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Abstract 

Background:  Land leveling is one of the most important steps in soil preparation and cultivation. Although land 
leveling with machines require considerable amount of energy, it delivers a suitable surface slope with minimal dete-
rioration of the soil and damage to plants and other organisms in the soil. Notwithstanding, researchers during recent 
years have tried to reduce fossil fuel consumption and its deleterious side effects during this operation. The aim of this 
work was to determine the best linear model using Artificial Neural Network (ANN), Imperialist Competitive Algo-
rithm–ANN, regression, and Adaptive Neural Fuzzy Inference System (ANFIS) to predict the environmental indicators 
for land leveling and to determine a model to estimate the dependence degree of parameters on each other.

Methods:  New techniques such as ANN, ICA, GWO–ANN, PSO–ANN, sensitivity analysis, regression, and ANFIS that 
using them for optimizing energy consumption will lead to a noticeable improvement in the environment. In this 
research, effects of various soil properties such as embankment volume, soil compressibility factor, specific grav-
ity, moisture content, slope, sand percent, and soil swelling index in energy consumption were investigated. The 
study was consisted of 350 samples which were collected from 175 regions in two depths. The grid size was set 
20 m × 20 m from a 70-ha farmland in Karaj province of Iran.

Results:  The models that reveals the relationship between the land parameters and the energy indicators were 
extracted. As it was expected three parameters; density, soil compressibility factor and, embankment volume index 
had significant effect on fuel consumption. In comparison with ANN, all ICA–ANN models had higher accuracy in 
prediction according to their higher  R2 value and lower RMSE value. Statistical factors of RMSE and R2 illustrate the 
superiority of ICA–ANN over other methods by values about 0.02 and 0.99, respectively. Results also revealed the 
superiority of integrated techniques over other methods for prediction of complicated problems such as land leveling 
energy estimation.

Conclusion:  Results were extracted and statistical analysis was performed, and RMSE as well as coefficient of deter-
mination, R2, of the models were determined as a criterion to compare selected models. According to the results, 
10-8-3-1, 10-8-2-5-1, 10-5-8-10-1, and 10-6-4-1 MLP network structures were chosen as the best arrangements and 
were trained using Levenberg–Marquardt as NTF. Integrating ANN and imperialist competitive algorithm (ICA–ANN) 
had the best performance in prediction of output parameters, i.e., energy indicators.
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Introduction
During the last century due to increasing human popu-
lation, demands for agricultural commodities have been 
enormously increased. Nowadays, one of the cardinal 
environmental challenges in the world is energy produc-
tion and consumption. Despite soft growth of renew-
able energy usage such as solar energy, inappropriate use 
and lack of proper management have led to an intensive 
rise in fossil fuel energy consumption in this field. It also 
should be taken into the account that environmental con-
servation and market globalization will be dependent on 
food security in the future agriculture [1]. Regarding this, 
some special policies should be addressed to consider 
energy viewpoint in conjunction with the environmental 
issues to solve the problem. Land leveling is one of the 
heaviest and costly operations among agricultural prac-
tices that consume considerable amount of energy. In 
addition, moving heavy machines on the ground makes 
the soil denser, particularly in the wet regions where the 
moisture content of the soil is high and it makes a situ-
ation that is not easily recoverable [2–4]. On the other 
hand, land leveling simplifies the irrigation, improves 
field situations in other practices related to agriculture 
and regulates the soil surface and normalizes its slope 
[5]. Reportedly, there are three significant factors which 
have effect on grain yield including the effects of land lev-
eling, methods of water application and the interaction 
between land leveling and water applied. Okasha et  al. 
observed a noteworthy connection between slope and 
diverse irrigation scheme in different seasons [2]. Some 
researchers have used other techniques such as Internet 
of Things (IoT) to optimize the irrigation process based 
on the physical characteristics of soil [6]. However, these 
methods do not engage in land leveling process. Diverse 
methods of land leveling can affect the physical and 
chemical properties of the soil, and hence can make dif-
ferences in plant establishment, root growth, aerial cover 
and eventually crop yield. As a direct result, one of the 
most important steps in soil preparation and a key fac-
tor in food production that should be optimized is land 
leveling [5]. Besides, decreasing fossil fuel consump-
tion for land leveling diminishes air contaminants and 
improves the environmental condition. There is a grow-
ing understanding of importance and effects of water and 
soil management which in turn reveals the significance 
of optimized laser land leveling from social, financial and 
agronomic points of view [7]. Even though some improv-
ing strategies have been proposed for the enhancement 
of operations related to the environment, they have 
diverse undesirable effects [8]. Using computers and the 
Internet has shown a great potential to solve these types 
of problems by reducing the aforementioned undesirable 
effects. There are myriad of computer-based techniques 

and recently IoT that are used widely to solve engineer-
ing problems [9]. ANNs are one of these methods. ANN 
is a conceptual technique, the output or inferred variable 
of which can be modeled in terms of other parameters 
that are relevant to the same process [10]. This technique 
has been widely used in engineering field for optimiza-
tion and prediction [11]. Ahmadi et al. proposed ANNs 
trained with Particle Swarm Optimization (PSO) and 
Back Propagation (BP) algorithm to estimate the equi-
librium water dew point of a natural gas stream with a 
Triethylene Glycol (TEG) solution at different TEG con-
centrations and temperatures. They reported that this 
approach, PSO–ANN, can aid in better understanding 
of fluid reservoirs’ behavior through simulation scenar-
ios and statistical result was quiet noticeable [12, 13]. 
In another research, a feed-forward ANN optimized by 
PSO was used as an artificial intelligence modeling tool 
to predict asphalting precipitation due to natural deple-
tion [14]. They also proposed another network based on 
feed-forward ANN optimized by Hybrid Genetic Algo-
rithm and Practical Swarm Optimization (HGAPSO) 
and compared it with conventional BP-ANNs. They 
reported that results of this approach were better than 
conventional methods, based on statistical analysis [15]. 
This technique has been also used for predicting param-
eters with reducing uncertainties. In a research, Ahmadi 
et al. used artificial intelligence techniques to accurately 
determine the amount of Dissolved Calcium Carbonate 
Concentration in oil field brines with minimum uncer-
tainty [16]. In another study, Multi-Layer Perceptron 
(MLP)-ANN models and Adaptive Network-Based Fuzzy 
Inference System (ANFIS) models were adopted to pre-
dict and simulate the groundwater level of the Lamerd 
plain; the required results were obtained by emphasis 
on higher accuracy and lower scattering for modeling 
ANFIS with RMSE of 0.9987 and R2 of 0.0163 in train-
ing stage, and RMSE of 0.9753 and R2 of 0.0694 in test 
stage [17]. ANN and ANFIS were also used to predict 
the subsurface water level in paddy fields of Plain Areas 
between Trajan and Nectarous Rivers. The correlation 
coefficient of the proposed models was 0.8416 and 0.8593 
and RMSE of them were 0.2667 and 0.249, respectively 
[18]. Likewise, ICA is a new evolutionary algorithm in 
the Evolutionary Computation field based on the human’s 
socio-political evolution. This algorithm has been pro-
posed by Atashpaz-Gargari and Lucas in 2007 [19, 20]. It 
simulates an optimization problem by analogizing vari-
ables to colony and imperial countries. This method has 
been widely used in solving engineering problems [21] 
such as data clustering [22], Nash balance point attain-
ment [23], ANNs training [15] composite constructions 
[24, 25], production administration complications [19], 
and optimization complications [26–28]. Environmental 
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Impact Assessment (EIA) was also addressed in litera-
ture which involves the investigation and estimation of 
scheduled events with a view to ensure environmentally 
sound and sustainable improvements [8]. Since, land lev-
eling with machines requires considerable energy, thus, 
optimizing energy consumption in the leveling operation 
is expected. As a result, here, five approaches including 
ANN, integrating Artificial Neural Network and Impe-
rialist competitive algorithm (ICA–ANN) and Sensitiv-
ity Analysis, Regression, ANFIS models have been tested 
and evaluated in prediction of environmental indicators 
for land leveling. Moreover, since a limited number of 
studies associated with the energy consumption in land 
leveling have been done, the objective of current energy 
and cost research is to find a function for all the indices of 
the land leveling including the slope, coefficient of swell-
ing, the density of the soil, soil moisture, special weight 
dirt and the swelling.

