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Abstract 

Astragalus membranaceus (AM) roots are a well-known homologous medicine and food in China. AM stems, which 
are discarded and not used effectively, also contain many active compounds and exhibit beneficial effects. It 
has the potential to be explored as antibiotic alternative. Fermentation combined with enzymatic hydrolysis (FEH) 
is an effective strategy for extracting polyphenol and improving the usage of AM stems. Therefore, in this study, 
the conditions of FEH and extraction for polyphenol in AM stems were screened. The antioxidant activity of extract 
from AM stems without and with FEH (AMSE and FAMSE) was evaluated. The metabolite profiles of phenolic acids 
and flavonoids in AMSE and FAMSE were characterized by ultra-performance liquid chromatography coupled 
with electrospray ionization tandem mass spectrometry (UPLC–ESI-MS/MS). The results showed that the highest 
polyphenol content from AM stems was obtained with cellulase and pectinase (1:1, 2000 U/g), moisture content 43%, 
fermentation temperature 30 °C, and fermentation time 7 days. Selected extraction conditions of polyphenol were 
ethanol concentration 50%, ultrasonic power 500 W, extraction temperature 35 °C, and extraction time 40 min. On this 
condition, compared with AMSE, the polyphenol and flavonoid contents in FAMSE were significantly higher. FAMSE 
exhibited stronger DPPH, hydroxyl radical scavenging rate and reducing power than AMSE. The relative content 
of 3-(4-hydroxyphenyl)-propionic acid, dihydroferulic acid, isoferulic acid, 4-hydroxybenzoic acid, 4-hydroxyphenyllac-
tic acid, ferulic acid, vanillic acid, syringic acid, gentisic acid, sinapic acid, apigenin, tricin, acacetin, daidzein, genistein, 
formononetin, prunetin, pratensein, rhamnocitrin and galangin were significantly upregulated in FAMSE.
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Graphical Abstract

Introduction
Synthetic antibiotics have been used in farm animal pro-
duction for decades to prevent and treat infectious dis-
eases and improve animal productivity [1]. However, 
excessive use of antibiotics may lead to antibiotic residue 
in animal products and further hazards to human health 
[2, 3]. The need to have research on medicinal plants has 
been acknowledged worldwide by practitioners in order 
to find safe and effective antibiotic alternatives. Tradi-
tional Chinese Herbal Medicine plants, such as Astra-
galus membranaceus (AM), have been found that using 
as antibiotic replacements could increase growth perfor-
mance, improve feed efficiency, and enhance antioxidant 
capacity and immunity of farm animals [4, 5]. AM is a 
perennial medicinal herb, whose roots is a well-known 
homologous medicine and food in China [6]. AM roots 
contains various active ingredients, such as polyphenol, 
flavonoids, polysaccharides, triterpenes, and saponins 
[7, 8], and has a broad range of bioactivities, including 
antioxidant, immune regulation, anti-inflammatory, anti-
cancer and antivirus [9–12]. Several reports are available 
for antioxidant activities and immune functions of aerial 
parts of AM, such as stems and leaves [13–16]. Nay-
eem et  al. found that methanolic extracts of AM stems 
exhibited analgesic and anti-inflammatory activity due 
to presence of polyphenol [17]. Thus, polyphenol of AM 
stems has the potential to be explored as a new antibiotic 
alternative.

Polyphenol are crucial secondary plant metabolites, 
which possess at least one aromatic ring with one or 
more hydroxyl substituents [18]. These compounds rep-
resent the most important group of natural antioxidants 
[19], which can reduce inflammation and ameliorate 
oxidative stress [20, 21]. Polyphenol can be categorized 

into two main subgroups: phenolic acids and flavonoids 
[22]. Cui et  al. obtained two main flavonoids, isoquer-
citrin and astragalin, from AM stems with strong anti-
oxidant activity [16]. However, due to plant cell wall 
recalcitrance, the extraction of AM stems polyphenol is 
limited [23]. It is suggested that fermentation is a useful 
strategy, which could effectively release the polyphe-
nol from processing by-products of cereals, fruits, and 
vegetable oil [24]. Wang et  al. observed an increase in 
polyphenol content of fermentation of rapeseed meals 
with mixed strains of Bacillus subtilis and Saccharomy-
ces cerevisiae [25]. Qiao et  al. reported that fermenta-
tion by Lactobacillus plantarum and/or Enterococcus 
faecium increased the production of polysaccharides, 
saponins, and flavonoid of AM roots [26]. During the 
fermentation, extracellular enzymes such as cellu-
lase and pectinase were produced by microorganisms, 
which could rupture the herbal cell wall and release 
the bioactive ingredients inside [27]. Recently, fermen-
tation combined with enzymatic hydrolysis (FEH) is 
regarded as a more promising method for the biocon-
version of biomass or production active ingredients. 
Bei et al. found that compared to the microbial fermen-
tation, the polyphenol contents of oats were increased 
by FEH [28]. Liu et  al. proved that FEH enhanced the 
polyphenol content and antioxidant activities of aque-
ous solution of rice bran [29]. Moreover, our previous 
study also found that FEH with mix strain (S. cerevi-
siae, B. subtilis, and L. plantarum at a ratio of 1:1:1) and 
500  U/g glucanase enhanced polyphenol contents and 
antioxidant activities of rice bran [30].

Thus, this study was conducted to screen conditions of 
FEH and extraction for polyphenol in AM stems, evalu-
ate the in  vitro antioxidant activity as well as phenolic 
acids and flavonoids metabolite profile of polyphenol in 
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AM stems extracts without and with FEH (AMSE and 
FAMSE) and provide a new antibiotic alternative rich in 
polyphenol from AM stems.

Materials and methods
Materials
AM stems, soybean meal, wheat bran, red dates powder, 
and molasses were purchased from the local market in 
Guyang, Baotou, Inner Mongolia, China. The stems of 
AM were air-dried, cut into slices, and used as the main 
substrate for FEH. Bacillus subtilis (CGMCC 1.0892), 
Lactobacillus plantarum (CGMCC No. 1.12934), and 
Saccharomyces cerevisiae (CGMCC No. 2.1190) were 
purchased from the China General Microbiological Cul-
ture Collection Centre (Beijing, China). Cellulase, pec-
tinase, and xylanase were obtained from Beijing Solai 
Biotechnology Co., LTD. (Beijing, China). Other regents 
were analytical grade and purchased from Sinopharm 
Chemical Reagent Co., Ltd. (Shanghai, China).

