase with catalase enzymes raising. The smaller 
concentration of ZnO NPs causes healthy impact on seed 
germination process. On the contrary, higher concentra-
tion of ZnO NPs can cause seed germination degradation 
as it is insoluble in water. The ZnO NPs display antifun-
gal effects by inducing oxidative stress and damaging 
fungal cell membranes. Additionally, ZnO NPs created 
using phyto-extract of Eucalyptus beads were investi-
gated to predict the fungal pathogen that causes illness in 
apple plants. Amazingly at 100 ppm concentrations, the 
highest reserve of 76.3% was noticed for pathogen Alter-
naria mali, 65.4% for Botryosphaeria dothidea and 55.2% 
for Diplodia seriata, respectively. Thus, it is possible to 
use these NPs to effectively control the aforementioned 
fungal infections in order to safeguard different fruit 
harvests in agriculture on time [74]. The silver-based chi-
tosan Ag-Chit NPs possess antifungal properties due to 
their ability to bind to fungal cell walls, disrupting their 
body structure. They are found very fruitful, especially in 
its role as bio-fungicides in the field of agriculture. The 
Ag-Chit NPs were proved very effective in controlling the 
fungicides and pest communities of A. flavus present in 
the feed of livestock. These pest-suffered feed samples 
were collected and accordingly treated by Ag-Chit NPs 
composites of 30, 60 and 90 mg, respectively, for 10 days 
incubation at 10  °C producing successful results. Ani-
mal pests can cause agricultural harvests to drop by up 
to 18%, while microbiological illnesses and weeds caused 
losses of 16% and 34%, respectively. Fungal infections 
have been responsible for agricultural losses exceeding 
200 billion euros annually [147]. Figure  3 provides the 
insightful mechanism against the fungus pathogen of 
wheat crop under the combined application of nano-bio-
char. Nanoparticles significantly increased the permeabil-
ity of cells when exposed to them, resulting in alterations 
to their membranes.

Toxicological effects of green nanoparticles
Green nanoparticles’ hazardous behavior toward the 
environment and its constituent parts has not been well 
examined. Nonetheless, a lot of research has been done 
on the harmful effects of the physicochemical character-
istics of artificial nanoparticles. It has been discovered 
that the oxidation potential, DNA damaging potential, 
and pharmacological behavior of smaller particles are 
directly correlated. Almost all cell types are harmful to 
particles smaller than 50  nm [148]. According to Tran 
et al. [149], these green nanoparticles have the ability to 
stay suspended in water and the air for extended periods 
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of time, exposing living things for longer and increas-
ing their toxicity. According to reports, endocytosis and 
phagocytosis are influenced by the nanoparticle’s form 
(triangular, star, tubular, or circular) [150]. It was also 
discovered that endocytosing circularly shaped nanopar-
ticles was simple and they could be endocytosed quickly 
and efficiently even in the presence of other nanopar-
ticles [151]. According to Gatoo et  al. [150], a particle’s 
surface charge has a significant influence on its agglom-
eration behavior and, consequently, its toxicity may 
increase. Furthermore, surface coatings of organic com-
pounds can affect the pore structure, surface charge, sur-
face roughness, reactivity, and surface roughness of green 
nanoparticles, depending on the type of coating. The 
performance of green nanoparticles in a range of appli-
cations, such as biomedical, energy, and materials, can 
be strongly impacted by these features. Therefore, before 
green nanoparticles are applied, designed, or developed, 
their toxicological effects should be taken into account.

Emerging trends and technologies in agriculture 
sector
Emerging trends and technologies in agricultural arena 
make use of state-of-art data-driven decision-making 
through latest sensors and drones for fastidious farming 
based on green nanotechnology. In the future, farms will 
be factories to meet consumer needs. With the rise of 
capital-intensive industries and services, artificial intelli-
gence (AI), robotics, and machine learning are replacing 

