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Abstract

There is a pressing need for renewable and optimal use of resources towards sustainable primary production and
processing systems worldwide. Current technologies for food and feedstock production are held accountable for several
environmental problems, such as for instance soil and water contamination due to the use of hazardous substances,
generation of toxic products and even excess of biomass that is considered waste. To minimize or solve these
questions in order to produce an adequate quantity of reliable and healthy food, fibers and other products and energy,
new paradigms focusing on sustainable agriculture, bio-based industries or biorefineries have emerged over the last
decades. Biorefineries integrate sustainable and environmentally friendly concepts of Green Chemistry with intelligent
and integrated farming processes, optimizing the agricultural production. Thermochemical and biochemical processes are
excellent alternatives for the production of new classes of renewable biofuels and feedstock, showing relatively small
impact on greenhouse gas emissions and important pathways to obtain platform chemicals. This review discusses the
current and incipient technological developments for using biomass to generate bio-based chemicals over the last
decade, focusing on Green Chemistry concepts towards sustainable agriculture and processing models in Brazil.
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Intoduction
Green chemistry, primary production, and processing
systems in Brazil
In the face of an ever-increasing economy with competitive
market policies, the demand for food, feed, fuel, and prod-
ucts can lead to serious problems in chemical processes
due to excessive amounts of hazardous chemicals and the
residues generated. To overcome these obstacles and impel
the economy toward a more sustainable panorama, in
1998, Anastas and Warner [1] coined the term ‘Green
Chemistry’ and formulated the twelve principles. These
guidelines are approaches to be explored in order to pro-
mote a cleaner and more environmentally friendly way of
doing chemistry, which includes using less hazardous sub-
stances and solvents and renewable feedstock, encouraging
the concept of atom and energy economy by reducing un-
necessary synthesis steps or designing alternative routes,
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and also prevent or avoid the generation of residues
and/or toxic substances [2,3]. Corrêa et al. [4] explored
the evolution of Green Chemistry in Brazil, showing
that there was a great deal of effort applied to a greener
development in several different areas of chemistry,
namely organic and inorganic synthesis and analytical
chemistry. The authors stressed that the country has very
favorable conditions to develop new trends in biomass
conversion technologies for biofuels and bio-based prod-
ucts. Nevertheless, some recent studies [5] have shown
that the understanding of Brazilian chemical researchers
towards environmental sustainability, sustainable develop-
ment, and the role of Green Chemistry has been further
elaborated to improve the researchers' conceptual reason-
ing and more uniform understanding about the role of
Green Chemistry in a new agribusiness paradigm. More re-
cently, a transition has been observed towards an optimal
and renewable use of biomass based on sustainable produc-
tion systems to generate food and other bio-based products
with adequate social value, low inputs, enhanced ecosystem
services, zero waste, as well as minimum environmental
impact and greenhouse gas emissions [6-10].
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It is estimated that globally, 140 billion tons of agricul-
tural biomass is generated every year, and the use of green
strategies to produce high value-added products could
represent a reduction of roughly 50 billion tons of fossil
fuels needed, enough to greatly reduce greenhouse gas
(GHG) emissions and our dependence on non-renewable
materials [11]. By employing adequate strategies and
high-density and fast-growing crops such as sugarcane,
a negative carbon footprint is also possible [12,13]. For
instance, the cultivation of palm oil in northern Brazil for
biodiesel production generates a GHG emission balance
of approximately −208 kg CO2 equiv./1,000 kg crude palm
oil per year [14].
Brazil is a world leader in terms of Green Chemistry

in agriculture, and it was the first country to have, at
a large scale, biofuels as part of its energy matrix. Due
to early investments in the area with policies such as
PROALCOOL in 1975, a federal program to prioritize
domestic sugarcane-based ethanol distilleries in re-
sponse to the 1970s oil crisis and which prevented the
emission of 675 million tons of CO2 from fossil fuel
burning, have saved almost 50 billion US dollars in ex-
penditures with oil and other non-renewable resources
[15,16]. Similar early twenty first-century initiatives fo-
cusing on biodiesel production such as the PROBIO-
DIESEL and PNPB (Brazilian Biodiesel Production
Program) have placed Brazil on one of the main bio-
diesel production spots, with estimates that show the
country is responsible for more than 11% of global bio-
diesel production, the second biggest producer after the
USA [17]. Nevertheless, as assessed by Rathmann et al.
[18], the main goals outlined by those programs were not
fully achieved in its initial stage, this was mainly due to
the use of the traditional production cost methods using
soybean oil and methanol because of the competitive mar-
kets for soybean and high import prices for methanol, but
there is considerable space for social, economic, and
technological growth by developing commercially feasible
biodiesel plants based on alternative triglycerides feed-
stock (palm, sunflower, castor bean, etc.), ethyl transesteri-
fication routes, and more economical processes which
could overcome the actual problems [19-25]. The country
is also a world reference in production and export of sev-
eral commodities such as orange juice, sugar, and soybean
products, and it is estimated that at least one fourth of all
agricultural products commercialized worldwide are from
Brazil [11]. Given this condition, it is crucial for Brazil to
focus its development on innovative strategies and inte-
grated management primarily based on green solutions for
crops and industrial processes in order to keep the country
as one of the key players in the agribusiness scenario.
This review focuses on the main green techniques and

