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Abstract 

Background:  Exopolysaccharides (EPSs) belong to a family of organic thickeners or alternative hydrocolloids of 
microbial origin. Because the chemical structure offers beneficial bioactive functions, biocompatibility and biodegra-
dability, EPSs are used in the chemical, food, pharmaceutical, cosmetics, and packaging industries as well as in agricul-
ture and medicine. In this study, new bacterial strains were selected on the basis of their ability to synthesize EPS from 
substrate containing vinasse as a nutrient source to identify the best candidate for bio-based polymer production.

Results:  Among the 99 newly identified bacterial strains isolated from different natural ecosystem, the strain Azoto-
bacter chroococcum 76A was selected as the best biopolymer producer since it synthesized the highest concentra-
tion of EPS in all media containing vinasse. The maximum EPS concentration (44.6 ± 0.63 mg/50 mL) was observed at 
24 h, corresponding to its sub-stationary growth phase (7 × 108 ± 0.29 CFU/mL). Chemical characterization of the EPS 
produced showed that carbohydrates representing the principal component, followed by uronic acids and proteins. 
Interestingly, comparing the IR spectrum of the EPS with alginate by FTIR-ATR analysis revealed an overlap of a peak 
identified as guluronic acid, a component of alginate.

Conclusions:  The potential biotechnological capacity of A. chroococcum 76A to synthetize biopolymer from vinasse, 
inexpensive starting materials, represents a possible alternative to expensive disposal of agri-food waste through its 
transformation into high value-added products.
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Background
Exopolysaccharides (EPSs) are useful for an extensive 
range of industrial applications. They are renewable 
sources of hydrocolloids, which are used in the food, 
pharmaceutical, agricultural, cosmetics and medical as 
well as in the chemical industries, where they replace 
petroleum-based polymers [1–4].

EPSs are produced by bacteria, algae and, in smaller 
amounts, by yeasts and molds [5–7] to protect the cell 
from unfavorable, limiting or toxic conditions [8], thereby 
improving microbial competition in different environ-
ments [9]. A great variety of microbial EPSs are known to 
be synthesized by different microbial genera, such as dex-
tran by Leuconostoc and Lactobacillus, gellan by Sphin-
gomonas and Aureomonas, xanthan by Xanthomonas, 
alginates by Pseudomonas and Azotobacter, succinogly-
can by Alcaligenes and Rhizobium, hyaluronic acid by 
Streptococcus, schizophyllan by Schizophylum, levan by 
Alcaligenes and Zymomonas, pullulan by Aureobasidium, 
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cellulose by Acetobacter, chitosan by Mucorales, galac-
toglucopolysaccharides and biosurfactant by Achromo-
bacter, Agrobacterium, Pseudomonas, Rhizobium and 
Zooglea, scleroglucan by Sclerotium, and welan by Alca-
ligenes [9–11]. Due to the wide diversity of structures 
and functional properties, there is an increasing interest 
in EPSs synthesized by microorganisms [12–14]. In fact, 
microbial EPS could represent a good alternative to EPS 
obtained from plant, animal and seaweed, because they 
can be produced under controlled conditions [15–17]. 
However, bacterial EPS represents only a small fraction 
of the current biopolymer market because of their high 
cost of production, which is mostly related to substrate 
cost and recovery [10, 18]. Therefore, the use of cheaper 
substrates, such as agricultural byproducts and waste 
materials, could represent a good approach to reduce the 
production costs for EPS biosynthesis.

Currently, the management and disposal of vinasse, 
a recalcitrant waste of the sugar-ethanol industry, has 
emerged as a priority from an environment perspective 
due to its polluting load, especially Biological Oxygen 
Demand (BOD) [19, 20]. Agri-food wastes are additional 
cheap, sustainable and attractive substrate for the pro-
duction of biopolymers or other high value-added prod-
ucts [21]. Many studies have assessed the recycling and 
the potential use of agri-food wastes and byproducts or 
dedicated energy crops for producing polyhydroxyal-
kanoate (PHA) [22, 23], succinic acid [24–27], biofuels 
and biogas [19, 28–32] as well as biological hydrogen and 
volatile fatty acids [33, 34]. Natural environments rep-
resent important sources of microbial strains that exert 
interesting enzymatic activities for biotechnological 
applications [35].

