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Abstract 

Background: The plant kingdom constitutes an enormous reservoir of bioactive molecules, generally used by plants 
to prevent or to protect themselves from pathogens’ attacks. To date, several primary or secondary plant metabolites 
have been already proven to exert antibiotic activities; nonetheless, researchers are still continuing to lavish great 
efforts to identify and characterize new natural molecules one by one. Aiming at the replacement of synthetic chemi-
cal products, the bioactivity of plant extracts should be assessed case by case, and active substances should be tested 
as individuals to obtain accurate information on the real usefulness of plant metabolites. In this work major glycoalka-
loids obtained from Solanum nigrum, glucosinolates from Armoracia rusticana, and cannabinoids from Cannabis sativa 
were identified. The antimicrobial activity of crude extracts and pure components against Gram+ (Bacillus cereus (A1I), 
Bacillus thuringiensis (B7I2), and Bacillus amyloliquefaciens (A5TI)) and Gram− bacteria (Pseudomonas orientalis (A14-1II), 
and Stenotrophomonas maltophilia (B9TIII)), employed as model organisms, was tested.

Result: Major glycoalkaloids, glucosinolates, and cannabinoids were identified in crude plants’ extracts using high-
resolution LC–ESI-FTICR/MS. From antimicrobial assays useful information towards a few of biological activities of 
crude extracts and individual components were obtained.

Solanum nigrum extracts revealed inhibition activity on all bacteria tested as well as the main active glycoalkaloids, 
solamargine and solasonine, which were found to be active even when tested individually. At assayed concentrations, 
A. rusticana extract was active towards a few of the microorganisms tested, confirming that the activity of glucosi-
nolates can be referred only partially to the mother molecules, while biological efficiency of such kind of compounds 
is mainly due to their enzymatic breaking off, where myrosinase converts them into isothiocyanates and/or thiocy-
anates. Hemp-type C. sativa extract showed antimicrobial activity only against Gram+ bacteria, but the main indi-
vidual components tested showed always a limited bioactivity.

Conclusion: Promising results were obtained, but tests performed in vitro are only the first step of a wider investiga-
tion as required for an extensive application. Further research efforts are necessary to demonstrate the efficiency of 
natural substances in different target environments.
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Background
Natural products were developed and used to relieve 
sickness by the dawn of human history: before the 
“Synthetic Era”, indeed, 80% of medicine, drugs, and 
pesticides were obtained from roots, barks, and leaves 
(fluid extracts) of plants, contributing to the diseases’ 
restraint [1, 2]. Despite this success, natural products’ 
research has endured a global decline due to the pro-
duction difficulties and small quantities obtained [3]. 
The necessity of using drugs and pesticides in high 
quantity (linked also to the population growth) has 
required large amounts of products, which only labo-
ratory synthesis could realize. In this process, however, 
some negative aspects attributable to a large use of 
synthetic substances were not considered, such as the 
organic balance alteration, pollution of various envi-
ronmental systems, resistance induction, and genetic 
changes in living beings in a very short period. The 
current trend is the return, when possible, to the pre-
ceding system of diseases’ treatment, re-emphasizing 
the use of metabolic constituents produced by several 
plant, bacterial, and fungal species [4]. Due to the sci-
entific awareness surrounding the use of natural sub-
stances instead of synthetic ones, in recent years many 
researchers have undertaken studies on the occurrence 
of secondary metabolites in plants that are widely used 
in almost all geographical areas and on their possible 
bioactivity.

Secondary metabolites are organic molecules, not 
involved in the normal growth and development of 
an organism, whose functions are largely unknown, 
although they seem involved in the organism defence 
[5, 6].

The recognition of the biological properties of thou-
sands of these molecules has increased interest in this 
field for new drugs, antibiotics, insecticides, fungi-
cides, and herbicides research and brought about a re-
evaluation of bacteria, fungi, and plant role, especially 
in the ecological context. Terpenes (gums, resins, 
carotenoids, etc.), phenols (lignin, flavones, anthocya-
nins, tannins, etc.) as well as alkaloids are just some of 
the substances currently used in different application 
fields, giving rise to the world’s growing attention due 
to their widespread use and to the concurrent preser-
vation of both human health and environment.

Each family, genus, and species of several plants pro-
duce a characteristic mixture of substances that can 
be present in active form or in prodrug state and are 
used for taxonomic classification [7]. Normally, they 
are activated when wounding or infection in the veg-
etal body occurs [8]. These compounds can be active 
as single components or strengthen their activity due 

to synergistic action with other chemical compounds 
co-synthesized in the plant cells [9].