processes already in use and on those already under
development to use biomass for generating bio-based
chemicals (fuels and platform molecules) described in
the literature over the last decade. The focus is on the
Green Chemistry principles for the primary biomass
production and transformation processes, taking into ac-
count the Brazilian context.

Review
Use of available biomass
Even with the increase in the share of renewable
sources in the world energy matrix, Brazil has a unique
perspective regarding this scenario, as can be seen in
the forecast data in Figure 1. Brazil's historic back-
ground shows its environmentally friendly technology
practices for electric energy production, which gener-
ates over 80% of the country's energy requirements
through such green routes, at least three times more
than in any other region. While hydropower is the
main driving force, and which is already responsible
for 5% of the country's energy matrix, by applying new
technologies and expanding to other biomass re-
sources, it is estimated that this share can increase to
almost 30% [26].
Biomass used for electricity generation is a growing

industry. It started in a robust way with the installation of co-
generation heat and electric power systems by burning sugar-
cane bagasse to produce all energy needed in the process
and sell the surplus for profit, thus presenting another green
alternative to lower the dependence on hydropower. From
approximately 8GW of electrical energy produced from bio-
mass cogeneration, 80% comes from sugarcane, with the rest
produced mainly by black liquor, wood chips, biogas, and
rice husks [27]. Though not commercially available, several
other agricultural wastes might be explored as fuel source
depending on regional characteristics such as corn stalk,
soybean stems, wheat straws, cotton branches, coconut
shells and coffee husks, among others [28,29].
Although the burning of biomass or related products

seems to be a promising alternative which is less polluting
because of its nearly neutral carbon footprint, it is con-
sidered an inefficient process due to the underutilization
of several complex chemical structures found as a major
component of biomass, the lignocellulosic matrix, which
could be transformed into commercially important feed-
stock in modern factories called biorefineries, which are
able to combine, substitute, and even surpass conventional
petrochemicals.

The concept of biorefineries
There is a global trend impelling the transformation of
energetic matrix from fossil to renewable feedstock.
They generate less hazardous substance such as fine
particulates, lead, and sulfur by-products, as well as nox-
ious greenhouse gases such as CH4, CO, and CO2, among
others [30]. Wyman and Goodman [31] have proposed



Figure 1 Future renewable energy sources utilization in relative terms of total energy consumed by country/region. Adapted from [26].
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an alternative way of dealing with lignocellulosic material,
which would use refinery-like processing to transform
them into a new set of molecules that could be used in
well-established processes, as well as new building blocks
to supply the production needs. They coined the term
biorefinery, which can be defined as ‘the sustainable pro-
cessing of biomass into a spectrum of marketable prod-
ucts and energy’ [32,33]. This concept is linked to two
different objectives, the creation of a strong and economic
viable bio-based niche connected to a high-ranking ap-
proach for obtaining new and renewable raw materials
to outdo petroleum derivatives [34]. It is supposed that a
biorefinery would be able to create, in the same physical
space, environmentally friendly processes for obtaining
biofuels, chemical products, electrical power, and heat
[35]. There are some examples of readily available material
that can be obtained by direct extraction from biomass
but, in general, the matrix needs to be transformed into
the desired products [36]. For example, Mariano et al. [37]
evaluated the utilization of pentoses from sugarcane bio-
mass for the production of biogas, n-butanol, and acetone
in a simulation of an integrated first and second gener-
ation sugarcane biorefinery, with exciting results showing
that the production would be profitable even without the
optimization of processing technologies.

Second generation fuel: bioethanol
Over the last 10 years, several different groups have
studied the most suitable routes for biomass biotrans-
formation, with most of the efforts focused on the pro-
duction of bioethanol from the lignocellulosic matrix
[38-43]. While cellulolytic enzymes for efficient trans-
formation of cellulose have been thoroughly described
over the last decade in several different examples, the
use of hemicellulose and lignin as substrate is a more
incipient technology [44]. Several papers discuss the
feasibility of integrating 2G ethanol into conventional
ethanol producing units [45-49], but as of yet, there are
no commercial plants available. Among the reasons, the
complexity of processes such as low yield, lack of effect-
ive complete hydrolysis, pentose, and phenolic acid bio-
transformation technologies, and also financial drawbacks
result in lower capital returns [50,51].