The aim of this study was to select bacterial strains on 
the basis of their ability to synthesize EPS from substrate 
containing vinasse as a nutrient source and identify the 
best candidate for bio-based polymer production.

Methods
Composition of sugarcane vinasse
Sugarcane vinasse was kindly provided by Agriges S.r.l. 
(San Salvatore Telesino, Benevento, Italy).

The chemical composition of sugarcane vinasse was 
determined by high-performance liquid chromatogra-
phy (HPLC) (Refractive index detector 133; Gilson sys-
tem; pump 307, column Metacarb 67  h, Varian, with a 
flow of 0.4 mL/min of 0.01 N H2SO4). Chemical oxygen 
demand (COD) was estimated with an ECO08 ther-
moreactor (Velp Scientifica, Usmate, Monza Brianza, 
Italy) and a PF-3 photometer (Velp Scientifica) using 
NANOCOLOR® kit. BOD5 was measured with a BOD 
Sensor System 6 (Velp Scientifica) according to manufac-
turer’s instructions.

Bacterial strains and EPS production on solid media
Ninety-nine bacterial strains isolated from different 
natural ecosystems (lignocellulosic biomass, soil, com-
post, bakery products) were used in this study: 27 endo-
cellulolytic bacteria, 14 exo-cellulolytic bacteria [36], 3 
free-living N2-fixing bacteria belonging to Azotobacter 
chroococcum species [37], 42 Bacillus spp. [38], 3 lactic 
acid bacteria [39] and 10 Pseudomonas spp. [37, 40]. To 
carry out a preliminary selection, all bacterial strains were 
first refreshed in a specific nutrient media and incubated 
for 24–48 h at 30  °C. For EPS detection, all strains were 
streaked on Salts Agar Base medium (SAB) (composi-
tion per liter: 0.15 g KH2PO4, 0.5 g K2HPO4, 0.2 g MgSO4, 
0.1 g NaCl, 18 g Agar, pH 6.8–7) to which mannitol (1%) 
or sucrose (5%) was added as carbon sources with yeast 
extract (0.4%). After incubation for 48 h at 30 °C the bac-
terial strains growth as ropy colonies (data not shown) 
were further assayed for their ability to produce EPS 
under specific nutritional conditions. Specifically, the 
selected strains were streaked onto SAB medium contain-
ing a mixture of different concentrations of sucrose (0, 0.5, 
1, 1.5, 2 or 5%), sugarcane vinasse (0, 1, 5 or 10%) and with 
yeast extract (0.4%). Inoculated plates were examined 
after 48 h of incubation at 30 °C to detect the presence of 
ropy colonies due to putative production of EPS.