This work deals with the identification of more 
representative glycoalkaloids and glucosinolates in 
crude extracts obtained from Solanum nigrum and 
Armoracia rusticana, respectively, and of several can-
nabinoids extracted from Cannabis sativa. Moreover, 
the antimicrobial activity of crude extracts and some 
pure components against a limited number of Gram+ 
and Gram− bacteria, employed as model organisms, 
was investigated as preliminary assessment of their 
bioactivity.

Methods
Chemicals
Solamargine and solasonine standards were pur-
chased from Glycomix (UK); sinigrin monohydrate was 
obtained from Sigma-Aldrich (Steinheim, Germany); 
Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), 
cannabinol (CBN), and cannabidiolic acid (CBDa) were 
purchased from HPC Standards GmbH (Cunnersdorf, 
Germany). Methanol, acetonitrile, and formic acid 
were obtained from Carlo Erba (Milan, Italy). Ultrapure 
water was produced using a Milli-Q RG system from 
Millipore (Bedford, MA, USA).

Standard preparation
Glycoalkaloids: stock solutions (1  mg  L−1) of pure 
standards in ultrapure water acidified with 1% acetic 
acid were prepared as reported elsewhere [10, 11] and 
kept in the darkness at + 4  °C. Glucosinolates: stock 
solutions (1  mg  L−1) of pure standards in methanol/
water (70/30, v/v) were kept in the darkness at + 4  °C 
[12–15]. Cannabinoids: stock solutions (1  mg  L−1) of 
pure compounds in ethanol were prepared and kept in 
the darkness at − 20  °C. Solutions prepared as above 
were used for analytical purposes.

For antimicrobial assays, solutions of standard 
compounds were prepared when necessary before 
each test using sterilized ultrapure water, which was 
also employed to dilute them up to the required 
concentration.

All glass apparatus were heat sterilized by autoclaving 
for 60 min at 121 °C before use. Aseptic handling mate-
rials and laboratory facilities were used throughout the 
study to maintain sterility.

Plant samples
Black nightshade (S. nigrum) unripe berries (glycoalka-
loids), horseradish (A. rusticana) roots (glucosinolates), 
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and hemp (C. sativa) flowers (cannabinoids) were the 
vegetal materials used to obtain the extracts.

Green unripe berries of black nightshade (60 berries 
harvested from 15 different plants in a homogeneous 
experimental cultivation) and horseradish root (15 plants 
harvested from a homogeneous experimental cultivation) 
were supplied, respectively, from a greenhouse located 
in Metaponto village (Italy) and in a field established at 
the Institute of Plant Genetics-National Research Coun-
cil close to Policoro village (Italy). The voucher specimens 
of both plants were deposited at the Herbarium Lucanum 
(HLUC in Index Herbariorum) with the ID Code 2320 
and the ID Code 9197 for S. nigrum and A. rusticana, 
respectively.

Two different flower samples from experimental fields 
located in southern Italy and derived from the registered 
C. sativa accession “Eletta campana” were supplied with 
the courtesy of Eletta campana S.r.l. company.

The “Eletta campana” cannabis accession has been bred 
and grown during the past century both in insular and 
peninsular areas of Italy, mainly for industrial production 
purposes [16, 17].

Sample #1: flowers—obtained as representative popu-
lation—of the “Eletta campana” chemical phenotype, 30 
flowers from 30 plants.

Sample #2: field selection of flowers used in varietal 
improvement schemes to select plants with a higher con-
centration of THC and CBD compared to the average 
composition of the “Eletta campana” accession, 30 flow-
ers from 30 selected plants.

Extraction, purification, and preliminary tests
Glycoalkaloids and glucosinolates extractions were made 
in five replicates following previously published methods 
[10–15].

Cannabinoids were extracted in five replicates for each 
sample of hemp flowers crushed using liquid nitrogen, 
sieved, and lyophilized. Ultrasound-assisted extraction 
(USAE) was carried out using absolute ethanol as sol-
vent according to published methods [18, 19]. Samples 
were centrifuged by using the Hettich Zentrifuge, MIK-
RO220R (Germany) for 12  min at 2400g and filtered 
(PTFE filters 0.20 µm) to clarify the liquid phase.

The replicates were brought together to constitute a 
representative sample of the total material collected. Sub-
sequently, analytical determinations and antimicrobial 
assays were conducted.