Materials and methods
Case study region
To verify the accuracy and applicability of the proposed 
linear model, a case study was carried out based on 
requirements of the project in a farmland at Karaj, Iran. 
The farm area was 70 ha and was located in west of Karaj, 
31°28′42″ north latitude and 48°53′29″ east longitude. 
Topographic maps of the farm were plotted at scale of 
1:500. Length, width and height of points from a refer-
ence point (coordinates of x, y and z) were considered 
as outputs. The grid size in the case study region was 
20 × 20  m during topography operations. Samples were 
collected from the canters of each grid and two different 
depths; surface soil (0–10  cm) and subsurface soil (10–
30  cm). Totally, 350 samples (175 grid cells multiplied 
by 2 depths) were collected. In the laboratory, collected 
moist soil samples were firstly sieved through 10-mm 
mesh sieve to remove gravel, small stones and coarse 
roots and plant remnants; then passed through 2-mm 
sieve. Then, the sieved samples were dried at room tem-
perature and moisture content of the samples as well as 
texture, bulk density, land slope and soil optimum density 
were determined.

Development of the ANN model
ANNs are massively parallel-distributed information 
processors that have certain performance characteristics 
resembling biological neural networks of human brain 
[29]. They have been developed as a generalization of 
mathematical models of human biological neural system 
[18]. There are a lot of structure types of ANN models. 
In this study, a typical feed-forward back propagation 
(BP) MLP structure was used. The main advantage of 
MLP structures over other types is that they have the 

ability to learn complex relationships between input and 
output patterns, which would be difficult to model with 
conventional algorithmic methods [30]. An ANN struc-
ture usually consists of an input layer, followed by one or 
more hidden layers and an output layer. The input nodes 
are the previous lagged observations, while the output 
provides the forecast for the future value. Hidden nodes 
with appropriate nonlinear transfer functions are used to 
process the information received by the input nodes. The 
model can be written as follows [28]:

where m is the number of input nodes, n is the number of 
hidden nodes, αj denotes the vector of weights from the 
hidden to output nodes and βij denote the weights from 
the input to hidden nodes. α0 and β0j represent weights 
of arcs leading from the bias terms which have values 
always equal to 1 and f is a sigmoid transfer function [31]. 
Multiple layers of neurons with nonlinear transfer func-
tions allow the network to learn nonlinear and linear 
relationships between input and output parameters [32]. 
The linear output layer lets the network to take any val-
ues even outside the range of − 1 to + 1; while if the last 
layer of a multilayer network has sigmoid neurons, then 
the outputs of the network will be only in a limited range 
[33]. Input variables were: specific gravity, density, mois-
ture content, slope, inflation rate and type of the cut soil. 
Relevantly, output variables were: fuel energy, machinery 
energy, labor power, total cost and energy consumption. 
In this study, all available data sets were used for regres-
sion modeling, but for ANN model development, data 
were randomly divided into three groups: 70% for train-
ing the network, 15% for model cross validation and, 15% 
for testing [30]. Several architectures for type of MLP 
have been investigated to find the one that could result 
in the best overall performance. The learning rules of 
Momentum and Levenberg–Marquardt were considered 
and no transfer function for the first layer was used. For 
the hidden layers, the sigmoid and hyperbolic tangent 
transfer functions were applied, and for the last one a lin-
ear transfer function was set. Also, a number of different 
network sizes and learning parameters have been tried.

As it is mentioned earlier, the ANN system applied 
for the predictor models had seven inputs; soil cut/
fill volume, soil compressibility factor, specific gravity, 
moisture content, slope, sand percent, and soil swell-
ing index. On the other side, the outputs of each model 
were labor energy, fuel energy, total machinery cost, 
total machinery energy.

(1)
yt = α0 +

n
∑

j=1

αj f

(

m
∑

i=1

βijyt−i + β0j + εt

)

,

j = 0, 1, . . . , n and i = 0, 1, . . . ,m
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Since the main elements of ANNs are constituted by 
artificial neurons, the input model consists of dendritic 
nodes similar to a biological cell that could be repre-
sented as a vector with N items X = (X1, X2,…, Xn); the 
summation of inputs multiplied by their corresponding 
weights could be represented by scalar quantity S.

where W = (W1, W2,…,WN) is the weight vector of asso-
ciations among neurons. The S quantity is then passed to 
a non-linear activation function f, yielding the following 
output:

Non-linear transfer function is usually represented as 
sigmoid functions and is defined via:

The output of y can be the final result of the model 
or that of the previous layer (in multilayer networks). 
In the design of an ANN, certain elements should be 
taken into the account including type of input param-
eters. In this research, three-layer perceptron network 
was used which is composed of an input layer and an 
output layer plus one hidden layer of computational 
modes. In each layer, a number of neurons were consid-
ered which were connected to the neurons of neighbor-
ing neurons via some associations. In these networks, 
the effective input of each neuron was as a result of the 
multiplication of the outputs of the previous neurons 
by the weights of those neurons. Neurons in the first 
layer receive the input information and transfer it to 
hidden neurons through related connections. The input 
signal in such networks is only expanded in a forward 
direction. The main advantage of such a network is the 
simplicity in implementing the model and estimating 
input/output data. Some of the major shortcomings of 
this model are the low training rate and need for a huge 
set of data.