Screening of FEH conditions for AM stems
The AM stems is processed by FEH to release polyphe-
nol. Based on previous studies, B. subtilis and S. cer-
evisiae were precultured in nutrient broth medium 
and malt extract medium at 35 °C and 30 °C in a rotary 
shaker (120  rpm) for 24  h, respectively. L. plantarum 
was precultured in MRS broth at 37  °C for 24  h. The 
compound probiotics inoculum was prepared by mix-
ing the three inoculants (1.0 ×  108 CFU/mL) at a ratio of 
1:1:1. The AM stems (73%, w/w) were mixed with soy-
bean meal (9%, w/w), wheat bran (9%, w/w), red dates 
powder (4.5%, w/w), and molasses (4.5%, w/w), and the 
mixture was inoculated with 1.0% of compound probiot-
ics inoculum. After stirring evenly, a certain amount of 
distilled water was added. The effects of enzymatic type 
(cellulase, xylanase, pectinase, and cellulase + pectinase), 
enzyme amount (1000, 2000, 3000, and 4000 U/g), mois-
ture content (20%, 33%, 43%, 50% and 55%, v/w), fermen-
tation temperature (22  °C, 26  °C, 30  °C, and 32  °C) and 
fermentation time (3, 5, 7, and 9 d) on polyphenol con-
tent were investigated with a single-factor optimization 
experiments. The fermented products were dried at 45 °C 
and crushed to determine polyphenol content. And the 
polyphenol content of AM stems without fermentation 
or enzymatic hydrolysis (AMS) and AM stems with FEH 
under the optimum conditions (FAMS) were compared.

Screening of polyphenol extraction conditions from FAMS
The FAMS were prepared by the above optimum FEH 
conditions. Then, the ultrasonic-assisted ethanol extrac-
tion method was used to extract the polyphenol of FAMS. 
An ultrasonic cleaner (Branson 8510 Ultrasonic Cleaner, 
USA) was used. The ratio of ethanol to sample was 1:30. 

The effects of concentration of ethanol (40%, 50%, 60%, 
70%, and 80%), ultrasonic power (200, 300, 400, and 500 
w), ultrasonic extraction temperature (35 °C, 45 °C, 55 °C, 
65  °C and 75  °C) and ultrasonic extraction time (20, 30, 
40, 50 and 60 min) on polyphenol content were investi-
gated with a single-factor optimization experiments. The 
extract was filtered, then the supernatant was centrifuged 
(3500 rpm, 15 min), concentrated and freeze-dried by a 
vacuum freeze-dryer (Scientz-100F). And the polyphe-
nol and flavonoid contents of extracts of AMS and FAMS 
(AMSE and FAMSE) were determined.

The determination of polyphenol and flavonoid contents
The polyphenol contents were determined using previous 
methods [30] with gallic acid as the standard. The deter-
mination of flavonoid contents was conducted followed 
our previous method [31].

In vitro antioxidant activity of AMSE and FAMSE
The in  vitro antioxidant activities AMSE and FAMSE 
were estimated by DPPH and hydroxyl radical scavenging 
activities as well as reducing power. DPPH radical scav-
enging activity and reducing power were determined by 
the method of Liu et al. [31]. The hydroxyl radical scav-
enging activity was determined with the method of Yin 
et al. [32].

Phenolic acids and flavonoids metabolite profile 
of polyphenol in AMSE and FAMSE
The phenolic acids and flavonoids metabolite profile 
of polyphenol in AMSE and FAMSE was analyzed by a 
UPLC–ESI-MS/MS system. The samples were crushed 
using a mixer mill (MM 400, Retsch) with a zirconia bead 
for 1.5 min at 30 Hz. The 100 mg of sample was dissolved 
with 1.2 mL 70% methanol solution, vortexed 30 s every 
30  min for 6 times, and placed in a refrigerator at 4  °C 
overnight. Following centrifugation at 12,000  rpm for 
10 min, the solution were filtrated (SCAA-104, 0.22 μm 
pore size; ANPEL, Shanghai, China) before UPLC–MS/
MS analysis. The HPLC and mass spectrum conditions 
were conducted with previous method [33]. Based on 
the self-built database MWDB (Metware Biotechnology 
Co., Ltd. Wuhan, China) and public database of metabo-
lite information, the qualitative analysis of substance was 
performed using secondary mass spectrometry data. The 
quantification of metabolites was performed using mul-
tiple reaction monitoring (MRM) mode analysis [33]. 
Three replicates for AMSE and FAMSE were performed.

Statistical analysis
All experiments were performed in triplicate. For 
screening conditions of FEH and extraction for 
polyphenol in AM stems, one-way ANOVA followed 
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by Duncan’s multiple range tests in SAS were used. The 
differences were accepted as significant at P < 0.05. The 
data are expressed as the mean ± standard deviation.

Metabolite data were  log2-transformed for statistical 
analysis to improve normality and were normalized. Prin-
cipal component analysis (PCA) and orthogonal partial 
least square discriminant analysis (OPLS-DA) were used 
to analyze the multivariate differences of metabolites by 
R software. The metabolites with a fold change (FC) ≥ 2 
or ≤ 0.5 and a variable importance in projection (VIP) ≥ 1 
was considered as significantly differential.