Aiming at the determination of the minimal inhibitory 
concentration (MIC), preliminary tests were performed 
using initial concentration ranges of main representative 
compounds under investigation: 0.005–1  mM, for black 
nightshade unripe berries; 1–5  mM, for horseradish 

extract; 0.001–0.3 mM, for cannabis extracts. MIC assays 
were performed according to the European Committee 
for Antimicrobial Susceptibility Testing (EUCAST) and 
Mann and Markham methods [20, 21].

Analytical procedure
All analytical experiments were performed using a Sur-
veyor LC system coupled to an ESI-FTICR mass spec-
trometer (Thermo Fisher Scientific, Bremen, Germany), 
equipped with a 20  W  CO2-laser IRMPD (Synrad, 
Mukilteo, WA, USA), emission wavelength 10.6  μm. 
Glucosinolates and glycoalkaloids LC separations were 
performed at ambient temperature by using the same 
chromatographic conditions reported elsewhere [11, 14, 
22, 23]. For separation and identification of cannabinoids, 
a new optimized LC–ESI-FTICR/MS method was used.

Mass spectrometric conditions were optimized by 
direct infusion of standard solutions. The instrument was 
tuned to facilitate the ionization process and to achieve 
the highest sensitivity. The ESI-FTICR mass spectra 
obtained were used to characterize the ionization behav-
iour of the compounds.

Data acquisition and analyses were accomplished using 
the Xcalibur software package (version 2.0 SR1 Thermo 
Electron), and total ion current (TIC) acquisition; data 
were collected in full MS scan mode and processed post-
acquisition to identify the compounds of interest. In 
addition to accurate mass determination and retention 
times, extensive structural information was obtained by 
MS/MS fragmentation performance of the compounds 
investigated (data not shown). The chromatographic raw 
data were imported, elaborated, and plotted by SigmaPlot 
10.0 (Systat Software, Inc., London, UK).

Analytical determination was performed to know, 
in detail, the composition of crude extracts and subse-
quently to permit bioactivity testing of pure standards, 
using about the same concentrations present in the 
extracts.

Antimicrobial activity assays
The different extracts were tested against five bacterial 
strains of the culture collection stored in the Department 
of Sciences, University of Basilicata, Potenza, Italy. Three 
Gram+ bacteria [Bacillus cereus (A1I), Bacillus thur-
ingiensis (B7I2), and Bacillus amyloliquefaciens (A5TI)], 
and two Gram− bacteria [Pseudomonas orientalis (A14-
1II) and Stenotrophomonas maltophilia (B9TIII)] were 
employed as screening microorganisms for this study. 
All strains were maintained as freeze-dried stocks in 
reconstituted (11% w/v) skim milk, containing 0.1% (w/v) 
ascorbic acid, and routinely cultivated in optimal growth 
conditions.
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Antimicrobial activities of all tested extracts were 
determined by agar well diffusion assay [24].

For each strain, a subculture in a specific broth (PCb) 
was obtained from the active stock culture by 1% (v/v) 
inoculum and incubated overnight at 30 °C. A volume of 
200 μL for each subculture was used to inoculate the agar 
media (to achieve a final concentration of  109 CFU L−1) 
and distributed into Petri plates. Each extract (60  μL) 
was poured into wells (5 mm ∅) bored in the agar plates, 
and then the plates were incubated at 30 °C. The organic 
solvent was used as negative control, while the antibi-
otic was used as positive control. The experiments were 
performed in triplicate and the antimicrobial activity of 
each extract was expressed as mean diameter (mm) of 
the zone of inhibition (ZoI) produced by the respective 
extract after 24 h of incubation. A value of ZoI < 10 mm 
was stated to indicate a low antimicrobial activity; 
11 < ZoI < 15  mm, a middle antimicrobial activity; and 
ZoI > 16 mm, a high antimicrobial activity.

Extracts producing an inhibition zone were screened 
to determine the minimum inhibitory concentrations 
and evaluate the antimicrobial effectiveness of each 
extract against different bacterial strains by means of 
the agar well diffusion method [24]. The medium inocu-
lated with the strain subculture was distributed into Petri 
plates, and different concentrations of extracts, ranging 
from 1 to 100  mg  L−1, were poured into wells bored in 
the agar plates and the plates were incubated for 24  h. 
After incubation, the MIC was determined as the lowest 

concentration of the extract inhibiting the growth of bac-
terial strains. The MIC values were obtained in triplicate 
tests.