EPS synthesis by selected Azotobacter chroococcum strains 
in liquid medium
On the basis of the capacity to growth and form ropy 
colonies in the different solid media containing vinasse 
as carbon source, A. chroococcum 76A, AZ1 and 67B 
were selected to evaluate their ability to produce EPS in 
liquid medium. These bacterial strains were precultured 
in 10  mL of Yeast Mannitol (YM) broth and incubated 
for 24–48  h at 30  °C. After inoculum standardization 
using a Thoma cell counting chamber (depth 0.02  mm; 
1/400  mm2; Hawksley, United Kingdom), 1  mL of each 
culture was added to achieve viable counts of approxi-
mately 2 × 107  cells/mL in Salts Broth (SB) containing 
vinasse (1%) and sucrose (5%) as carbon sources. After 24 
and 48 h of incubation at 30 °C, tenfold serial dilutions of 
the cultures were made in Ringer solution (Oxoid, Milan, 
Italy) and bacterial cells were enumerated by spreading 
100 μL of each dilution on YM solid medium plates. EPS 
was quantified as described by Palomba et al. [16]. Briefly, 
supernatant containing EPS was precipitated with 2 vol-
umes of chilled 98% (vol/vol) ethanol and incubated over-
night at 4 °C. After centrifugation (5200×g for 10 min at 
4  °C), the recovered pellets were suspended in 1  mL of 
distilled water, freeze-dried and weighed to obtain the 
amount of EPS, expressed as polymer dry mass (PDM, 
mg/30 mL of wet medium).
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Monitoring and characterization of EPS produced 
by Azotobacter chroococcum 76A
Monitoring of microbial growth and EPS production
Azotobacter chroococcum 76A was inoculated into 50 mL 
of liquid substrate composed of vinasse (1%) and sucrose 
(5%) as carbon sources. Samples were withdrawn imme-
diately after inoculation and after 8, 16, 24, 32 and 48 h 
of incubation at 30 °C, to determine bacterial growth and 
EPS concentration performed as described above.

Chemical characterization of EPS
After the inoculum standardization, A. chroococcum 
76A was inoculated in liquid or solid media contain-
ing vinasse (1%) and sucrose (5%). After 24  h at 30  °C, 
the EPS was recovered from liquid cultures as described 
above or was taken directly from plates (Fig. 1) by repeat-
edly washing with distilled water until disappearance of 
the visible ropy patina, after which the EPS was collected 
in sterile falcon tubes [16]. EPSs obtained from the liquid 
or solid media were precipitated by ethanol, freeze-dried 
and then dissolved in hot water, cooled at room tempera-
ture and finally dialyzed against water for 3 days (Visking 
Dialysis Membrane MWCO 12–14  kDa, GmbH, Ger-
many). Next, the EPS samples were freeze-dried again. 
Gross chemical composition was determined by assaying 
the contents of total carbohydrates, proteins and uronic 
acids. The total carbohydrate contents were quantified 
according to the phenol–sulfuric acid method [41] using 
a standard curve with glucose. The protein concentra-
tions were determined using a Bradford protein assay kit 
(BioRad, Milan, Italy) and Bovine Serum Albumin (BSA) 
as a standard [42]. The total content of uronic acids was 
determined according to the method described by Blu-
menkrantz and Ashoe-Hansen [43] using galacturonic 
acid for calibration. The monosaccharide composition 

of the EPS was determined after acid hydrolysis with 2 N 
trifluoroacetic acid (TFA) at 120  °C for 2 h using a glu-
cose enzymatic assay [44]. The spectral characterization 
was performed via Attenuated Total Reflection Fourier 
Transform Infrared (FTIR-ATR) spectroscopy and by 1H-
NMR. The infrared spectra of the EPS were recorded at 
room temperature with a Spectrum 100 FTIR spectrom-
eter (Perkin-Elmer Inc., Norwalk, CT, USA) equipped 
with a crystal diamond universal ATR sampling acces-
sory. For the 1H-NMR analysis, the samples were dis-
solved in D2O (5 mg/mL) and spectra were recorded on a 
Bruker AMX-600 MHz 1H-NMR at 40 °C [45].

Statistical analyses
One-way ANOVA followed by Tukey’s HSD post hoc test 
for the pairwise comparison of means (at P < 0.05) were 
used to assess the differences in EPS production. Statisti-
cal analyses were performed using the SPSS 21.0 statisti-
cal software package (SAS Inc., Cary, NC).