Imperialist competitive algorithm (ICA)
ICA is a novel swarm-intelligence method that has been 
developed by mimicking the human being’s socio-politi-
cal evolution strategies. ICA optimization process starts 
with initialization of random populations and some 
incipient empires. In each stage of ICA, a union of sub-
groups, colonies, and imperialists assemble the empires. 
ICA breaks the early population into the subpopulations, 
and then it searches the solution space for the best point 
using two main operators: competition and assimilation. 

(2)S =

n
∑

k=1

WkXk ,

(3)y = f (s).

(4)f (s) =
1

1+ e−s
.

During algorithm proceedings, empires can interact with 
the members of the swarm. Throughout the assimilation 
procedure, colonies move towards the relevant imperialist 
progressively. Imperialistic competition among the empires 
is the momentous procedure of the ICA [12, 19–21]. In 
competition stage, powerless empires collapse; whereas, 
the dominant ones gain further control over their colonies. 
This operation is stopped whenever one empire controls 
the entire countries. In termination condition, empire has 
equal cost with its colonies, which can be regarded as a sat-
isfactory solution for the problem. To explain the algorithm 
more practically, the required steps are as follows: Step 1: 
Initializing phase. Scattering the early population randomly 
over the search space and composing the basic solutions in 
the format of a 1 × Nvar array via Eq. (5):

where pi represents variables that are fundamentally 
related to socio-political characteristics of the countries 
such as culture, language, religion, and economic policy. 
Nvar shows the total variables of the target problem. Step 
2: computing the cost of every country using Eq. (6):

Step 3: Initializing the empires. The normalized cost of 
an imperialist is obtained via Eq. (7)

where f (imp,n)
cost  stands for the cost of nth imperialist, and 

NCn indicates its normalized cost.
p 4: Dividing the colonies among imperialists. This pro-

cess is based on the power of imperialist and relationships 
between the countries and their interdependent empires 
(i.e., the countries should be possessed by their imperialist 
based on the power). This step is completed using Eqs. (8–
10), respectively:

where Powern is the normalized power of each imperial-
ist, Ncol and Nimp are the given number of colonies and 
imperialists, respectively, and NOCn represents the total 
number of colonies that are possessed by nth empire. 
Step 5: Assimilation strategy. The purpose of the assimila-
tion procedure can be expressed as the movement of the 
colonies towards their interdependent imperialist. Based 

(5)country = [p1, p2, p3, . . . , pNvar ] ,

(6)C = f (country) = f (p1, p2, . . . , pNvar)

(7)NCn = f
(imp,n)
cost −max

i

(

f
(imp,i)
cost

)

,

(8)Powern =

∣

∣

∣

∣

∣

NCn
∑Nimp

i=1 NCi

∣

∣

∣

∣

∣

,

(9)NOCn = round{Powern,Ncol},

(10)Ncol = Npop − Nimp,
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on this stage, each movement is performed according to 
Eq. (11):

where x is a random number with uniform (or any 
proper) distribution, β is a number greater than 1, and 
d is the distance between a colony and related imperi-
alist. Step 6: Revolution strategy. In this strategy, a ran-
dom amount of deviation is added to direct the colonies 
movement via Eq. (12):

where θ is a random variable with uniform distribution, 
and γ shows a parameter for adjusting the deviation 
from the initial movement direction. Step 7: Exchanging 
phase. During assimilation, whenever a colony reaches 
to a position with lower (better) cost compared with 
the imperialist, the imperialist and the colony exchange 
their positions, and the colony becomes new imperi-
alist and vice versa. Step 8: Imperialistic competition 
phase. Calculating the overall power of an empire that is 
mainly affected by the power of empire and its colonies 
as Eq. (13):

where TCn represents the total cost of the nth empire, 
and ζ is a coefficient between 0 and 1 for decreasing the 
effect of colonies cost. Step 9: Imperialistic competi-
tion strategy. Based on this process, each empire tries to 
extend its power to possess more colonies compared with 
other empires. Throughout the competition, weakest col-
ony from the weakest empire is selected to be governed 
by the strongest empire. Imperialistic competition con-
ducts a searching procedure towards a peak solution. The 
competition operator is designed to dedicate the colonies 
of the weakest empires to other empires. Based on TCn, 
the normalized total cost is evaluated using Eq. (14):

where NTCn is the total normalized cost of nth empire. 
According to NTCn, the possession probability of each 
empire is computed with Eq. (15):

To find out the winner of competition with less com-
putational effort, the vectors P, R, and D are formed via 
Eqs. (16, 17, 18):

(11)x ≈ U(0,β × d) β > 1,

(12)θ ≈ U(−γ , γ )

(13)TCn = f
(imp,n)
cost + ξ ·

∑NCn
i=1 f

(col,i)
cost

NCn
,

(14)NTCn = TCn −max
i

{TCi},

(15)Ppn =

∣

∣

∣

∣

∣

NTCn
∑Nimp

i=1 NTCi

∣

∣

∣

∣

∣

(16)P = [PP1,PP2, . . . ,PPNimp]

where P is the vector of possession probability of the 
imperialists and R represents a vector with uniformly 
distributed random values. Maximum index of D deter-
mines the winner empire of the competition. Step 10: 
Eliminating phase. When a powerless empire loses all 
of its controlled colonies, it should be removed from the 
competition. Step 11: Convergence phase. Finally, the 
most powerful imperialist controls all the remained colo-
nies. In such a condition, the algorithm is stopped. These 
steps can be shown in an algorithmic flowchart such as 
Fig. 1.

Training of ANNs can be done using the ICA. For 
this purpose, the algorithm should be able to adjust the 
weights and bias, so that the difference between the out-
put of ICA and real output be minimized. Mean squared 
error (MSE) was considered to determine the error.

Integrating Imperialist competitive algorithm and Artificial 
Neural Network (ICA–ANN)
In this study, after applying commands of ANNs in MAT-
LAB software, the number of neurons in the input layer 
considered the same as the number of effective param-
eters: Cut-Fill Volume (V) (embankment volume), soil 
compressibility factor, specific gravity, moisture content, 
slope, sand percent, and soil swelling index. Similarly, the 
number of neurons in the output layer should be equal to 
the number of desired parameters for modeling. Instead 
of the default commands for network training, ICA was 
used. For running ANNs, 70% of the data were used for 
training, 15% for evaluation, and the remained 15% were 
used for the test section.