Results were compared by analysis of variance 
(ANOVA) and Bonferroni post hoc test using GraphPad 
Prism 6 software, version for Windows.

Results
Analytical outcomes
Identification of main glycoalkaloids
Figure 1 shows the LC–FTICR/MS separation in positive 
ion mode of an aqueous extract of black nightshade ber-
ries. Analysis of the extracts revealed the presence of two 
main glycoalkaloids identified by accurate m/z values of 
protonated species, comparison with authentic standard, 
and on the basis of IRMPD fragmentation in the ICR cell 
of precursor ions [M+H]+. In the insets, the mass spec-
tra of two main peaks corresponding to solasonine found 
at m/z 884.50079  (C45H74NO16, exact m/z 884.50021) and 
solamargine found at m/z 868.50476  (C45H74NO15, exact 
m/z 868.50530) are reported. Both compounds were 
identified with a mass error lower than 1  ppm, which 
indicates a very good mass accuracy. In the IRMPD MS 
spectra (data not shown), several common loss from 
sugar moiety and product ions were observed. Ions gen-
erated from fragmentation of B-ring or E-ring of aglycons 
were diagnostically useful for establishing their member-
ship in the general family of glycoalkaloids [25]. The other 
intense peak in the TIC (Fig. 1) can be due to a derivative 

Fig. 1 LC/ESI-FTICR TIC chromatogram acquired in positive mode of a black nightshade berries’ extract. Mass spectra of three main peaks, 
corresponding to solasonine (found at m/z 884.50079), solamargine (found at m/z 868.50476), and malonyl-solamargine (found at m/z 954.50525) 
along with their molecular structures are reported in the insets
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compound of solamargine, the malonyl-solamargine at 
m/z 954.50525  (C48H75O18N, exact m/z 954.50569).

Quantitative analysis revealed that black nightshade 
berries extract contains a high amount of solamargine 
and solasonine (1.35 and 1.52 g kg−1 dry weight, respec-
tively) and a small concentration of other minor known 
glycoalkaloids, confirming results obtained by Ventrella 
et al. [13].

Identification of glucosinolates
The identification of GLSs was based on the study of 
characteristic fragments of these compounds in IRMPD 
MS/MS spectra, and on the measure of accurate 
masses observed using LC/ESI-FTICR/MS, according 
to Agneta et  al. [12, 22]. In Fig.  2, the total ion chro-
matogram (TIC) acquired in negative ion mode of a 
horseradish root extract is shown. The qualitative and 
quantitative analyses of this extract confirmed the 
occurrence of a high amount of sinigrin (2.04  g  kg−1 
dry weight), which accounts for more than 90% of the 
total GLS, and of the other 16 GLSs in trace quantity 
[12, 22]. In the inset of Fig. 2, the mass spectrum of the 
peak corresponding to sinigrin, found at m/z 358.02747 
 (C10H17NO9S2, exact m/z 358.02720, error 0.8  ppm) 
is shown. By accurate high-resolution mass analysis, 
the peak eluting at 12.5 min was excluded to be a glu-
cosinolate, but was found to be rustoside, also known 
as kaempferol 3-lathyroside, which is a member of the 

class of compounds known as flavonoid-3-O-glycosides 
normally derived from horseradish.

GLSs exhibited [M−H]¯ as the precursor ion that 
corresponds to easy deprotonation of the sulphate 
group. Moreover, the dissociation of [M−H]¯ precursor 
ion yielded abundant product ions, which gave much 
information on the structure of the side chain and were 
of great value for a correct assignment of known and 
unknown GLSs. Typical fragments of GLS with nomi-
nal m/z 97, 195, 241, 259, and 275, which correspond 
to the fragment ions HSO4¯,  C6H11O5S¯,  C6H9O8S¯, 
 C6H11O9S¯, and  C6H11O8S2¯, respectively, were found in 
the spectrum examined (data not shown). Other char-
acteristic fragments, such as [M-80-H]¯, [M-162-H]¯, 
[M-178-H]¯, [M-196-H]¯, and [M-242-H]¯, were very 
informative for correct molecular identification of 
GLSs [15].