Results and discussion
Screening of EPS‑producing bacterial strains on solid 
media containing sugarcane vinasse
Ninety-nine bacterial strains previously isolated from 
different matrices were tested to identify high EPS-
producing strains. The preliminary screening allowed 
the selection of 14 strains able to grow and form ropy 
colonies on solid media containing mannitol or sucrose 
with or without yeast extract (0.4%). Interesting was 
to observe that the natural soil ecosystem showed 
the highest occurrence of EPS-producing bacteria 
(38.5%, Table  1). Hence, studies of the occurrence of 
bacteria with structural elements such as capsules or 
polysaccharides that have physiological functions in 
different natural ecosystems are important to obtain 
better knowledge of the origin and evolution of bacte-
ria. Moreover, the higher occurrence of EPS production 
by bacterial strains isolated from soil or lignocellulosic 
biomass have an ecological meaning since these traits 
may be used by naturally occurring bacteria to survive 

Fig. 1  Collection of EPS produced by Azotobacter chroococcum 76A 
from solid medium containing vinasse (1%) and sucrose (5%) after 
24 h of incubation at 30 °C

Table 1  Percentage of  bacterial strains able to  growth 
and  secrete EPS on  solid media containing a  mixture 
of  different concentrations of  mannitol (1%) or  sucrose 
(5%) as carbon sources

Source Number of tested 
strains

EPS-
producing 
strains (%)

Soil 13 38.5

Lignocellulosic biomass 41 14.6

Bakery products 45 6.7
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and grow in specific habitats enhancing their environ-
mental survival [36, 37, 46].

EPS-producing bacterial strains from the prelimi-
nary screening, were further tested on media contain-
ing sugarcane vinasse composed of 30.33  g/L of lactic 
acid, 29.6 g/L of succinic acid, 12.63 g/L of acetic acid, 
6.77  g/L of fructose, and 3.26  g/L of ethanol and had 
a pH of approximately 6.4, COD and BOD values of 
556  g/L and 216  g/L, respectively. In particular, Xan-
thomonas campestris CP81 and SBP63, Sphingobacte-
rium multivorum CA77, Labedella gwakjiensis CP710, 
Aurantimonas altamirensis SBP73 and Curtobacterium 
flaccumfaciens CP77b isolated from lignocellulosic 
biomass, A. chroococcum 76A, A. chroococcum 67B, A. 
chroococcum AZ1, Pseudomonas gessardii SA33A and 
Pseudomonas sp. SA33B isolated from soil and Leucon-
ostoc lactis 95A, Leuconostoc lactis 69B and Lactobacil-
lus curvatus 69B2 isolated from bakery products, were 
screened on solid media with different concentrations 
of sugarcane vinasse and sucrose, as carbon sources. 
Increasing the vinasse concentration resulted in a 
reduction of bacterial strains able to grow and produce 
EPS on the solid media that were tested (Table 2). How-
ever, more bacterial strains were able to grow and syn-
thetize EPS from vinasse when sucrose was added to 
the medium. In fact, by increasing the concentration of 
sucrose from 0.5 to 2%, the number of bacterial strains 
that exhibited ropy colonies increased from 7 to 13. In 
contrast, a higher amount of sugarcane vinasse seemed 
to result in an inhibitory effect, since only four strains 
exhibited EPS production on solid media containing 
5% of vinasse. Increasing the concentration of vinasse 
up to 10% resulted in the inhibition of bacterial growth 
(Table  2). The presence of specific toxic compounds 
such as furfural, HMF, p-hydroxybenzoic aldehyde and 
vaniline, are known to have inhibitory effects on micro-
bial metabolism, limiting the efficient conversion of fer-
mentable sugars into biochemicals [25, 26, 47].

Similarly, Vermani et  al. [48] reported that high con-
centrations of glucose and lactose in culture media 
exerted inhibitory effects on the microbial growth and 
EPS synthesis in Azotobacter strains.

Among the fourteen bacterial strains tested, only A. 
chroococcum 76A, A. chroococcum 67B and A. chroococ-
cum AZ1 were able to produce EPS on media containing 
1% or 5% of sugarcane vinasse without added sucrose or 
yeast extract as additional nutritional sources.