Results
Sensitivity analysis model
The outputs that are shown in Table 1 are the results of 
the model after running for 500 times. Table 1 indicates 
meaningful F-values and a great significance (α < 0.0001) 
for all developed sensitivity analysis models that reject 
the null hypothesis clearly.

Figure 2 shows the sensitivity analysis for labor energy 
(LE). In this figure, F1–F7 represent land slope, moisture 
content, density, soil compressibility factor, embankment 
volume, Soil Swelling Index, and sand percent, respec-
tively. The results revealed that F3 (density), F4 (soil com-
pressibility factor), and F5 (embankment volume) had the 
highest sensitivities on LE.

(17)
R = [r1, r2, . . . , rNimp ] r1, r2, r3, . . . , rNimp ≈ U(0, 1)

(18)
D = P − R = [PR] = [D1,D2, . . . ,DNimp

]

= [PP1 − r1,PP2 − r2, . . . ,PPNimp
− rNimp

],
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Sensitivity analysis also showed that three soil param-
eters including; volume of soil, specific gravity and soil 
compaction had the greatest impact on the amount of 
energy required for land leveling. These parameters had 
direct relation with the required energy. In other words, 
more density of the soil leads to more required energy for 
constant volume of the soil. For a soil with higher den-
sities, in addition to its weight, handling it also requires 
more energy consumption. It is obvious that more work-
ing time of the machine leads to higher energy consump-
tions. In the same manner, the higher the excavation 
volume, the greater the energy consumption. It can be 
interpreted in this way that more soil volume needs 
more time of machine and leads to more fuel consump-
tion. Table 1 shows that soil volume is the most impor-
tant parameter between all input variables for energy 
consumption including LE, FE, TMC and TME. It is 
clear that by increasing cut soil volume, needed time of 
machinery used increases, and consequently fuel energy 
increases as well. Furthermore, prolonged working time 
of machinery increases labor requirement for opera-
tion which in turn raises the energy consumption by the 
labors. On the other hand by decreasing the cut soil vol-
ume, required human labor also decreases. Therefore, 
one of the most important ways for decreasing energy 
consumption is to reduce soil cut/fill. In addition, in each 
table, if the F value of a variable is higher than others, it 
indicates the higher impact of that variable in the final 
model. This situation has occurred for cut-fill volume as 
a variable which is the most effective factor and affects 
all responses of interest. In the same manner, the lower F 
value of a variable indicates lower impact of that variable 
on responses.

Regression model
Since the F-values of all models, that are shown in 
Table 2, indicated a great significance (α < 0.0001) for all 
developed regression models, the null hypothesis has 
rejected. Likewise, all models have significant P values as 
well.

Of the seven parameters of soil and land characteristics 
(moisture, density, soil compressibility factor, land slope, 
soil type, embankment volume), two factors: embank-
ment volume and soil compressibility have the most sig-
nificant effect on LE in land leveling. The factors of slope, 
V and soil type (sand) have significant effects on FE. V, 
soil compressibility factor and slope have significant 
effects on TMC in land leveling (Table 2).

Moreover, the results show that the effect of the land 
slope, swelling coefficient and soil type on energy con-
sumption in land leveling is significant. By increas-
ing land slope, volume of excavation and embankment 

increases and the number of sweep and distance traveled 
by leveling machines also increases and fuel consump-
tion will increase which is obvious. Increase in soil swell-
ing factor increases the volume of the embankment and 
increase in volume of the embankment also increases the 
demand of fuel and energy. The fitted nonlinear equa-
tions for the all response of interest including LE, FE, 
TMC, and TME are represented in Eqs.  19–22, respec-
tively, in which the coefficients are provided in coded 
units. The coded equation is more easily interpreted. 
The coefficients in the actual equation compensate for 

Fig. 1  Flowchart of ICA algorithm
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the differences in the ranges of the factors as well as the 
differences in the effects. Finally, LE, TMC, and TME 
were affected significantly only by three variables includ-
ing: land slope, volume of the embankment (V), and soil 
swelling index (SSI). For FE model, the effect of SSI is not 
significant; however, soil percent has taken its place and 
affects the FE significantly. Labor energy consumption 
in land leveling is a nonlinear function of the soil com-
pressibility factor and slope (Eq.  19). In the same way, 
fuel energy consumption in land leveling is also a nonlin-
ear function of the soil compressibility factor and slope 
(Eq.  20). This is true for TMC and TME as well which 
have been represented in Eqs.  21 and 22, respectively. 
The value of each coefficient variable in the equation rep-
resents the effect of variable on the function.

(19)
(LE)0.8 = 34,161.36+ 3639.90 ∗ Slope

+ 31,173.94 ∗ V+ 911.96 ∗ SSI

A relatively flat line shows insensitivity to change in 
that particular factor. The response trace plot for the LE, 
FE, TMC and TME was sketched. At this plot, the verti-
cal axis is the predicted values and the horizontal axis is 
the incremental change made in factors included in the 
final equation model. The scatter plots of actual values 
of response of interest vs. predicted values using final 
models are displayed in Fig. 3a, b. The strong nonlinear 

(20)
(FE)0.8 = 4.1485 + 49,590.44 ∗ Slope

+ 3.7825 ∗ V− 10,008.33 ∗ Sand

(21)
(TMC)0.8 = 3.3198 + 3.5877 ∗ Slope

+ 3.0158 ∗ V+ 8.3936 ∗ SSI

(22)
(TME)0.8 = 2.4947 + 2.6216 ∗ Slope

+ 2.2777 ∗ V+ 6.7875 ∗ SSI

Table 1  Analysis of variance for labor energy (LE), fuel energy (FE), total machinery cost (TMC), total machinery energy 
(TME)

Model Source Sum of squares df Mean square F value P value Prob > F

LE model Model 2.8587 1 2.8587 4277.61 < 0.0001

Cut-fill volume (V) 2.8587 1 2.8587 4277.61 < 0.0001

FE model Model 6.4788 1 6.4788 3931.00 < 0.0001

Cut-fill volume (V) 6.4788 1 6.4788 3931.00 < 0.0001

TMC model Model 2.73712 1 2.73712 4023.17 < 0.0001

Cut-fill volume (V) 2.73712 1 2.73712 4023.17 < 0.0001

TME model Model 1.08611 1 1.08611 4311.77 < 0.0001

Cut-fill volume (V) 1.08611 1 1.08611 4311.77 < 0.0001
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Fig. 2  Sensitivity analysis for labor energy (LE), fuel energy (FE), total machinery cost (TMC), total machinery energy (TME)
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effect of cut-fill volume on all the responses of interest is 
conspicuous (Fig. 3a, b). Figure 4 shows that energy and 
cost direct relationship with cut-fill volume as the major 
effect. All responses of interest are moderately affected by 
slope. Additionally, it is perceived that the increase of the 
slope led to increased energy and cost. The most appro-
priate power transformation (lambda) for responses is 
detected by the Box–Cox diagram that results the mini-
mum residual sum of squares in the transformed model 
(Fig.  3a). Scatter plots of actual vs. predicted values for 
regression model are shown in Fig. 4a–d.