Identification of cannabinoids
Using optimized reversed-phase liquid chromatogra-
phy (RP-HPLC) coupled to electrospray ionization in 
positive mode  (ESI+) and Fourier transform ion cyclo-
tron resonance (FTICR)/MS, together with tandem 
mass spectrometry  (MSn) studies performed using 
IRMPD and collisional induced dissociation (CID), it 
was possible to separate and quantify four known can-
nabinoids (THC, CBD, CBDa, and CBN), useful for 
the chemotype definition and the classification of C. 
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sativa (Scheme  1). The total ion current (TIC) chro-
matogram (Fig.  3) revealed the occurrence of three 
main cannabinoid peaks assigned to CBD, THC, and 
CBDa; in the insets, the mass spectra of these peaks 
are shown: CBD, found at m/z 315.23159  (C21H30O2, 
exact m/z 315.23184, error − 0.8 ppm); THC, found at 
m/z 315.23148  (C21H30O2, exact m/z 315.23186, error 
− 1.2 ppm); CBDa, found at m/z 359.22126  (C22H30O4, 
exact m/z 359.22169 error − 1.2 ppm). CID and IRMPD 
fragmentation of precursor ions [M+H]+ generates 
several common species that are diagnostically use-
ful for establishing their identity (data not shown). The 
wide peak at 7.4  min corresponds to cannabidivarin 
(CBDV,  C19H26O2, m/z [M+H]+ 287.20056), a non-
psychoactive cannabinoid homologue of CBD with the 
side chain shortened by two methylene bridges; it is not 
useful to determine the chemotype in Cannabis plant 

destined for human consumption or industrial trans-
formation (Scheme 1).

The quantification of secondary metabolites (THC, 
CBD, CBN, CBDa) was performed in parallel through 
low-resolution mass spectra, selected reaction monitor-
ing (SRM), and high-resolution total ion current (TIC).

As described in Table  1, the chemovar analysed as 
sample #1 does not exceed the THC limit (0.2%) recom-
mended by the European Union regulations [26, 27], con-
firming previous findings [28].

The ([THC] + [CBN])/[CBD] ratio (phenotypic index) 
of samples was used to assess the chemical phenotype 
(chemotype) of the specific accession [29].

The high content of cannabidiol (CBD) suggests 
that the “Eletta campana” accession can be defined as 
an industrial hemp having a ratio [CBD]/[THC] > 10 
(CBD-prevalent chemotype) [30]. In our case, the CBN 

Abbreviation Name Molecular structure

CBD Cannabidiol

CBDa Cannabidiolic acid

CBDV Cannabidivarin

CBN Cannabinol

THC Δ9-tetrahydrocannabinol

Scheme 1 Common names and molecular structures of cannabinoids detected
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concentration is not significant for the chemical defini-
tion of cannabis quality.

Data reported in Table 1 for the sample #2 indicate that 
the field selection of plant flowers was able to discrimi-
nate a group of plants with a higher content of analysed 
cannabinoids.

Antimicrobial activity assays
The antimicrobial activities and MICs were evaluated 
against selected bacterial strains giving different results 
depending on the type of plant under observation.

Statistics of the antimicrobial activity data (diame-
ters of ZoI) confirmed that the diameter ranges chosen 
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of C. sativa accession “Eletta campana”. The insets show the mass spectra corresponding to peaks of CBD (found at m/z 315.23159), THC (found at 
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Table 1 Composition of  the  two samples of  C. sativa analysed: Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), 
and (CBN + THC)/CBD ratio identifying the chemotype

Samples THC CBD CBN (CBN + THC)/
CBD

1 0.021% (2.1 ± 0.5 g kg−1 dw) 0.781% (78.1 ± 1.3 g kg−1 dw) 0.008% (0.81 ± 0.12 g kg−1 dw) 0.037

2 0.050% (5.0 ± 0.8 g kg−1 dw) 0.967% (96.7 ± 1.7 g kg−1 dw) 0.010% (0.98 ± 0.28 g kg−1 dw) 0.061
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(< 10  mm; 11–15  mm, > 16  mm) were able to well dis-
criminate significant differences among the antimicrobial 
activities (Tables 2, 3, 4).

Solanum nigrum and C. sativa extracts demonstrated a 
certain antimicrobial activity, while A. rusticana did not 
reveal any activity against bacteria in this research.

The Gram− bacteria, P. orientalis and S. maltophilia, 
were sensitive only to the S. nigrum extract, showing a 
middle inhibition diameter of 13.5 and 15 mm, respec-
tively; moreover, this extract proved a middle antimi-
crobial activity against all Gram+ bacteria (inhibition 
zone ranging from 13.5 to 15.2 mm) (Table 2).

Both flower samples of C. sativa showed a similar 
effect on Gram+ bacteria with a high antimicrobial 
activity; these extracts were more effective against 
B. thuringiensis and B. cereus with 37.5 and 37.0  mm 
diameter of inhibition zone, respectively, while B. 
amyloliquefaciens was slightly less sensitive (Table 2).