Growth and EPS production by A. chroococcum strains 
in liquid media containing sugarcane vinasse
Based on the results obtained using the solid media, three 
selected Azotobacter strains were tested in liquid media 
containing vinasse (1%) with or without sucrose (2% or 

5%). All experiments were performed at 30 °C, which was 
reported as the optimum temperature for EPS produc-
tion by Azotobacter spp. [49, 50]. After a 24-h incubation, 
only A. chroococcum 76A grew in the medium contain-
ing vinasse as the sole carbon source, and it produced 
the highest quantity of EPS (25.3 ± 0.10) in the medium 
containing 5% of sucrose after 48 h of incubation at 30 °C 
(Table  3). A. chroococcum 67B and AZ1 required 5% of 
sucrose to grow, although lower EPS concentrations 
(22.8 ± 0.22 and 21.5 ± 0.26  mg/30  mL, respectively) 
were detected (Table  3). 1% vinasse and 5% sucrose as 
carbon sources was the best substrate for stimulating 
the growth and metabolism of A. chroococcum 76A, 67B 
and AZ1. The ability of some strains belonging to the 
genus Azotobacter to synthesize EPS was widely recog-
nized and reported [50–52] but A. chroococcum has been 

Table 2  Screening of  EPS-producing bacterial strains 
on  solid media composed by  Salts Agar Base (SAB) 
with nutrient mixtures of vinasse (1, 5 or 10%) and sucrose 
(0, 0.5, 1, 1.5, 2 or 5%) as carbon sources with and without 
yeast extract (0.4%)

V: Vinasse; 10 mL/L = 1%, 50 mL/L = 5%, 100 mL/L = 10%

S: Sucrose; 0 g/L = 0%, 5 g/L = 0.5%, 10 g/L = 1%, 15 g/L = 1.5%, 20 g/L = 2%, 
50 g/L = 5%

Y: Yeast extract; 0 g/L = 0%, 4 g/L = 0.4%
a  Number of bacterial strains that grew as ropy colonies on solid media within 
48 h of incubation at 30 °C

Composition of nutrient mixtures added to SAB Number 
of positive 
strainsaVinasse (mL/L) Sucrose (g/L) Yeast extract 

(g/L)

10 0 0 3

10 0 4 3

10 5 0 7

10 10 0 7

10 15 0 8

10 20 0 10

10 50 0 13

50 0 0 3

50 0 4 3

50 5 0 3

50 10 0 3

50 15 0 3

50 20 0 4

50 50 0 6

100 0 0 0

100 0 4 0

100 5 0 0

100 10 0 0

100 15 0 0

100 20 0 0

100 50 0 0
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extensively especially studied for its ability to promote 
plant growth under environmental stress conditions due 
to the synthesis of enzymes and EPS [53–55] but its abil-
ity to grow in medium containing vinasse was less inves-
tigated [56]. However, to our knowledge, this is the first 
study that explored the capacity of A. chroococcum to 
synthetize EPS utilizing vinasse as a carbon source. Qua-
gliano and Iyazaki [57] tested the effect of different car-
bon sources on the production of EPS by A. chroococcum 
6B. Using pure sugars, such as glucose and fructose, this 
strain was able to synthesize high amounts of EPS, with 
poly-β-hydroxybutyrate (PHB) also detected when the 
strain was grown in the presence of glucose. Utilizing a 

complex carbon source such as sugarcane molasses, the 
concomitant production of EPS and PHB was observed 
[23]. The high amount of EPS obtained in this study using 
a complex carbon source could be due to the presence of 
fructose in the sugarcane vinasse. In fact, fructose, espe-
cially in nitrogen-limiting condition and an excess of car-
bon, promotes bacterial growth of diazotrophic bacteria 
[57], and therefore, EPS production since it is closely cou-
pled with cell growth [58]. Moreover, fructose improves 
also EPS biosynthesis as fructose-6-phosphate is the first 
metabolite to be converted to mannose 6-phosphate in 
the pathway for alginate biosynthesis [57]. In addition, in 
stress conditions such as nitrogen limitation, Azotobacter 