Results and discussion
Screening of FEH conditions for AM stems
Microbial fermentation is a traditional process for 
modifying traditional Chinese medicine. During 
fermentation, cell wall hydrolyzing performed by 
enzymes, such as cellulases, amylase, hemicelluloses, 
and pectinase, play critical roles in releasing bound 
polyphenol [27]. Park et  al. found that the phenolic 
contents of AM was significantly increased after 
Lactiplantibacillus plantarum fermentation [34]. 
Moreover, Wang et al. reported that complex enzymatic 
hydrolysis (cellulase, xylanase, hemicellulose and 
β-glucosidase) after fermentation increased the contents 
of phenolics, flavonoids, quercetin, and kaempferol in 
guava leaves tea [35]. Bei et al. found that the polyphenol 
contents of oats treated by FEH was higher than that 
by microbial fermentation [28]. It is indicated that FEH 
might be a more promising method for releasing bound 
polyphenol. Therefore, the effects of enzymatic type 
and enzyme amount were investigated. As presented 
in Fig.  1A, compared with xylanase, the usage of 
cellulase and pectinase alone significantly increased 
polyphenol content (P < 0.05). The highest polyphenol 
content was achieved using cellulase + pectinase (1:1). 
With increasing enzyme amount, the polyphenol 
content increased and then decreased, and the highest 
polyphenol content was reached with adding 2000  U/g 
enzymes (Fig.  1B). These results indicated that adding 
2000  U/g cellulase + pectinase could hydrolyze the cell 
wall structure of AM stems and release polyphenol. 
Cellulases refer to a multi-enzyme mixture and have been 
reported as an effective tool for hydrolyzing plant cell 
walls [28]. Pectinase is also a cell wall degrading enzyme 
which degrades pectic polymers into galacturonic acid 
[36]. Consistent with our results, Siddiq et  al. reported 
that pectinase and cellulase increased the phenolic 
contents by up to 6.4 times compared to the untreated 
blueberry juice [37].

Moisture content, fermentation temperature, and fer-
mentation time are essential factors for metabolite pro-
duction during fermentation [31]. The suitable moisture 

content was found to be 43%, which yielded the highest 
polyphenol content (83.09 mg/g) (Fig. 1C). As shown in 
Fig. 1D, the polyphenol content increased with increasing 
fermentation temperature, and the maximum concen-
tration was recorded at 30  °C. Then, at higher fermen-
tation temperature, the polyphenol content decreased. 
The polyphenol contents significantly increased from 3 
to 7 days, reached maximum values of 97.39 mg/g on the 
day 7, then declined in the subsequent culture (Fig. 1E). 
Our results suggested that the suitable FEH conditions of 
AM stems were as follows: enzyme type cellulase + pec-
tinase (1:1), enzyme amount 2000 U/g, moisture content 
43%, fermentation temperature 30  °C, and fermenta-
tion time 7 days. Under the suitable FEH conditions, the 
polyphenol content of AM stems was 85.48 mg/g, which 
was 2.43 times higher than that without FEH treatment 
(24.93 mg/g).

Screening of polyphenol extraction conditions from FAMS
Ultrasonic-assisted extraction technique is a proven 
green bio-refining technology [38], which can destroy 
cell walls to promote solute diffusion and increase the 
extraction efficiency of target compounds [39, 40]. 
Iftikhar et  al. found that ultrasonic-assisted extraction 
resulted in a higher yield of rye bran’s phenolic and 
flavonoid compounds than the conventional extraction 
technique [41]. Therefore, the ultrasonic-assisted 
extraction was used in this study to extract polyphenol 
from FAMS. Ethanol is generally recognized as a safe 
solvent and has been used to extract polyphenol. The 
ethanol concentration affects the target components’ 
solubility and extraction yield [16]. As shown in Fig. 2A, 
the polyphenol content was significantly higher when 
the ethanol concentration was 50% and 60% (P < 0.05), 
however, there was no remarkable difference between 
50 and 60%. Therefore, ethanol concentration of 50% 
was screened for the subsequent extraction test. With 
ultrasonic power increasing from 200 to 500 W, the 
polyphenol content increased (Fig. 2B), which was agreed 
with Ma et  al., who confirmed the positive effects of 
increasing ultrasonic power on polyphenol content [42]. 
Thus, the ultrasonic power 500 W was chosen to extract 
polyphenol from FAMS. It is found that appropriate 
heat treatment increases the solubility of polyphenol 
in the solution [43]. The effects of ultrasonic extraction 
temperature on the polyphenol content are presented 
in Fig. 2C. It was found that highest polyphenol content 
was achieved at 35  °C. Furthermore, longer extraction 
time may accelerate the absorption of solvent, soften 
the plant tissues, weaken the cell wall integrity, and 
thus enhanced ingredient solubility [43]. However, 
excessive extraction time may oxidize polyphenol, reduce 
extraction efficiency, and waste time [16]. In this study, 
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Fig. 1 Effects of FEH conditions on the polyphenol content of AM stems. A Enzyme type. B Enzyme amount. C Moisture content. D Fermentation 
temperature. E Fermentation time. Different lowercase letters in bars represent significant differences (P < 0.05)
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the polyphenol content fluctuated between 62.03 and 
132.80  mg/g with 20–60  min extraction time (Fig.  2D). 
It can be seen that extraction time had a significant 
effect on polyphenol content of FAMS (P < 0.05). The 
polyphenol content was gradually increased up to 
40  min of extraction and then started falling. Our 
results indicated that the suitable extraction conditions 
of polyphenol from FAMS were as follows: ethanol 
concentration 50%, ultrasonic power 500  W, extraction 
temperature 35 °C, and extraction time 40 min.

Polyphenol and flavonoid contents in AMSE and FAMSE
Figure  3 shows the polyphenol and flavonoid 
contents in AMSE and FAMSE. Under the optimal 
FEH and extraction conditions, the polyphenol 
content in AMSE and FAMSE were 66.22  mg/g and 
129.34  mg/g, respectively. And the flavonoid contents 

Fig. 2 Effects of ultrasonic-assisted ethanol extraction conditions on the polyphenol content of FAMS. A Concentration of ethanol. B Ultrasonic 
power. C Ultrasonic extraction temperature. D Ultrasonic extraction time

Fig. 3 Polyphenol and flavonoid contents in AMSE and FAMSE
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in AMSE and FAMSE were 1.35  mg/g and 5.72  mg/g, 
respectively. Compared with AMSE, polyphenol 
and flavonoid contents in FAMSE was significantly 
higher by 92.46% and 323.70%, respectively (P < 0.05). 
A study investigated the effects of fermentation by 
Lactiplantibacillus plantarum on AM, and found that 
fermented AM had higher phenolic content [34]. It 
was also reported that hydrolysis with carbohydrase 
enzymes, such as pectinases and cellulases, at suitable 
conditions effectively released the insoluble phenolics 
[44]. More importantly, it was found that the flavonoid 
content in AM was significantly increased with 
Lactobacillus pentosus Stm solid-state fermentation 
combined with the addition of xylanase, cellulase, 
and pectinase [45]. Consistent with previous research 
findings, FSH treatment increased polyphenol and 
flavonoid contents in AM stems in this study. The 

release of polyphenol and flavonoid contents may be 
due to both the utilization of cell wall polysaccharides 
by probiotics and hydrolyzation of ester bond between 
phenolics and cell wall components by carbohydrase 
[29, 44].