The active extracts of S. nigrum and C. sativa were 
subjected to determine MIC by the agar well diffusion 
method against the respective susceptible bacterial 
species (Table  2). The results obtained indicated that 
Gram+ and Gram− bacterial species tested were sensi-
tive to different extracts in a similar way with an MIC 
of 5–10  mg  L−1. The more effective extracts were the 

Table 2 Antimicrobial activity and MIC of S. nigrum, A. rusticana, and C. sativa extracts tested

Assays were performed in triplicate and results are the mean of three values ± standard deviation

NI no inhibition zone was observed

Different letters in superscript to numerical data indicate significant differences (p value < 0.05)
a Sample #1 is composed of flowers representative of the “Eletta campana” cannabis accession
b Sample #2 was obtained from a field mass selection of “Eletta campana” flowers having a higher THC and CBD content
c ZoI: diameter of inhibition zone obtained after 24 h of incubation in agar well diffusion assays. ZoI < 10 mm: low antimicrobial activity; 11 < ZoI < 15 mm: middle 
antimicrobial activity; ZoI > 16 mm: high antimicrobial activity

Bacteria S. nigrum A. rusticana C. sativa Sample #1a C. sativa Sample #2b

ZoI (mm)c MIC (mg  L−1) ZoI (mm)c MIC (mg  L−1) ZoI (mm)c MIC (mg  L−1) ZoI (mm)c MIC (mg L−1)

Gram+
 Bacillus cereus (A1I) 15.2 ± 1.0A 5 ± 1H NI – 37.0 ± 1.0C 5 ± 1H 36.5 ± 1.0C 5 ± 1H

 Bacillus thuringiensis (B7I2) 13.5 ± 0.8B 10 ± 1K NI – 37.5 ± 0.9C 10 ± 1K 37.5 ± 0.7C 5 ± 1H

 Bacillus amyloliquefaciens (A5TI) 15.0 ± 0.9A 10 ± 1K NI – 34.5 ± 0.9D 5 ± 1H 34.0 ± 0.9D 5 ± 1H

Gram−
 Pseudomonas orientalis (A14-1II) 13.5 ± 1.0B 10 ± 1K NI – NI NI

 Stenotrophomonas maltophilia 
(B9TIII)

15.0 ± 1.0A 10 ± 1K NI – NI NI

Table 3 Antimicrobial activity and MIC of pure compounds as components of S. nigrum 

Assays were performed in triplicate and results are the mean of three values ± standard deviation

Different letters in superscript to numerical data indicate significant differences (p value < 0.05)
a ZoI: diameter of inhibition zone obtained after 24 h of incubation in agar well diffusion assays. ZoI < 10 mm: low antimicrobial activity; 11 < ZoI < 15 mm: middle 
antimicrobial activity; ZoI > 16 mm: high antimicrobial activity

Bacteria Solamargine Solasonine Solamargine/solasonine (1:1 
v/v)

ZoI (mm)a MIC (mg L−1) ZoI (mm)a MIC (mg L−1) ZoI (mm)a MIC (mg L−1)

Gram+
 Bacillus cereus (A1I) 15.0 ± 1.0A 5 ± 1H 14.0 ± 0.9A 5 ± 1H 15.0 ± 1.0A 5 ± 1H

 Bacillus thuringiensis (B7I2) 12.0 ± 0.9B 20 ± 1L 12.0 ± 0.8B 40 ± 1M 13.0 ± 1.0B 40 ± 1M

 Bacillus amyloliquefaciens (A5TI) 12.0 ± 0.9B 20 ± 1L 12.0 ± 1.0B 40 ± 1M 14.5 ± 1.0A 20 ± 1L

Gram−
 Pseudomonas orientalis (A14-1II) 13.0 ± 0.8B 40 ± 1M 13.0 ± 0.7B 40 ± 1M 13.5 ± 1.0B 40 ± 1M

 Stenotrophomonas maltophilia (B9TIII) 15.0 ± 0.9A 10 ± 1K 14.0 ± 0.8A 10 ± 1K 15.0 ± 1.1A 10 ± 1H
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two samples of C. sativa with the higher antimicrobial 
ability and a low inhibitory concentration (Table 2).

The antimicrobial activity of standard pure com-
ponents of the plants was investigated to understand 
whether the activity observed in our experiments was 
due to the synergistic action of more than one constitu-
ent in the extracts [31].