Table 3  Evaluation of  EPS synthesis by  different A. chroococcum strains in  liquid media containing vinasse (1%) 
without and with 2% or 5% of sucrose after 48 h of incubation at 30 °C

V vinasse, S sucrose

*bacterial growth: − = absence of growth; + = presence of growth (about 108 CFU/mL)
§  EPS synthesis: − = no synthesis of EPS; − + = low synthesis of EPS; + = high synthesis of EPS
†  mg of EPS/30 mL of medium. The values represent the mean ± S.D. of three replicates of independent experiments. Different letters indicate significant difference 
(P ≤ 0.01)

A. chroococcum strains V (1%) V (1%) S (2%) V (1%) S (5%)

Growth* EPS§ Growth* EPS§ Growth* EPS§,†

76A + − + + − + + +
25.3 ± 0.10a

67B – – – – + +
22.8 ± 0.22b

AZ1 – – – – + +
21.5 ± 0.26c

Fig. 2  Kinetics of cell growth and EPS synthesis by Azotobacter chroococcum 76A grown for 48 h at 30 °C in 50 mL of liquid medium containing 1% 
of vinasse and 5% of sucrose. Data are the mean of triplicates ± S.D
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spp. cultures grow under nitrogen fixation producing 
acidification of medium, that it is associated with EPS 
excretion [59].

Based on its biotechnological capabilities, A. chroo-
coccum 76A was selected for further investigations. 
This strain was extensively characterized and previously 
selected and investigated as bio-effector in sustain-
able agricultural systems also under abiotic stressful 
conditions (drought and salinity) [53, 54]. Therefore, 
the growth and EPS production of A. chroococcum 
76A was monitored over a 48-h incubation at 30  °C 
using medium containing 1% vinasse and 5% sucrose 
as carbon sources (Fig.  2). The maximum EPS concen-
tration (44.6 ± 0.63  mg/50  mL) was reached at 24  h, 
corresponding to the sub-stationary growth phase 
(7 × 108 ± 0.29  CFU/mL), after which no significant dif-
ferences in EPS synthesis were recorded (Fig.  2). Cell 
growth and EPS production kinetics by Paenibacillus 
jamilae were previously investigated by Morillo et  al. 
[60]. According to our results, this strain reached the 
maximum production of EPS at the beginning of the sta-
tionary growth phase. However, Gauri et al. [50] reported 
that in N2-free basal glucose medium, the strain Azoto-
bacter sp. SSB81 reached the stationary phase after 36 h, 
and the maximal amount of EPS produced was observed 
at 30 h in exponential phase growth, after which it sud-
denly decreased.

Chemical characterization of EPS produced by A. 
chroococcum 76A
The EPS produced by the selected strain A. chroococcum 
76A was recovered from solid or liquid media contain-
ing vinasse (1%) and sucrose (5%) after 24  h of incuba-
tion ay 30 °C, to assess the gross chemical compositions 
by determining the total carbohydrate content, protein 
concentration and uronic acid content. As expected, 
carbohydrates were the dominant fraction, representing 
approximately 59 and 52% of the EPS synthetized by A. 
chroococcum 76A on solid and liquid medium, respec-
tively (Table  4). However, the uronic acid content was 
approximately 23% (w/w) in both samples, although 
the protein concentration appeared to be higher in EPS 
recovered from liquid cultures (11.3 ± 5.16%, w/w) than 