In vitro antioxidant activities of AMSE and FAMSE
Reactive oxygen (ROS) and reactive nitrogen (RNS) 
species are produced during the metabolism in the 
animal body. Over production of ROS and RNS may 
lead to physiological imbalances, which result in chronic 
inflammation and numerous diseases [46]. Natural 
antioxidants from plants can protect animal body 
from adverse free radicals and prevent many diseases. 
Previous studies have reported that polyphenol are 
natural antioxidants against ROS and RNS species [47]. 
The improvement of antioxidant capacity was strongly 

Fig. 4 Antioxidant activities of AMSE and FAMSE. A DPPH radical scavenging rate. B Hydroxyl radical scavenging rate. C Reducing power. Different 
lowercase letters in bars represent significant differences between AMSE and FAMSE (P < 0.05)
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associated with increased polyphenol content [44]. It 
was found in this study that FSH treatment increased 
polyphenol and flavonoid contents in AM stems. 
Therefore, the DPPH and hydroxyl radical scavenging 
rate as well as reducing power of AMSE and FAMSE 
were tested (Fig. 4). As shown in Fig. 4A–C, both AMSE 
and FAMSE exhibited antioxidant activity in the test 
concentration. Notably, the DPPH and hydroxyl radical 
scavenging rate as well as reducing power of FAMSE 
were significantly higher than those of AMSE (P < 0.05). 
Consistently, Kuo et  al. revealed that fermentation 
improved the phenolic content and scavenging activity 
against DPPH and ABTS of Chenopodium formosanum 
Koidz [48]. Zhang et  al. found FEH enhanced phenolic 
compound content and DPPH radical scavenging rate of 
quinoa [49].

Phenolic acids metabolite profile of polyphenol in AMSE 
and FAMSE
Phenolic acids are hydroxyl derivatives of aromatic car-
boxylic acids, which are powerful natural antioxidants 
[49]. A total of 179 phenolic acids were identified in 
AMSE and FAMSE. In the PCA score plot (Fig. S1A), 
three principal components (PC1, PC2, and PC3) were 
77.94%, 6.98%, and 5.93%, respectively. In verification 
chart of OPLS-DA model (Fig. S1B), The  R2X,  R2Y and Q2 
were 0.862, 1 and 0.995, respectively. It is demonstrated 
that the model was stable and reliable by the Q2 values 
exceeded 0.9. The PCA and OPLS-DA analysis showed 
that the two groups were well-separated, suggesting that 
FSH significantly affected phenolic acids metabolite pro-
file of AM stems. There were 119 significantly different 
phenolic acids metabolites between AMSE and FAMSE, 
among which 39 were upregulated and 80 were down-
regulated (Fig. S1C).

The differential phenolic acids metabolites 
between AMSE and FAMSE are shown in Table  1. 
In comparison with AMSE, the relative contents of 
3-(4-hydroxyphenyl)-propionic acid, dihydroferulic 
acid (DHFA), isoferulic acid (IFA), 4-hydroxybenzoic 
acid, 2-hydroxy-3-phenylpropanoic acid, moracin 
Y, 4-hydroxyphenyllactic acid, ferulic acid (FA), 
vanillic acid, syringic acid, 2,3-dihydroxybenzoic 
acid, gentisic acid, benzoic acid and sinapic acid 
in FAMSE increased, while the relative contents of 
4-O-glucosyl-4-hydroxybenzoic acid, glucosyloxybenzoic 
acid, salidroside, 1-O-salicyloyl-β-d-glucose, 
1-(4-hydroxybenzoyl)glucose, 6ʹ-O-feruloyl-d-sucrose, 
5-hydroxyisovanillic acid, 4-hydroxybenzoic acid glucosyl 
xyloside, 3,4-dihydroxybenzaldehyde-xylose-glucoside, 
benzoylmalic acid, dihydroferulic acid glucoside 
and glucosyringic acid decreased. It is reported that 
4-O-glucosyl-4-hydroxybenzoic acid, glucosyloxybenzoic 

acid, 1-O-salicyloyl-β-d-glucose, 1-(4-hydroxybenzoyl)
glucose, 5-hydroxyisovanillic acid, 4-hydroxybenzoic 
acid glucosyl xyloside, 3,4-dihydroxybenzaldehyde-
xylose-glucoside, benzoylmalic acid and glucosyringic 
acid could be degraded into other compounds, such 
as 4-hydroxybenzoic acid, vanillic acid, syringic acid, 
2,3-dihydroxybenzoic acid, gentisic acid and benzoic 
acid, by enzymes (cellulase, pectinase et al.) produced by 
microbial metabolism or added exogenous. 6ʹ-O-feruloyl-
d-sucrose, dihydroferulic acid glucoside also could be 
metabolized into other compounds, such as DHFA, IFA 
and FA. And salidroside could probably degraded into 
tyrosol and glucose by β-d-glucosidase [49].