Results of ANFIS model prediction
In this section, the results of ANFIS models for predic-
tion of LE, FE, TMC, and TME are presented. MAT-
LAB programming language was used for implementing 
ANFIS simulations. Different ANFIS structures were 
tried using the programming code and the appropriate 
representations were determined. Each structure for cor-
respond combination has been evaluated using 100 inde-
pendent runs and the statistical criteria (R2 and MSE) of 
the output models have been calculated for responses 
of interest. In Tables 3 and 4 the minimum, average and 

Table 2  Analysis of variance for labor energy (LE), fuel energy (FE), total machinery cost (TMC), total machinery energy 
(TME) models

Model Source Sum of squares df Mean square F value P value Prob > F

LE model Model 1.2411 3 4.1510 5523.914 < 0.0001

Slope 1.859 1 1.859 246.7733 < 0.0001

Cut-fill volume (V) 1.2111 1 1.2111 16,149.7 < 0.0001

Soil swelling index (SSI) 2.618 1 2.618 34.70285 < 0.0001

FE model Model 1.8413 3 6.1512 4632.446458 < 0.0001

Slope 3.4311 1 3.4311 258.640572 < 0.0001

V 1.7813 1 1.7813 13,457.37208 < 0.0001

% Sand 3.2810 1 3.2810 24.73922519 < 0.0001

TMC model Model 1.1619 3 3.8818 4751.319 < 0.0001

Slope 1.817 1 1.817 220.2573 < 0.0001

V 1.1319 1 1.1319 13,881.29 < 0.0001

SSI 2.2116 1 2.2116 27.00684 < 0.0001

TME model Model 6.6416 3 2.2116 5653.467 < 0.0001

Slope 9.614 1 9.614 245.4494 < 0.0001

V 6.4716 1 6.4716 16,537.35 < 0.0001

SSI 1.4414 1 1.4414 36.87527 < 0.0001

Fig. 3  a Box–Cox b surface plot of total machines energy versus slope and volume
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maximum values of R2 and MSE for various combina-
tions of developed ANFIS-based models are presented. 
Additionally, calculated R2 and MSE values of different 
developed models of labor energy vs. number of clus-
ters are illustrated as well. It is worthwhile to mention 
that other outputs had similar behaviour. As presented in 
Table 3, statistical criteria for prediction of LE reveal that 
FIS model is superior to ANN-back propagation model. 
Average R2 value in FIS model for prediction of LE was 
found to be 0.9948 and 0.9944 in Mamdani and Sugeno 
models, respectively; while in back propagation model, 

it was calculated as 0.9921. Moreover, as presented in 
Table 3, statistical criteria for prediction of FE reveal that 
FIS model are superior to ANN-back propagation model. 
Average R2 value in FIS model for prediction of fuel 
energy was found to be 0.9927 and 0.9922 in Mamdani 
and Sugeno models, respectively. While in back propaga-
tion model, R2 value was calculated as 0.9891 and 0.9892, 
respectively.

As presented in Table  4, statistical criteria for predic-
tion of total machinery cost reveals that FIS model are 
superior to ANN-back propagation model. Average R2 

Fig. 4  Scatter plots of actual vs. predicted using regression models for a labor energy, b fuel energy, c total machines cost, and d total machines 
energy
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value in FIS model for prediction of total machinery 
cost was found to be 0.9921 and 0.9922 in Mamdani and 
Sugeno models, respectively. While in back propagation 
model, R2 value was calculated as 0.9894 and 0.9895, 
respectively. As presented in Table  4, statistical factors 
for prediction of TMC indicate that FIS model perform 
better than ANN-back propagation model. Average R2 
value in FIS model for prediction of TME was found to 
be 0.9950 and 0.9952 in Mamdani and Sugeno models, 
respectively; while in back propagation model, it was cal-
culated as 0.9925 and 0.9926, respectively.

Determining the effect of number of clusters on all the 
developed models is feasible (Fig.  5). Moreover, com-
parison between different optimization methods and 
FIS types can also be done. For the ANFIS-based model, 
in both training methods, the MSE (R2) value decreases 
(increases) and the prediction performance of devel-
oped ANFIS-based models improves gradually with the 

number of clusters. In addition, comparison of the results 
indicates that the Hybrid method has a higher value of 
R2 and a lower value of MSE; so that its results are more 
accurate. Also, the performance of the Sugeno FIS type 
was found to be better than that of Mamdani.

Comparison results of the predicted values of ANFIS 
models with actual data are shown in Fig.  6a–d. These 
predicted values are compared with actual data to show 
the performance of the ANFIS models for prediction of 
each response. Results from these figures reveal that FIS 
model is superior to ANN model in predicting LE, FE, 
TMC, and TME.

ANN model
The results of regression models and training various 
networks with different structures are presented in this 
section. The ANN models were developed by training the 
networks with various combination of Network Training 

Table 3  Calculated statistical criteria for  prediction of  labor energy using/fuel energy different combination 
of optimization methods and FIS types

Optimization method FIS type MSE R2

Min. Ave. Max. Min. Ave. Max.

Labor E.

Hybrid Mamdani 0.00063 0.00130 0.00329 0.9856 0.9948 0.9971

Sugeno 0.00058 0.00126 0.00326 0.9865 0.9944 0.9974

Back propagation Mamdani 0.00083 0.00102 0.00412 0.9831 0.9921 0.9965

Sugeno 0.00088 0.00154 0.00407 0.9831 0.9921 0.9964

Fuel E.