In the case of S. nigrum, solamargine, solasonine, 
and the solamargine/solasonine mixture (1:1 v/v) were 
tested. All bacteria were sensitive to both components 
with a middle antimicrobial activity ranging from 12 to 
15 mm (Table 3).

Among Gram+ bacteria, B. cereus was the most sen-
sitive (with an MIC of 5 mg L−1) compared to the other 
two species, B. thuringiensis and B. amyloliquefaciens, 
which were inhibited at higher concentrations (ranging 
from 20 to 40 mg L−1). Gram− bacteria, instead, showed 
the same behaviour in the presence of standard pure 
compounds (Table 3).

The C. sativa components were able to inhibit only the 
Gram + bacteria tested; THC showed a low antimicrobial 
activity, while CBD and the CBD/THC mixture (1:1 v/v) 
proved a middle activity, underlining a stronger effect 
when the mixture was used (Table  4); nevertheless, the 
bacterial species appeared not very sensitive to the stand-
ard pure components, requiring an inhibitory concentra-
tion of > 60 mg L−1.

Discussion
The antimicrobial activity and MIC were evaluated 
against selected bacterial strains of significant envi-
ronmental and health concern, used as model of target 
organisms. B. cereus is an endospore-forming Gram+ 
bacterium that can cause food poisoning. Capable of 
adapting to a wide range of environmental conditions, 

it is distributed widely in nature and is commonly found 
in the soil as a saprophytic organism. As a soil bacte-
rium, B. cereus can spread easily to many types of foods 
such as vegetables, eggs, meat, and dairy products, and 
is known to cause 2–5% of food-borne intoxications due 
to its secretion of emetic toxins and enterotoxins. Food 
poisoning occurs when food is left without refrigera-
tion for several hours before it is served. The remaining 
spores of contaminated food from heat treatment grow 
well after cooling and are the source of food poisoning. In 
addition, B. cereus is an opportunistic human pathogen 
and is occasionally associated with infections, causing 
periodontal diseases and other more serious infections 
[32]. The availability of natural substances active towards 
this microorganism, but well tolerated by the human 
body, could be useful to increase the food storage time. 
B. thuringiensis is a Gram+, rod shaped, and aerobic 
spore-forming soil bacterium producing crystalline pro-
teins (endotoxins) that have insecticidal properties; on 
the other hand, this bacterial species synthesizes several 
enzymes and toxins that give them a wide adaptation to 
natural habitats [33]. The intrinsic resistance and adapt-
ability of this bacterium makes it an ideal model for the 
tests performed in this research. B. amyloliquefaciens is a 
non-pathogenic Gram+ soil bacterium. Similar to other 
Bacillus species, it is capable of producing endospores 
allowing it to survive for extended periods of time. The 
species also shows some antifungal properties, which 
are influenced by environmental nitrogen availability. 
It synthesizes a natural antibiotic protein active against 
other photogenic Bacillus spp. and is used in agriculture, 
aquaculture, and hydroponics to fight root pathogens 
[34]. For this reason, it was important to verify if it was 
inhibited by secondary metabolites produced by plants. 
P. orientalis is a Gram−, rod-shaped bacterium placed 

Table 4 Antimicrobial activity and MIC of standard pure compounds as components of C. sativa 

Assays were performed in triplicate and results are the mean of three values ± standard deviation

NI no inhibition zone was observed, THC Δ9-tetrahydrocannabinol, CBD cannabidiol

Different letters in superscript to numerical data indicate significant differences (p value < 0.05)
a ZoI: diameter of inhibition zone obtained after 24 h of incubation in agar well diffusion assays. ZoI < 10 mm: low

antimicrobial activity; 11 < ZoI < 15 mm: middle antimicrobial activity; ZoI > 16 mm: high antimicrobial activity

Bacteria THC CBD CBD/THC

ZoI (mm)a MIC (mg L−1) ZoI (mm)a MIC (mg L−1) ZoI (mm)a MIC (mg L−1)

Gram+
 Bacillus cereus (A1I) 8.5 ± 1.2A > 60 12.0 ± 1.0B > 60 14.5 ± 1.4C > 60

 Bacillus thuringiensis (B7I2) 9.5 ± 1.3A > 60 13.0 ± 1.1B > 60 14.5 ± 1.3C > 60

 Bacillus amyloliquefaciens (A5TI) 8.0 ± 0.8A > 60 11.0 ± 0.9B > 60 15.0 ± 1.3C > 60