Phenolic acids can be further divided into two distinc-
tive groups: hydroxycinnamic (basic skeleton C6-C3) 
acids and hydroxybenzoic (basic skeleton C6-C1) [50]. 
Ferulic, caffeic, p-coumaric, and sinapic acids are major 
representative substances of hydroxycinnamic acids [51]. 
As the major hydroxycinnamic acid, FA is widely known 
for its antioxidant, antimicrobial, and anti-inflammatory 
properties [52]. In this study, the relative content of FA 
(3.93-fold) in FAMSE was higher compared to AMSE 
(Table 1). FA can be metabolized to DHFA and IFA [53]. 
It is reported that DHFA is a better antioxidant and anti-
inflammatory than FA [54, 55]. A study by Lee et  al. 
revealed that DHFA obtained from fermented rice bran 
extract reversed the reduction of viability of PC12 cells 
caused by  H2O2 and enhanced the transcription levels of 
antioxidant genes [56]. The IFA could be used for treat-
ing several inflammatory diseases, clearance of ROS, 
elimination of viral infections, and alleviation of meta-
bolic diseases and specific cancers [57]. Furthermore, 
esters form of FA, methyl ferulate, and ethyl ferulate, 
were proven to more efficiently prevent lipid oxidation 
[58, 59]. As shown in Table  1, the relative contents of 
DHFA, IFA, ethyl ferulate and ferulic acid methyl ester 
in FAMSE were upregulated by 104.45-, 3.34-, 13.65- and 
6.21-fold, respectively. Additionally, the relative contents 
of sinapic acid were increased by 1.34-fold. Sinapic acid 
has been reported against various pathological condi-
tions, such as oxidative stress, inflammation, infections, 
and cancer [60].

The family of hydroxybenzoic acids occurs 
naturally in plants and is the simplest class of natural 
antioxidants [21]. As a type of hydroxybenzoic 
acids, 4-hydroxybenzoic acid is a valuable aromatic 
compound used as raw material for producing liquid 
crystal polymers and paraben, which shows the higher 
antioxidant activity compared with its esters [61]. Vanillic 
acid is an oxidized form of vanillin with pleasant creamy 
odor and antioxidative activity [62]. Syringic acid is a 
high bioavailability and low toxicity polyphenol, which 
can be administered as a preventative measure against 
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Table 1 Relative content of part of phenolic acids differential metabolites in AMSE and FAMSE