Other alternative biofuels
Although ethanol is by far the most explored biofuel in
Brazil, several other alternatives have been studied in
order to improve the possibility of biomass reuse. Follow-
ing global tendencies, studies on thermochemical and bio-
logical processes of biomass conversion have increased
considerably over the past years [28]. The main techniques
applied for biomass conversion to biofuels are described
in Figure 2.
Gasification of biomass involves the conversion of or-

ganic matter in the presence of oxygen in the form of
air, steam or pure O2 with air/fuel ratios below the stoi-
chiometric quantity. This low supply of oxidative agents
hinders complete combustion of carbon and hydrogen into
CO2 and H2O, thus releasing a synthetic fuel gas (syngas)
made primarily of CO and H2 with smaller amounts of
CH4, CO2, N2, O2, and H2O [52,53]. Centeno et al. [54]
used a mathematical model to predict the performance of
a feasible biomass-to-energy conversion process, which
was optimized by Brazilian researchers [55-57].
Syngas produced from biomass pyrolysis and gasifica-

tion is an important intermediate for the synthesis of
large numbers of industrial products [58]. For instance,
Fischer-Tropsch synthesis (FTS) involves diverse com-
plex reactions to produce low-molecular-weight hydro-
carbons from syngas [59].
Hotza and Costa [60] reviewed Brazil's current develop-

ments on hydrogen production from renewable resources.
The authors have identified bottlenecks in the country's
development, where although several different research



Figure 2 Main biomass conversion routes for production of biofuel.
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groups have interesting approaches for hydrogen fuel cell
development, little research was carried out on the reuse of
biomass for the generation of hydrogen. Also, some studies
are already evaluating the production of third-generation
biofuels, but the application of such processes are still hin-
dered by their capital-intensive nature [61,62].

Platform chemicals and green chemistry
Considering the need to achieve optimization both on the
use of agricultural by-products and generation of high
value-added products, there is a growing interest on the
concept of platform chemicals, closely associated with the
main pillars of Green Chemistry [63,64]. Platform mole-
cules derived from biomass processing are not exactly the
same as those obtained by crude oil. A remarkable charac-
teristic of shifting from petroleum-derived hydrocarbon
products to bio-based feedstock is that the latter presents
a high oxygen content such as alcohol, ketones, alde-
hydes, ester, acids, phenols, furans, and others. Those
molecules are responsible for the different properties of
the liquid obtained from biomass, such as immiscibility
with hydrocarbons, thermal, and chemical corrosiveness,
low heating value and high density, such as low thermal
stability [65]. Nevertheless, properties like high solubility
in water and reactivity can be used as an advantage be-
cause it allows their manipulation in aqueous phase cata-
lytic reactions under mild temperatures [66]. An initial
evaluation conducted by the USDOE [67] and later im-
proved by Bozell and Petersen [68] shows a wide range of
molecules which can be listed as an important platform
chemical due to their synthesis possibility and potential ap-
plications, and this includes organic acids, sugars, hydrocar-
bons, furans, and other aromatic molecules (Table 1).
Ethanol can also be considered a platform molecule due

to its versatility as a building block. Several bio-based
products can be tailored through the ethanol chemistry
route, with ethylene as the only one that has been ex-
plored at a commercial scale. Companies such as Dow,
Braskem, and Solvay-Indupa are already producing green
plastics in Brazil, with polyethylene (PE) plants for the
former two and polyvinylchloride (PVC) for the latter [69].
Several other products can be obtained from ethanol, such
as synthetic rubber made from butadiene, acetaldehyde,
which is a key intermediate in several different processes,
and diethyl ether, a solvent for producing cellulose plastics.
Rossi et al. [70] theoretically assessed the thermodynamics
of steam reforming ethanol and glycerol for hydrogen pro-
duction, showing the feasibility of the process and encour-
aging further research in the area.
Glycerol is a by-product of biodiesel generated in

quantities of up to 10% of total weight. However, gly-
cerol obtained directly from this process has low purity,
which is an undesired product for chemical and
pharmaceutical applications without pretreatment [71].
As pointed out by Coronado et al. [72], molecular prop-
erties as well as impurities in crude glycerol hinder its
use as fuel for generating heat and power for the bio-
diesel production process, as it uses by-products of
other biofuels such as ethanol. Glycerol is also a very
suitable substrate for bacterial growth, with several dif-
ferent organisms being able to use it as sole carbon
source to produce several different commodities. Simi-
larly, several microorganisms can also build a wide
range of building blocks by biomass and glycerol biotrans-
formation [73-78] (Figure 3).
Also, bio-oil can be produced by heating biomass under

controlled conditions using specific equipment, obtaining a
mixture of several different molecules of high-added value
[80,81]. Crude bio-oil is dark brown, with a composition
that varies according to the biomass used. Although coined
as oil, the pyrolysis liquid does not mix with other liquid
hydrocarbons due to its high oxygen content. In order to
upgrade bio-oil to usual fuel such as gasoline and diesel,
the samples need to be deoxygenated [51,65]. Several dif-
ferent biomasses have been tested for bio-oil production.
There is an uncomplicated commercial process for bio-oil