Gram−
 Pseudomonas orientalis (A14-1II) NI – NI – NI –

 Stenotrophomonas maltophilia (B9TIII) NI – NI – NI –
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in the P. fluorescens group. It shows antagonistic activity 
against several phytopathogenic bacteria [35] and as B. 
amyloliquefaciens can be inhibited by secondary metab-
olites produced by plants. S. maltophilia is an aerobic, 
non-fermentative, Gram− bacillus possessing flagella in 
a multitrichous formation, and is found naturally in the 
rhizosphere. However, it is also the third most common 
nosocomial pathogen with multi-drug resistance that tar-
gets immune-compromised patients in hospitals, making 
it important in medical bacteriology [36].

Antimicrobial trials have demonstrated that black 
nightshade extract is active on assayed microorganisms. 
Solamargine and solasonine, main components of black 
nightshade extract, were very active also when tested 
individually or as binary mixture. Glycoalkaloids, which 
are produced by widely cultivated Solanaceae plants, are 
confirmed to be bioactive substances useful for different 
applications acting as cellular membrane disrupting fac-
tors or inhibitors of acetylcholinesterase activity [6, 11, 
13].

Horseradish (A. rusticana) extract was not active 
towards any of the tested microorganisms at assayed 
concentrations as expected for glucosinolates in the 
absence of the enzymatic reaction needed for the pro-
duction of active derivatives [37].

Hemp (C. sativa) extract showed antimicrobial activ-
ity only against Gram+ bacteria, as Gram− bacteria 
seem to be more resistant to the secondary metabolites 
contained in the extract [38, 39]. The different compo-
sitions of the samples analysed did not influence their 
bioactivity.

The main components tested, either as individual 
compounds or as CBD–THC mixture, showed a bio-
activity about three times lower compared to the raw 
extract; the rationale behind such a behaviour could 
be that antibacterial properties were due to the syner-
gistic effect of many components (such as terpenoids, 
carboxylic moieties, and simple or complex phenols) 
present in the extract even if the prenyl moiety of can-
nabinoids has been highlighted as effective in antimi-
crobial activity [40–43].

The results of the antimicrobial activity of natural 
extracts against both Gram+ and Gram− microorgan-
isms of this study are in agreement with the research 
work of Tajkarimi et  al. [44]. Gram+ bacteria tend to 
be more sensitive to the antimicrobial properties of 
natural extracts [45, 46], while Gram− are less suscep-
tible to the antibacterial action of natural substances 
since they possess an outer membrane surrounding 
the cell wall, which restricts diffusion of hydrophobic 
compounds through their lipopolysaccharide cover-
ing. In addition, Gram− microorganisms generally 
present higher MICs than the Gram+ ones. Numerous 

researchers investigating the same topic agree that 
these compounds are, in most cases, slightly more 
active against Gram+ than Gram− bacteria. How-
ever, Wilkinson et  al. [47] remarked that some excep-
tions may occur, since Aeromonas hydrophila (Gram−) 
appears to be one of the most sensitive species to the 
action of essential oils obtained from different natu-
ral essences (thyme, cinnamon, bay, clove, almond, 
etc.). Moreover, the authors have postulated that indi-
vidual components of natural extracts exhibit different 
degrees of activity due to their chemical composition, 
which can vary according to the geographical origin 
and harvesting period.

It should also be emphasized that biopharmaceu-
ticals and biopesticides may have different action 
mechanisms than those of the conventional synthetic 
products, even if the corresponding compounds are 
similar. A low or inadequate dosage could cause fail-
ure of protection, which could lead to the abandoning 
of natural products in favour of conventional meth-
ods. Therefore, using bioactive substances efficiently 
requires specific knowledge of the agent and the target 
disease for optimizing their application time, doses, 
and rates.

Conclusion
In conclusion, the bioactivity of plant extracts to replace 
synthetic chemical products should be assessed case 
by case, and active substances should be tested as indi-
viduals to obtain more extended information on the 
real applicability of plant metabolites against pathogens. 
Promising results were obtained, and glycoalkaloids 
antimicrobial activity was confirmed herein, in line with 
previous reports against insects [6, 11, 13]. But tests per-
formed in vitro are only the first step of a deeper research 
aimed at extending the use of natural substances to com-
bat plant or animal diseases. Further research efforts are 
necessary to demonstrate plant secondary metabolite 
efficiency in the target environments, to better under-
stand their biological activities and to develop actions 
strategies of such complex mixtures usage.
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