Compounds Relative content VIP FC Type

AMSE FAMSE

3-(4-Hydroxyphenyl)-propionic acid 3.37E+05 3.85E+07 1.16 114.37 Up

Dihydroferulic acid 1.37E+05 1.42E+07 1.12 104.13 Up

Isoferulic acid 3.29E+06 1.10E+07 1.13 3.34 Up

4-Hydroxybenzoic acid 7.79E+06 2.89E+07 1.15 3.70 Up

2-Hydroxy-3-phenylpropanoic acid 4.31E+05 3.69E+07 1.16 85.78 Up

Moracin Y 9.70E+05 2.67E+07 1.16 27.58 Up

4-Hydroxyphenyllactic acid 6.26E+04 6.49E+06 1.16 103.66 Up

Methyl 2,4-dihydroxyphenylacetate 6.04E+04 6.31E+06 1.16 104.45 Up

2-Hydroxy-3-(4-Hydroxyphenyl)propanoic acid 6.07E+04 6.57E+06 1.16 108.17 Up

3,4-Dimethoxyphenyl acetic acid 1.41E+04 1.59E+06 1.15 112.86 Up

Ferulic acid 2.26E+06 8.89E+06 1.15 3.93 Up

Vanillic acid 1.28E+06 3.21E+06 1.16 2.51 Up

2,3-Dihydroxybenzoic acid 1.64E+05 4.43E+06 1.15 26.93 Up

Syringic acid 3.73E+05 1.66E+06 1.16 4.45 Up

Methyl coumalate 4.27E+05 1.35E+06 1.13 3.36 Up

2,5-Dihydroxybenzoic acid; gentisic acid 3.64E+05 9.20E+05 1.14 2.53 Up

Benzoic acid 2.61E+05 7.85E+05 1.13 3.00 Up

Sinapic acid 6.54E+04 1.65E+05 1.05 1.34 Up

Ethyl ferulate 5.81E+04 7.93E+05 1.15 13.65 Up

Ferulic acid methyl ester 7.34E+04 4.56E+05 1.13 6.21 Up

Antiarol; 3,4,5-trimethoxyphenol 1.82E+04 3.06E+05 1.12 16.80 Up

Eudesmic acid (3,4,5-trimethoxybenzoic acid) 4.32E+04 3.03E+05 1.13 7.03 Up

Vnilloylmalic acid 7.30E+04 3.12E+05 1.13 4.27 Up

Pyrocatechol 1.15E+04 1.14E+05 1.13 9.94 Up

4-O-Glucosyl-4-hydroxybenzoic acid 3.87E+07 1.51E+05 1.15 0.00 Down

Glucosyloxybenzoic acid 3.49E+07 1.19E+05 1.15 0.00 Down

Salidroside 3.35E+07 1.64E+05 1.15 0.00 Down

1-O-Salicyloyl-β-d-glucose 3.54E+07 1.18E+05 1.15 0.00 Down

1-(4-Hydroxybenzoyl) glucose 6.17E+06 2.73E+04 1.14 0.00 Down

6ʹ-O-Feruloyl-d-sucrose 1.05E+06 8.68E+04 1.15 0.08 Down

5-hydroxyisovanillic acid 1.25E+06 4.47E+04 1.14 0.04 Down

Phenylpropionic acid-O-β-d-glucopyranoside 1.97E+06 5.96E+04 1.08 0.03 Down

4-Hydroxybenzoic acid glucosyl xyloside 2.35E+07 2.94E+06 1.16 0.12 Down

3,4-dihydroxybenzaldehyde-xylose-glucoside 2.05E+07 2.56E+06 1.16 0.13 Down

Benzoylmalic acid 1.80E+07 7.85E+06 1.07 0.44 Down

Dihydroferulic acid glucoside 1.29E+06 1.73E+05 1.15 0.13 Down

Glucosyringic acid 3.22E+06 5.98E+05 1.12 0.19 Down

5-(2-Hydroxyethyl)-2-O-glucosylphenol 2.06E+06 7.09E+05 1.13 0.34 Down

Dihydroxybenzoyl xyloside 1.34E+06 6.43E+05 1.13 0.48 Down

Ferulic β-glucoside 3.94E+05 1.89E+05 1.12 0.48 Down

4-O-β-d-Glucopyranosylferulic acid 2.50E+05 6.62E+04 1.03 0.26 Down

4-Hydroxybenzoyl acetyl glucoside 6.75E+05 3.06E+05 1.14 0.45 Down

Sinapyl alcohol 1.75E+05 1.75E+04 1.11 0.10 Down

Methyl syringate 2.50E+05 9.08E+04 1.14 0.36 Down

Methyl 3-(3-hydroxy-4-methoxyphenyl) propanoate 1.28E+05 2.01E+04 1.13 0.16 Down
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a range of diseases due to its antioxidant activity [63]. 
Similarly, many studies have been published about the 
antioxidant activity of gentisic acid, which have proposed 
its potential use in treating diseases [64]. As shown in 
Table  1, the relative contents of 4-hydroxybenzoic acid 
(3.70-fold), vanillic acid (2.51-fold), syringic acid (4.45-
fold), 2,3-dihydroxybenzoic acid (26.93-fold), gentisic 
acid (2.53-fold) and benzoic acid (3.00-fold) in FAMSE 
significantly accumulated. Consistent with our results, 
Degrain et  al. revealed that 2,5-dihydroxybenzoic acid 
was the predominant phenolic acid in the L. plantarum-
fermented nightshade leaves, and L. plantarum 
fermentation improved the bioavailability of vanillic acid 
of nightshade leaves [65]. Darwesh et  al. demonstrated 
that contents of p-hydroxybenzoic acid, gentisic 
acid, and syringic acid increased in Saccharomyces 
cerevisiae-fermented cinnamon [66]. Azkia et  al. 
found that fermentation enhanced vanillic acid and 
vanillin levels in black glutinous rice [67]. In addition, 
3-(4-hydroxyphenyl)-propionic acid (HPPA) and 
4-hydroxyphenyllactic acid increased in FAMSE in this 
study. It is reported that 4-hydroxyphenyllactic acid can 
be produced by many lactic acid bacteria [68]. HPPA was 
a major microbial metabolite of A-type procyanidin, and 
inhibited suppressing effects on cellular oxidative stress 
and inflammation [69, 70].

Our results revealed that FEH changed phenolic acids 
metabolite profile of AM stems. The relative content of 
HPPA, DHFA, IFA, 4-hydroxybenzoic acid, 4-hydroxy-
phenyllactic acid, FA, vanillic acid, syringic acid, genti-
sic acid, and sinapic acid were significantly increased in 
FAMSE, which may be the reason for its enhanced anti-
oxidant activity.

Flavonoids metabolite profile of polyphenol in AMSE 
and FAMSE
Flavonoids is an essential group of naturally occurring 
polyphenol compounds with basic structures consist 
of C6-C3-C6 rings. According to the substitution 
patterns, flavonoids could be categorized into a series 
of subclass, isoflavones, flavones, flavonols, flavanones, 
flavanols, and anthocyanins [71]. In this study, a total 
number of 463 flavonoids were identified in AMSE 
and FAMSE. Isoflavones, flavones, and flavonols were 
the main subclasses of flavonoids, which account for 
more than 70.84% of flavonoids in AMSE and FAMSE 
(Fig.  5). AMS and FAMS were separated in Fig. S2A, 
indicating that FEH had a substantial effect on flavonoids 
metabolite profile of AM stems. As shown in Fig. S2B, 
the  R2X,  R2Y and Q2 were 0.845, 1 and 0.994, respectively, 
demonstrating that the OPLS-DA model was stable and 
reliable and could be applied to further screen differential 
flavonoids metabolites. There were 245 significantly 

differential flavonoids metabolites between AMSE and 
FAMSE (77 upregulated, 168 down-regulated) (Fig.S2C).

The differential flavonoids metabolites between 
AMSE and FAMSE were mainly classified into three 
subgroups, isoflavones, flavones, and flavonols, which 
account for 75.51% of the total differential flavonoids 
metabolites (Fig.  6A). As shown in Fig.  6B, most of the 
down-regulated flavonoids metabolites in FAMSE have 
molecular weights greater than 400 Da. In contrast, the 
molecular weights of upregulated flavonoids metabolites 
ranged in 200–400 Da and 500–600 Da.

Flavones is the most common flavonoids subclass, 
found in herbs and vegetables [21]. Apigenin, tricin 
and acacetin are the representative compounds of fla-
vones. Apigenin is a polyphenolic flavone with a low 
molecular weight, responsible for antioxidant potential 
and chelating redox-active metals [72]. Tricin typically 
accumulates in the leaves and stems of herbaceous and 
cereal plants. It exists as free and derivative form, show-
ing potential pharmaceutical applications due to its low 
toxicity and antioxidative activity [73]. Moreover, acace-
tin and diosmin have been proven to exhibit extensive 
biological capabilities, including antioxidative and anti-
inflammatory properties [74, 75]. In this study, higher 
relatively contents of apigenin, tricin, acacetin, diosmin, 
isoschaftoside were observed in FAMSE (Table 2). Con-
sistent with our findings, a previous study reported that 
the concentration of apigenin and tricin in brown juice 
from alfalfa were increased after lactic acid bacteria-fer-
mentation [76]. It is revealed that the hydroxylation of 
the A-ring of flavonoids, especially for 5- and 7-hydrox-
ylations, is beneficial for enhancement of antioxidant 

Fig. 5 Flavonoids classification chart according to subgroups
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activity [77]. In this study, relatively contents of 6,7-dihy-
droxyflavone and 3ʹ,4ʹ,7-trihydroxyflavone were higher 
in in FAMSE. Moreover, relatively contents of 5,6,7-tet-
rahydroxy-8-methoxyflavone, 5,7,3ʹ,5ʹ-tetrahydroxy-6-
methylfavanone, apigenin-6-C-(2ʺ-glucosyl) arabinoside 
and tricin-7-O-(2ʺ-O-rhamnosyl) galacturonide were 
increased. As the major bioactive constituents of AM, 
methoxylated flavonoids and their glycosides have been 
proven to have superior antioxidant activity [78].

Isoflavones are flavones with a B ring attached to C3 
instead of C2, commonly found in leguminous plants 
[79]. Daidzein and genistein are the most omnipresent 
isoflavones, which have similar biological activity and 
redox behavior [79]. The antioxidative activity of for-
mononetin [80], prunetin [81, 82] and pratensein [83] 
had been confirmed. As shown in Table  3, the relative 
contents of daidzein (105.46-fold), genistein (29.38-fold), 
formononetin (2.03-fold), prunetin (2.80-fold), praten-
sein (2.96-fold), 4ʹ,6,7-trihydroxyisoflavone (42.69-fold) 
and isoluteolin (25.40-fold) in FAMSE were significantly 
increased compared to AMSE. A report confirmed that 
isoflavonoid glycosides were degraded into aglycones 

when the AM extract was fermented, for instance, for-
mononetin-glycosides into formononetin [84].