Hybrid Mamdani 0.00119 0.00181 0.00371 0.9851 0.9927 0.9952

Sugeno 0.00111 0.00173 0.00390 0.9843 0.9922 0.9955

Back propagation Mamdani 0.00119 0.00270 0.00560 0.9775 0.9891 0.9952

Sugeno 0.00123 0.00268 0.00560 0.9775 0.9892 0.9950

Table 4  Calculated statistical criteria for  prediction of  total machinery cost/energy using different combination 
of optimization methods and FIS types

Optimization method Fis type MSE R2

Min. Ave. Max. Min. Ave. Max.

Cost

Hybrid Mamdani 0.00122 0.00188 0.00387 0.9837 0.9921 0.9949

Sugeno 0.00119 0.00185 0.00394 0.9834 0.9922 0.9950

Back propagation Mamdani 0.00140 0.00251 0.00465 0.9805 0.9894 0.9941

Sugeno 0.00141 0.00250 0.00465 0.9805 0.9895 0.9940

Energy

Hybrid Mamdani 0.00059 0.00121 0.00353 0.9856 0.9950 0.9975

Sugeno 0.00058 0.00120 0.00356 0.9855 0.9952 0.9976

Back propagation Mamdani 0.00077 0.00183 0.00395 0.9839 0.9925 0.9968

Sugeno 0.00080 0.00182 0.00395 0.9839 0.9926 0.9967
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Functions (NTF), number of hidden layers and number 
of neurons in the each hidden layer. For selecting the best 
network topology, totally 20,678 different ANN models 
were evaluated, and the RMSE and coefficient of deter-
mination (R2) values were calculated. For a full compari-
son between the performances of the trained structures, 
Tables 5 and 6 represent results obtained from ANN of 
feed-forward BP type with 7 different network training 
algorithms. These methods of training are available in the 
Neural Network Toolbox software and they use gradient- 
or Jacobian-based methods including Levenberg–Mar-
quardt (trainlm), Bayesian regularization (trainbr), scaled 
conjugate gradient (trainscg), resilient BP (trainrp), gra-
dient descent with momentum and adaptive learning rate 
BP (traingdx), Gradient descent with adaptive learning 
rate BP (traingda), gradient descent with momentum BP 
(traingdm) and conjugate gradient function (traincgf ). 
These networks use 10 input data in the input layer to 
predict the outputs and utilize a linear function in their 
output layer to transfer the data to the output. The out-
puts of the model represented in Tables 2 and 3 are the 
results of 500 thousand runs of the model. The selected 
NTFs for LE in land leveling, as shown in the first row of 
the Table 5, were the best because they had the highest 
correlation coefficient and lowest RMSE. These functions 
had 8 neurons in the first layer, and three neurons in the 
second. Details of the best trained networks for predic-
tion of LE are shown in Table 5. The NTF of trainlm had 
higher RMSE and lower R2 for 2 (8-3) and 3 (2-7-6) hid-
den layers but NTF of trainbr for 1 hidden layer had the 

best statistical interpretation. The NTF of trainlm includ-
ing 2 neurons in one hidden layer is the simplest ANN 
for forecasting the LE with RMSE lower than 0.021 and 
R2 higher than 0.996. Details of the selected networks 
for prediction of FE are presented in Table  5. The NTF 
of trainlm had higher RMSE and lower R2 for 2 (4-2) and 
3 (8-2-5) hidden layers but NTF of trainscg for 1 hidden 
layer had the best statistical output. The NTF of trainlm 
including 2 neurons in one hidden layer was the sim-
plest ANN for predicting the FE with RMSE of lower 
than 0.033 and R2 higher than 0.995. As it is shown in the 
Table 6, the first model consisting of three hidden layers 
(5-8-10 topology) had the highest coefficient of determi-
nation (0.9966) and the lowest values of RMSE (0.0287) 
indicating that this model can predict the TMC accu-
rately. So, this model was selected as the best solution for 
estimating the TMC. The detail of the selected networks 
for prediction of TME is presented in Table 6. The NTF 
of trainlm had higher RMSE and lower R2 for 2 (6-4) and 
3 (4-5-3) hidden layers. However, NTF of trainscg for 1 
hidden layer had the best statistical results. For forecast-
ing the FE, the NTF of traingdx including 2 neurons in 
one hidden layer was the simplest ANN. The RMSE for 
this model was found to be 0.225 which was very low.

ANN Models shown in the Fig.  7. This figure shows 
the actual responses versus the predicted ones. As the 
predicted values come closer to the actual values, the 
points on the scatterplot come closer to the diagonal line 
which is the regression result. Closeness of the points to 
the line is an evidence of satisfactory performance of the 

Fig. 5  Statistical performance criteria of LE



Page 12 of 19Alzoubi et al. Chem. Biol. Technol. Agric.             (2019) 6:4 

models in prediction of the targets. For a perfect fit, the 
data should fall along a 45-degree line, where the net-
work outputs are equal to the targets. The training record 
was used to plot the training, validation, and test perfor-
mance of the training progress (error vs. number of train-
ing epochs).

Integrating Artificial Neural Network and Imperialist 
competitive algorithm (ICA–ANN) model
The results of training various networks with differ-
ent structures are presented in this section. By training 
the networks with different number of neurons (3–11) 
in the hidden layer using ICA with parameters pre-
sented in Table 7, the ANN models were developed. For 

Fig. 6  Scatter plot for the predicted model and actual values of a labor energy, b fuel energy, c total machinery cost, d total machinery energy
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each response totally 18,000 networks were trained and 
evaluated. After several repetitions, the RMSE and coef-
ficient of determination (R2) values were calculated. The 
network utilized a tansig function in its output layer to 
transfer the data to the output. The results obtained from 
the best trained models and their characteristics are illus-
trated in Table 8. R2 value for prediction of LE was found 
to be 0.9987 and FE was predicted by R2 value of 0.9975. 
Using a network topology of 2-layer structure, TMC was 

predicted by R2 value of 0.9963. While, R2 value for pre-
diction of TME was found to be 0.9987. Scatter plots of 
Actual versus Predicted results of the ANN Models are 
shown in Fig. 8a–d. As the predicted values come closer 
to the actual values, the points on the scatterplot fall 
closer around the regression result (the diagonal line). 
These models can predict the target accurately and that 
is evident from closeness of the points to the line. For 
a perfect fit, the data should fall along a 45-degree line, 

Table 5  Selected ANN for prediction of labor energy (LE), fuel energy (FE)

Selected ANN for prediction of labor energy (LE) Selected ANN for prediction of fuel energy (FE)