humans, saving them labor. The largest obstacle facing 
emerging nations is the lack of well-paying jobs in the 
agricultural sector, including secondary agriculture, 
processing, packaging, value chains, and value addition. 
Bio-based goods are finding increasing applications in 
the fields of alternative energy, building materials, chemi-
cals, polymers, pharmaceuticals, cosmetics, fertilizers, 
nutrition, and insect/pest control. Biofuels are made 
from grains, oilseeds, and sugarcane [152]. Promotion of 
novel CRISPR–Cas9 and other gene editing tools can aid 
in the development of genetically engineered crops with 
increased resistance and nutrient value. The develop-
ment of controlled-environment agriculture through the 
use of vertical farming (VF) is one of the finest strategies 
for ensuring year-round output with lower resource con-
sumption, particularly in urban agriculture. The wide-
spread adoption of GNT may improve global sustainable 
development, and the inclusion of a block-chain system 
for transparent supply chains can secure the agricul-
tural requirements of both current and future genera-
tions [153, 154]. At the same time, the GNT innovations 
mutually boost the energy efficiency, food sustainability 
by maintaining a fair balance between environmental 
resources, economy and social needs of the people as 
per the United Nations Sustainable Development Goals 
(SDGs). Despite having few commercially available 
products, green nanotechnology is still primarily in the 
research and development stage, despite its potential for 
sustainability and environmental benefits. Even though 

Fig. 3 Mechanism of antifungal activities of green nanoparticles
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it claims to cut hazardous waste, greenhouse gas emis-
sions, and energy consumption, its current influence on 
environmental protection is negligible. However, due to 
their special qualities, nanomaterials are useful for low-
ering environmental risks, improving energy efficiency, 
and producing long-lasting, environmentally friendly 
products. These technologies are anticipated to contrib-
ute significantly to energy challenges and climate change 
mitigation as they develop.

Conclusion
In order to address the present challenges of global 
warming, overconsumption of natural resources, and 
an ever-rising population, there is need of shifting from 
unsustainable traditional agricultural practices, causing 
the growth of chemical fungicides to eco-friendlier prac-
tices for ensuring global food security. The promotion of 
green nanotechnology is a suitable option for sustainable 
management of various plant pathogens without affect-
ing the environment. This critical review profoundly calls 
for the large-scale production and use of green nanopar-
ticles synthesized by plant extracts, which can greatly 
enhance the quality and yields of food by curtailing the 
harmful effects of chemicals and fungicides in the field of 
present-day agriculture. Green nanotechnology should 
be encouraged at large-scale due to its cost-effectiveness 
and environment friendly properties and its ability to 
ensure sustainable global food supplies to achieve some 
of the United Nations Sustainable Development Goals.

Futuristic scope and prospective of green 
nanotechnology for antifungal activity
Certain concern needs to be addressed before the large-
scale application of nanotechnology practices in agri-
culture sector. For instance, the antifungal management 
requires nano-hybrid materials which are merged by 
various combinations of gold, silver, zinc, grapheme, cop-
per, iron, polymers say chitosan and variety of organic 
molecules and chemicals which are highly expensive. At 
the same time the nano-hybrid construction techniques 
require expensive high-tech devices of higher energy 
inputs needs can raise the production cost of nano-
hybrid materials. The use of nanohybrids is mostly very 
effective against phytopathogens control but in actual 
field conditions, they sometime display off-target move-
ments and may damage the plants by entering into the 
vegetative parts of the plants.

Hence, the potential impacts of various nanoparticles 
for antimicrobial and fungicidal applications must be 
fully registered before evolving the particular nano-for-
mulations and nanohybrids for agriculture purposes. It 
is also noticed that most metallic/metal oxide NPs may 
exercise negative impacts in plants and can also alter 

or reduce the soil microbial levels. Marketing of GNT 
products is another sky-high issue for their field use 
on broader levels possibly due to multifarious reasons 
including unclear technical benefits, high cost, lack of 
formers/public awareness and uncertainties in legisla-
tion about GNTs. Due to these reasons the applications 
of GNTs in agriculture sector is minimal as compared 
to other sectors of social and natural sciences. The 
sensors/kits built of nanomaterials should be used 
throughout the post-harvest phase in order to promptly 
identify the fungal infection. The concentration of 
nanocomposites used in a field determines how harm-
ful they are. When compared to the concentrations of 
chemical-based insecticides and fungicides, the work-
ing concentrations of nanocomposites are relatively 
low. The capacity of biodegradable polymers to easily 
translocate inside plant tissues and to have antifungal 
properties in plants is the ultimate goal when creating 
nano-composite materials using different combinations 
of metal and metal oxide nanoparticles. Therefore, fur-
ther research on biodegradable polymers should be 
encouraged due to their eco-friendly and biocompatible 
nature, which ensures sustained formation. The time, 
money, and resources required to produce GNT for 
agriculture can be recovered by establishing biological 
synthesis techniques. Additionally, it may successfully 
reduce the quantities of environmentally hazardous 
chemicals needed for the commercial synthesis of non-
composite materials and nanomaterials using the most 
well-researched physical/chemical synthesis methods 
accessible worldwide.
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