Flavonols, the most commonly occurring group of 
flavonoids, are flavones hydroxylated in C3, including 
kaempferol, quercetin, and isorhamnetin [21]. In this 
study, most relative contents of kaempferol glycosides 
were down-regulated in FAMSE, while the relative con-
tents of rhamnocitrin and galangin were significantly 
upregulated (Table 4). It is suggested that during the FEH 
process, glycosidic bonds in AM stems were presumably 
hydrolyzed, thus leading to a decline in kaempferol gly-
cosides. Rhamnocitrin has been reported to have anti-
oxidant, anti-inflammatory, and antitumor activities [85]. 
Galangin is a potent antioxidant primarily derived from 
different medicinal herbs, which could alleviate oxidative 
stress and increase immune function [86].

Altogether, the flavonoids metabolite profile of AM 
stems was altered after FEH, and the relative content 
of apigenin, tricin, acacetin, daidzein, genistein, 
formononetin, prunetin, pratensein, rhamnocitrin and 
galangin were upregulated in FAMSE. Flavonoids are 
mostly glycosides and not as aglycones in plants [87]. 
Microbial fermentation could promote flavonoids 

Fig. 6 Classification (A) and molecular weight range (B) of differential flavonoids metabolites between AMSE and FAMSE
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glycosides converted to aglycones, which are more 
bioactive, easily absorbed in the small intestine, and 
have more potent antioxidant activity [88, 89]. The 
combination with enzymatic hydrolysis with microbial 
fermentation could boost the hydrolysis of sugar 
moieties, expedite the extraction of flavonoids, thus 
improve the antioxidant activities [87].

Conclusion
The suitable FEH conditions for polyphenol from AM 
stems were enzyme type cellulase and pectinase, enzyme 
amount 2000  U/g, moisture content 43%, fermentation 
temperature 30  °C, and fermentation time 7  days. 
Selected extraction conditions of polyphenol were 
ethanol concentration 50%, ultrasonic power 500  W, 

Table 2 Relative content of part of differential flavones metabolites in AMSE and FAMSE

Compounds Relative content VIP FC Type

AMSE FAMSE

Apigenin; 4ʹ,5,7-trihydroxyflavone 5.08E+05 1.41E+07 1.16 27.83 Up

6,7-Dihydroxyflavone 1.18E+05 1.29E+07 1.16 109.19 Up

3ʹ,4ʹ,7-Trihydroxyflavone 3.97E+05 1.12E+07 1.16 28.26 Up

5,6,7-Tetrahydroxy-8-methoxyflavone 3.60E+06 1.05E+07 1.15 2.92 Up

5,7,3ʹ,5ʹ-tetrahydroxy-6-methylfavanone 3.93E+06 1.03E+07 1.13 2.63 Up

Apigenin-6-C-(2ʺ-glucosyl) arabinoside 8.61E+04 2.85E+06 1.16 33.1 Up

Apigenin-8-C-(2ʺ-glucosyl) arabinoside 2.78E+04 1.00E+06 1.15 36.18 Up

Apigenin-7-O-rutinoside (isorhoifolin) 1.84E+04 1.07E+05 1.15 5.78 Up

Tricin
(5,7,4ʹ-Trihydroxy-3ʹ,5ʹ-dimethoxyflavone)

3.65E+04 3.92E+06 1.16 107.25 UP

Tricin-4ʹ-O-(guaiacylglycerol) ether 6.93E+04 3.25E+06 1.15 46.96 Up

Tricin-7-O-(2ʺ-O-rhamnosyl) galacturonide 1.55E+04 2.10E+06 1.15 135.76 Up

Tricin-7-O-guaiacylglycerol 6.18E+04 2.73E+06 1.14 44.14 Up

Tricin-5-O-guaiacylglycerol 6.37E+04 2.72E+06 1.15 42.7 Up

8-Methoxyapigenin 3.62E+06 9.66E+06 1.14 2.67 Up

4ʹ,5,7-Trihydroxy-3ʹ,6-dimethoxyflavone (jaceosidin) 7.01E+05 2.16E+06 1.15 3.08 Up

Isoschaftoside 5.36E+04 1.90E+06 1.16 35.39 Up

Acacetin 5.70E+05 1.87E+06 1.16 3.28 Up

Diosmin 3.71E+04 1.41E+05 1.11 3.8 Up

Chrysoeriol-7-O-(6ʺ-malonyl) glucoside 3.73E+07 2.53E+06 1.16 0.07 Down

Acacetin-7-O-(6ʺ-malonyl) glucoside 2.34E+07 1.70E+06 1.16 0.07 Down

Hispidulin-7-O-glucoside (homoplantaginin) 1.44E+07 1.55E+06 1.16 0.11 Down

Diosmetin-7-O-galactoside 1.40E+07 1.28E+06 1.15 0.09 Down

Luteolin-7-O-(6ʺ-malonyl) glucoside 6.46E+06 9.90E+05 1.16 0.15 Down

Apigenin-4ʹ-O-glucoside 5.38E+06 8.04E+05 1.15 0.15 Down

Apigenin glucosyl malonyl glucoside 3.33E+06 6.68E+05 1.14 0.2 Down

Tricetin-5-O-(6ʺ-malonyl) glucoside 3.16E+06 2.57E+05 1.16 0.08 Down

Chrysoeriol-7-O-glucoside 2.20E+06 2.29E+05 1.15 0.1 Down

Luteolin-7-O-(6ʺ-malonyl) glucoside 9.01E+06 9.01E+06 1.16 0.08 Down

Chrysoeriol-7-O-(6ʺ-acetyl) glucoside 8.89E+06 8.89E+06 1.16 0.08 Down

5,6,3ʹ,4ʹ-Tetrahydroxy-3,7-dimethoxyflavone 5.38E+05 8.28E+04 1.16 0.15 Down

Acacetin-7-O-rutinoside (linarin) 6.88E+05 6.53E+04 1.15 0.09 Down

Chrysoeriol-7-O-(6ʺ-acetyl) glucoside 7.76E+05 5.87E+04 1.15 0.08 Down

Chrysoeriol-7,4ʹ-di-O-glucoside 4.25E+05 4.42E+04 1.11 0.1 Down

Tricin-5-O-(6ʹ-O-malonyl) glucoside 2.84E+05 4.20E+04 1.13 0.15 Down

Formononetin 7-O-Glucoside-6ʺ-malonate 7.35E+05 1.65E+05 1.12 0.22 Down
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Table 3 Relative content of part of differential isoflavones metabolites in AMSE and FAMSE