from solid medium (8.3 ± 0.99%, w/w; Table 4). The mon-
omer composition of both EPS samples showed that, in 
addition to uronic acids, the primary monosaccharide 
present was glucose (Table  4), suggesting that the iso-
lated biopolymers were a complex mixture of polysaccha-
rides. The heterogeneous composition of the EPSs can be 
ascribed to the different growth conditions, i.e. in liquid 
medium and on solid agar that were carried out respec-
tively in the SB and SAB media, that are known to sig-
nificantly affect the bacterial EPS’s nature [61]. This result 
was also supported by FTIR-ATR and NMR spectral 
analyses. The IR spectra of EPS were reported in compar-
ison with alginate. It was interesting to note the overlap 
of signals attributable to guluronic acid in both samples 
(Fig.  3). In particular, as shown in Fig.  3, the spectrum 
of the EPS recovered from either the liquid (trace A) or 
solid (trace B) media were characterized by a large sig-
nal at approximately 3300  cm−1, corresponding to the 
O–H stretching vibrations of α-carboxylic groups that 
are typical of uronic acids. Moreover, the primary signals 
observed at approximately 1724  cm−1 were particularly 
intense in the EPS recovered from liquid medium (Fig. 3, 
trace A), which could be attributed to the vibrations of 

Table 4  Carbohydrate, protein and  uronic acids contents in  the  EPS produced by  Azotobacter chroococcum 76A grown 
on solid or in liquid media containing vinasse (1%) ad sucrose (5%) as carbon sources

a  EPS produced by A. chroococcum 76A after 24 h of growth on solid medium at 30 °C
b  EPS produced by A. chroococcum 76A after 24 h of growth in liquid medium at 30 °C

Samples Carbohydrate (%, w/w) Protein (%, w/w) Uronic acids (%, w/w) Monosaccharides 
(glucose %, w/w)

EPS agara 58.3 ± 1.62 8.3 ± 0.99 22.7 ± 2.61 80.1 ± 2.11

EPS brothb 52.0 ± 2.12 11.3 ± 5.16 22.8 ± 3.76 29.7 ± 1.32

Fig. 3  FTIR-ATR analysis of EPS produced by Azotobacter 
chroococcum 76A on liquid (trace A) and solid (trace B) media 
containing vinasse (1%) ad sucrose (5%) as carbon sources, in 
comparison with alginate (trace C)
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ester groups and symmetric and asymmetric stretching 
vibrations of guluronic acid, one of the two components 
of alginates (Fig. 3, trace C). The 1H-NMR spectrum anal-
ysis of the EPS also suggested that the isolated polymers 
were a mixture of different polysaccharides in which, in 
addition to an alginate fraction, a glucan fraction was also 
present as a primary component (Fig. 4). Indeed, in the 
anomeric region of the spectrum (from 4.3 to 5.9 ppm), 
the EPS synthetized on solid medium presented inter alia 
a primary signal at 5.19 ppm (Fig. 4, upper trace) resem-
bling the anomeric signals of alginate (Fig. 4, lower trace), 
in addition to other signals at approximately 5.46  ppm 
that were attributable to glucose. A similar pattern of 
signals was seen in the EPS sample that was synthetized 
in liquid medium (data not shown). Alginates are poly-
saccharides composed of d-mannuronic and l-guluronic 
acids and are of great interest for a wide range of indus-
trial applications, such as the pharmaceutical, agricul-
tural, food, cosmetic, textile and paper industries as well 
as in water-treatment processes and cell immobiliza-
tion and encapsulation [9, 62]. Moreover, some degra-
dation products can be employed as anti-inflammatory 
and immunosuppressive agents in medical field [62]. 
Although most of the alginate currently produced for 
commercial purposes is derived from brown seaweeds 

[63], considering the environmental concerns associ-
ated with marine algae harvesting and processing, there 
is increasing interest in alginates from bacteria, primarily 
due to their high purity and regular structure [64]. Bacte-
rial alginate synthesis is restricted to bacteria belonging 
to the genera Pseudomonas and Azotobacter [65]. How-
ever, very few studies have investigated alginate produced 
by A. chroococcum despite the genus Azotobacter is con-
sidered the best candidate for the industrial production 
of alginate [66].

Conclusions
Microbial selection allowed the detection of A. chroo-
coccum 76A, a new bacterial strain potential able of bio-
based alginate synthesis from cheap substrate containing 
vinasse. This approach represents a possible alternative 
to expensive disposal of agri-food wastes through their 
transformation into high value-added products.
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