NTF Network 
topology

RMSE R2 NTF Network topology RMSE R2

trainlm 8-3 0.0159 0.9990 trainlm 8-2-5 0.0206 0.9983

trainlm 4-9 0.0159 0.9990 trainlm 10-4-10 0.0224 0.9980

trainlm 2-7-6 0.0164 0.9989 trainlm 4-2 0.0238 0.9977

trainlm 7-10 0.0164 0.9989 trainlm 9-2-3 0.0241 0.9977

trainlm 5-3 0.0165 0.9989 trainlm 5-2-9 0.0248 0.9976

trainlm 9-5-6 0.0166 0.9989 trainlm 3-2 0.0253 0.9974

trainlm 6-2-3 0.0167 0.9989 trainlm 2-2-2 0.0269 0.9971

trainlm 7-2-3 0.0171 0.9988 trainlm 2-2 0.0271 0.9971

trainbr 3-2 0.0174 0.9988 trainbr 2-6 0.0279 0.9969

trainbr 10-7 0.0179 0.9987 trainlm 6-2-2 0.0310 0.9962

trainbr 4 0.0171 0.9988 trainbr 5 0.0249 0.9975

trainlm 2 0.0209 0.9982 trainlm 6 0.0255 0.9980

traincg 6 0.0217 0.9981 trainscg 11 0.0261 0.9973

trainrp 7 0.0254 0.9974 traingdx 3 0.0329 0.9957

traingdx 2 0.0298 0.9964

Table 6  Selected ANN for prediction of total machinery cost (TMC), total machinery energy (TME)

Selected ANN for prediction of total machinery cost (TMC) Selected ANN for prediction of total machinery energy (TME)

NTF Network topology RMSE R2 NTF Network topology RMSE R2

trainlm 5-8-10 0.0287 0.9966 trainlm 6-4 0.0157 0.9990

trainlm 7-9-2 0.0298 0.9963 trainlm 4-5-3 0.0158 0.9990

trainlm 4-5-7 0.0304 0.9961 trainlm 6-2-4 0.0160 0.9990

trainlm 7-8 0.0329 0.9957 trainlm 2-7 0.0163 0.9989

trainlm 7-2-2 0.0332 0.9954 trainlm 3-2 0.0164 0.9989

trainlm 3-2-3 0.0332 0.9954 trainbr 5-6 0.0167 0.9989

trainlm 2-4-10 0.0343 0.9951 trainlm 3-2-8 0.0168 0.9989

trainlm 2-2-5 0.0345 0.9951 trainlm 9-2-10 0.0171 0.9989

trainbr 3-9 0.0345 0.9950 trainlm 2-4-2 0.0192 0.9985

trainbr 5-8 0.0349 0.9950 trainlm 2-2-2 0.0199 0.9984

trainscg 7 0.0321 0.9958 trainscg 8 0.0164 0.9989

trainlm 2 0.0325 0.9948 trainlm 3 0.0176 0.9987

trainbr 5 0.0328 0.9955 traingdx 2 0.0300 0.9964

trainrp 4 0.0368 0.9944

traingdx 2 0.0433 0.9922
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where the network outputs are equal to the actual data. 
Figure  8a shows the scatter plot of output data versus 
actual data using ICA–ANN models for prediction of LE. 
It is clear that the predicted outputs are very close to the 
target values. Figure 8b is related to the scatter plot of the 
output data in contrast with target data using ICA–ANN 
models for prediction of FE. It is also evident for the FE 
values that the predicted results are very close to the 

target values. Figure 8c illustrates the scatter plot of out-
put in comparison with target using ICA–ANN models 
for prediction of TMC. This figure clearly demonstrates 
that the predicted TMC values are very close to the tar-
get values. The scatter plot of output vs. target values 
for TME is presented in Fig. 8d. As it is evident, the pre-
dicted TME values are approximately fitting to the target 

Fig. 7  Scatter plots of output vs. target using ANN models for prediction of LE
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values. By and large, the results show good performance 
of ICA–ANN to predict LE, FE, TMC, and TME.

As shown in (Fig.  8), among four applied methods 
to predict LE, FE, TMC, and TME according to three 
selected input parameters (soil cut/fill volume, specific 
gravity, and soil compressibility factor), RMSE of LE 
and TME was less than that of FE and TMC. In fact, 
using ANN-based prediction methods (ANN, ICP–
ANN, PSO–ANN and GA–ANN) were predicted LE 
and TME more accurately than FE and TMC. On the 
other hand, as it is evident in (Fig. 8b), R2 of prediction 
of LE and TME was higher than that of LE and TME.

According to the comparison of R2 between four 
ANN methods, it is revealed that among these meth-
ods, GA–ANN had the maximum R2 value in predic-
tion of TME, FE, and TMC. It is noticeable that the 
R2 value of LE, resulted from GA–ANN, was less than 
other algorithms.

On the other hand, as it is shown in Fig. 8b, the R2 of 
TMC using ANN algorithm was the least value among 
the four mentioned algorithms. Figure  8a shows the 
RMSE value of all methods. As it is shown in this dia-
gram, the ANN algorithm had the maximum RMSE 
value among all methods. It is obvious that a smaller R2 
and higher RMSE value will lead to worse results in the 
prediction. Results show that although the output val-
ues were acceptable by applying these four methods, it 

should be considered that ANN algorithm was the weak-
est algorithm for prediction of TMC as the neural net-
works were run 1000 times. Although GA–ANN had the 
best performance in prediction of TME, FE, and TMC, 
ICP–ANN was also a good prediction method regardless 
of its weakness in prediction of FE.

To compare the robustness of the proposed methods, 
a regression analysis with SPSS and Minitab software 
was conducted, and the RMSE and R2 of the models 
were extracted. As it is shown in the Fig.  9 the RMSE 
values extracted with SPSS were greater than that of 
ANN, ICA–ANN, PSO–ANN, and Grey Wolf Opti-
mizer (GWO–ANN). As it is shown in (Fig.  9), the R2 
value extracted with Minitab software was less than other 
methods except sensitivity analysis. The R2 of the regres-
sion equation evaluated with SPSS software was almost 
equal to four ANN methods evaluated with Matlab soft-
ware. It is worthwhile to mention that R2 and RMSE are 
two factors by which judgments about robustness of 
methods were made. Higher R2 values, and on the other 
hand lower RMSE values, will result in better equation 
coefficients; thus, as explained, these characteristics were 
observed in GWO. On the other hand, as it is evident 
from (Fig.  9a, b), the regression extracted with Minitab 
software had greater RMSE value and less R2 value which 
results in an equation with less precision in determina-
tion of LE, FE, TMC and TMC. About the precision of 
SPSS software, although the R2 value was higher than 
that of Minitab software and sensitivity analysis and in 
fact near the ANN values (Fig. 9), its RMSE was higher 
than that of ANN-based prediction algorithms which 
indicates the superiority of ANN-based methods.