Compounds Relative content VIP FC Type

AMSE FAMSE

Daidzein 2.41E+05 2.55E+07 1.16 105.46 Up

Genistein 5.01E+05 1.47E+07 1.16 29.38 Up

Formononetin (7-Hydroxy-4ʹ-methoxyisoflavone) 2.51E+07 5.09E+07 1.14 2.03 Up

Prunetin (5,4ʹ-Dihydroxy-7-methoxyisoflavone) 1.14E+07 3.19E+07 1.16 2.80 Up

Pratensein 3.77E+06 1.12E+07 1.14 2.96 Up

4ʹ,6,7-Trihydroxyisoflavone 5.04E+04 2.15E+06 1.16 42.69 Up

Isoluteolin (orobol) 4.68E+04 1.19E+06 1.16 25.4 Up

Glycitein 2.63E+06 6.30E+06 1.15 2.93 Up

5,7,4ʹ-Trihydroxy-3ʹ-methoxyisoflavone; 3ʹ-O-methylorobol 1.38E+06 3.39E+06 1.15 2.45 Up

Iristectorigenin A 5.80E+05 1.82E+06 1.15 3.14 Up

3ʹ-Methoxydaidzein 2.91E+05 9.97E+05 1.16 3.42 Up

2ʹ-Hydroxydaidzein 1.03E+04 2.42E+05 1.16 23.52 Up

Biochanin A-7-O-glucoside-6ʺ-O-malonate 3.62E+07 2.64E+06 1.14 0.07 Down

6ʺ-O-Acetylglycitin 2.85E+07 2.76E+06 1.16 0.10 Down

Formononetin 7-O-(6ʺ-acetylglucoside) 2.31E+07 2.68E+06 1.15 0.12 Down

Formononetin acetyl glucoside 1.93E+07 2.66E+06 1.16 0.14 Down

6ʺ-O-Malonylgenistin 1.32E+07 1.64E+06 1.16 0.12 Down

Tectoridin 1.36E+07 1.43E+06 1.16 0.11 Down

Irilin B-7-O-malonyl glucoside 8.60E+06 1.36E+06 1.13 0.16 Down

Pratensein-7-O-glucoside 3.99E+06 1.31E+06 1.09 0.33 Down

Genistein-7-O-galactoside 3.92E+06 6.69E+05 1.15 0.17 Down

Prunetin-5-O-glucoside 4.37E+06 5.35E+05 1.16 0.12 Down

3ʹ-Methoxydaidzin 4.19E+06 5.20E+05 1.15 0.12 Down

8-Methoxy malonyl ononin 7.57E+06 7.76E+05 1.16 0.10 Down

Afrormosin-7-O-(6ʺ-malonyl)glucoside 4.78E+06 2.72E+05 1.15 0.06 Down

Table 4 Relative content of part of flavonols differential metabolites in AMSE and FAMSE

Compounds Relative content VIP FC Type

AMSE FAMSE

3,5,4ʹ-Trihydroxy-7-methoxyflavone (Rhamnocitrin) 3.71E+06 9.25E+06 1.15 2.49 Up

Galangin (3,5,7-Trihydroxyflavone) 7.14E+04 1.42E+06 1.16 19.9 Up

Flavoyadorinin A 1.32E+05 2.66E+05 1.01 2.01 Up

Rhamnetin 1.82E+04 8.86E+04 1.16 4.86 Up

Isorhamnetin-3-O-glucoside-7-O-rhamnoside 1.91E+04 4.17E+04 1.03 2.18 Up

Kaempferol-3-O-(6ʺ-malonyl)galactoside 1.97E+07 1.52E+06 1.14 0.08 Down

Kaempferol-3-O-(6ʺ-malonyl)glucoside 1.84E+07 1.46E+06 1.15 0.08 Down

6-C-MethylKaempferol-3-glucoside 1.51E+07 1.37E+06 1.16 0.09 Down

Kaempferol-3-O-(6ʺ-O-acetyl)glucoside 2.34E+06 1.09E+05 1.15 0.05 Down

Kaempferol-3-O-(2ʺ-O-acetyl)glucoside 1.97E+06 1.70E+05 1.15 0.09 Down

Kaempferide-3-O-glucoside 1.36E+06 5.33E+05 1.15 0.39 Down

Tamarixetin-3-O-(6ʺ-malonyl)glucoside 1.05E+06 9.39E+04 1.13 0.09 Down

Tamarixetin-3-O-(6ʺ-malonyl)glucoside 1.03E+06 4.72E+04 1.15 0.05 Down

6-C-MethylKaempferol-3-glucoside 5.41E+06 2.23E+04 1.16 0 Down

Isorhamnetin-7-O-glucoside (brassicin) 8.95E+05 4.97E+04 1.1 0.06 Down

Tamarixetin-3-O-(6ʺ-malonyl)glucoside 9.52E+05 4.38E+04 1.15 0.05 Down

Kaempferide-3-O-(6ʹ-O-acetyl)glucoside 9.42E+05 5.65E+04 1.15 0.06 Down

6-Hydroxykaempferol-3-O-Rutinoside-6-O-glucoside 7.07E+05 4.94E+04 1.16 0.07 Down
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extraction temperature 35  °C, and extraction time 
40  min. With these above conditions, the polyphenol 
and flavonoid contents as well as antioxidant activity 
of AM stems were increased. The relative contents of 
phenolic acids and flavonoid metabolites, DHFA, IFA, 
FA, apigenin, tricin, daidzein, et  al., were significantly 
upregulated, which may be the reason for enhanced 
antioxidant activity.
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