Table 1 Platform molecules

Original platform molecules Revised platform molecules

[67] [68]

Succinic, fumaric and malic acids Glycerol Ethanol Furans (furfural, HMF and
2,5-furandicarboxylic acid

3-Hydroxypropanoic acid Aspartic acid Glycerol Bio-hydrocarbons

Glucaric acid Glutamic acid Lactic acid Succinic acid

Itaconic acid Levulinic acid 3-Hydroxypropanoic acid
Levulinic acid
Sugars (sorbitol, xylitol)3-Hydroxybutyrolactone 2,5-Furandicarboxylic acid

Sugars (sorbitol, xylitol, arabinitol)

Adapted from [66].
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production through fast pyrolysis operating in Brazil, named
Bioware, and which has the support of the University of
Campinas. The operating pilot facility has a nominal cap-
acity of 300 kg h−1, and was built to produce bio-oil from
elephant grass and sugarcane for industrial applications [51].

Agriculture as an alternative for reutilization of by-products
Though it has been applied worldwide for a long time,
the reutilization of residues originating from other sources,
such as industries and cities, is somewhat incipient in
Brazil. Recently, public institutions and universities have
shown interest in using one of the most efficient means of
by-product disposals [82].
Herpin et al. [83] utilized secondary treated wastewa-

ter (STW) from an anaerobic/facultative pond system
to irrigate coffee plantation for 43 months. They ob-
served that although the use of STW did not negatively
affect the soil-plant system, its use alone would not be
Figure 3 Example of chemicals produced by biotransformation of bio
able to supply the plant with all the necessary elements
and would cause some unbalance to soil composition,
suggesting that new methodologies for the integrated
use of fertilizers and wastewater are needed to enable
the full potential of water recycling. Barros et al. [84]
evaluated several treatments for the correct application
of bio-solids from sewage sludge, obtaining interesting
results when applied to maize crops. With the same
objective, Lúcio et al. [85] studied the application of a
product known as potato bio-product, a by-product
from alcoholic potato fermentation, with organomin-
eral composition similar to sugarcane vinasse.

More examples of using green chemistry in agriculture
Additionally, (Additional file 1: Table S1) summarizes
most of the studies that have been carried out over the last
decade to improve the research of green techniques for bio-
mass transformation into fuels and platform chemicals,
mass and platform chemicals. Adapted from [79].
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as well as establishing and using alternatives towards
sustainable agriculture in Brazil. As can be noted, the
majority of the papers focus on biofuels and platform
chemicals (82%), but the development and application of
biopesticides have also gained momentum in Brazil over
the last years. Among the current trends in the develop-
ment of biopesticides is the control of release rate and
targeting of compounds by nanoencapsulation, as this tech-
nique can increase the stability and solubility of natural
products and, consequently, increase their efficacy. These
proposals, taking into account the plagues and crops found
in Brazil, could change the manner in which natural prod-
ucts are used for controlling agricultural pest and insects
considering an optimal and renewable use of biological re-
sources [86-135].

Conclusions
Simultaneously raising the awareness in government and
the general population about environmental issues, the
pressure by the public and non-government organiza-
tions for the production of an adequate quantity and
quality of food and other primary materials, the reduc-
tion of waste emissions and the increase in prices of
non-renewable fuel and feedstock have led to a significant
increase in the research and development of sustainable
processes for biomass generation and conversion in Brazil.
These processes are strictly aligned with concepts of Green
Chemistry already in use for chemical processes.
First-generation biofuels such as ethanol and biodiesel

have already achieved a significant role in agribusiness
through accepted and widely applied technologies. As
for second generation, intense research is still needed
for a fully functional industry at a suitable time. Con-
cerning bio-based products derived from platform che-
micals, the absence of well-established processes and the
lack of a specific market hinder a more ostensive appli-
cation of such compounds. With the development and
application of reliable biomass transformation technolo-
gies, both in the academic environment as well as in the
industrial sector, there will surely be a tendency to focus
on the use of available biomass sources in scenarios with
more value-added products. Nevertheless, the costs of
such processes will continue to be the driving force for
the consolidation of biomass-derived feedstock, in spite
of its attractiveness from the environmental, social, and
sustainable point of view.
There is a bright future for Brazil with regards to the

development and application of biorefineries. The large
amount of feedstock readily available and presumably close
to the production sites can propel the country to a promin-
ent position for producing renewable biofuels and high
value-added products, as long as regulation policies and an
effective distribution of goods through efficient production
flow also follows the steps of technological expansion.
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