Utilizing ICA–ANN for these types of optimiza-
tion problems are broadly reported in engineering 
and the researchers acknowledged the superiority of 
ICA–ANN over conventional approaches. Taghavifar 
et  al. were used a meta-heuristic optimization algo-
rithm for prediction of soil compaction indices. ANN 
trials were developed and then merged with the evo-
lutionary optimization technique of ICA. The results 
were compared on the basis of a modified performance 
function (MSE-REG) and coefficient of determination 

Table 7  Algorithm parameters

Algorithm parameter Value

Number of countries 250

Number of initial imperialists 25

Number of decades 500

Revolution rate 0.3

Assimilation coefficient 2

Assimilation angle coefficient 0.5

Zeta 0.02

Damp ratio 0.99

Uniting threshold 0.02

Table 8  Comparison of integrating artificial neural network and imperialist competitive algorithm (ICA–ANN) and ANFIS 
and regression and ANN and sensitivity analysis models

Response Sensitivity analysis Regression ICA–ANN ANFIS ANN

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

LE 0.1899 0.8631 0.1394 0.9008 0.0146 0.9987 0.0159 0.9990 0.0159 0.9990

FE 0.1971 0.8562 0.1514 0.8913 0.0322 0.9975 0.0206 0.9983 0.0206 0.9983

TMC 0.1946 0.8581 0.1492 0.9128 0.0248 0.9963 0.0287 0.9966 0.0287 0.9966

TME 0.1892 0.8437 0.1378 0.9103 0.0161 0.9987 0.0157 0.9990 0.0157 0.9990
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(R2). Their results elucidated that hybrid ICA–ANN 
succeeded to denote lower modeling error than other 
methods [15]. In another study, Marto et  al. applied 
ICA–ANN for prediction of flyrock induced by blasting 
and parameters of 113 blasting operations were accu-
rately recorded. The results were clearly illustrated the 
superiority of the proposed ICA–ANN model in com-
parison with the proposed BP-ANN model and empiri-
cal approaches [31]. Nikoo et  al. used ICA–ANN to 
predict the flood-routing problem. The results proved 
that using this technique on flood-routing problem is 

a valid approach, which is not only simple but also reli-
able [33].

Discussion
Comparison of models
The comparison of statistical results of ICA–ANN, 
ANN, sensitivity analysis, regression and ANFIS mod-
els are tabulated in Table  8. As it can be seen from 
Table  8, among the ICA–ANN models, ANN models, 
Sensitivity analysis, ANFIS, and Regression, ICA–ANN 

Fig. 8  Scatter plot of output vs. target using ICA–ANN models for prediction of a LE, b FE, c TMC, and d TME
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models provide better results with regards to higher R2 
values and lower RMSE values.

As it can be seen, moisture content, swelling index, 
soil compressibility factor and type of soil have low 
effect on cost and energy consumption. On the other 
hand, in case of specific gravity, when specific gravity of 

ground becomes greater, weight of determined volume 
of the soil increases as well and work hours of machine 
for clearing specific surface is becoming higher and 
subsequently more fuel will be consumed. This goes 
in the same way for soil cut/fill volume. As soil cut/fill 
volume increases, work hours of machine and number 

Fig. 9  Comparisons of a RMSE and b R2 of the predictor algorithms using different statistical methods
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of laborers increase as well and again more fuel will be 
consumed.

As it is clear, moisture content, swelling factor and 
type of soil, although less than other factors, have 
effects on energy consumption. Moisture content, soil 
compressibility factor and specific gravity in finetex-
tured soils, like clays, and in soils with high organic 
materials lead to higher resistance against machine 
movement, which in turn adversely affect the energy 
consumption

Conclusion
Since a limited number of research related to energy 
consumption in land leveling has been done to measure 
the effects of soil and land properties, at this research, 
energy and cost of land leveling as a function of land 
characteristics have been evaluated. Studied character-
istics of land in this research were: soil cut/fill volume, 
soil compressibility factor, specific gravity, moisture 
content, slope, sand percent, and soil swelling index. 
Based on these characteristics, artificial intelligence 
and computational methods such as ANN, and ICA-–
ANN were used to determine the energy characteris-
tics, i.e., FE, LE, TMC, TME. At this study, the ability 
of ANN, ICA–ANN, sensitivity analysis, regression, 
and ANFIS as well as PSO–ANN, GWO and SPSS for 
prediction of environmental indicators (LE, FE, TMC, 
and TME) during land leveling were investigated and 
compared. According to the results, 10-8-3-1, 10-8-2-
5-1, 10-5-8-10-1, and 10-6-4-1 MLP network structures 
that were trained using Levenberg–Marquardt had the 
best performance. Sensitivity analysis revealed that 
only three variables including density, soil compress-
ibility factor, and V had the highest effect on the out-
put parameters including LE, FE, TMC and TME, and 
the accurate modes that relate each parameter to one 
another were extracted. Using regression method, only 
three variables including slope, V and SSI were deter-
mined to be effective on FE. Results approved the supe-
riority of integrated methods, especially ICA–ANN, 
compared to other methods such as regression and sta-
tistical software such as SPSS and Minitab. Moreover, 
the ANFIS models with hybrid optimization method 
and Sugeno FIS type show better performance than the 
models based on back propagation and Mamdani tech-
niques. All ANFIS-based models have R2 values above 
0.995 and MSE values below 0.002.

Based on the results, ANN and ICA–ANN algorithms 
are the most capable methods to predict LE and FE. In 
the same way, GWO–ANN was found to be more pow-
erful and accurate in prediction of TMC and TME. In 
fact, comparing ANN, ICA–ANN, PSO–ANN, GWO–
ANN and sensitivity analysis methods in estimating the 

amount of LE, FE, TMC and TME based on statisti-
cal indicators shows that GWO–ANN and ICA–ANN 
methods are more accurate, despite very slight differ-
ence between their results. On the other hand, sensi-
tivity analysis method is the least accurate one. Ability 
of GWO–ANN and ICA–ANN models in prediction of 
sophisticated problems with high accuracy makes it a 
powerful tool for engineers and researchers to use it not 
only in agricultural operations, but also in other fields 
such as finance, mining, infrastructures, etc. Using this 
tool will lead to an economical land leveling operations 
in farm lands. These implications are consistent with 
the findings and conclusions of this study. Furthermore, 
implementing this technique on heavy operations such 
as land leveling will help in protecting the environment 
which in turn increases the life quality.
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