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Abstract 

Background:  Cashew nut shell is a by-product of cashew (Anacardium occidentale) production, which is abundant 
in many developing countries. Cashew nut shell liquor (CNSL) contains a functional chemical, cardanol, which can be 
converted into a hydroxyoxime. The hydroxyoximes are expensive reagents for metal extraction.

Methods:  CNSL-based oxime was synthesized and used to extract Ni, Co, and Mn from aqueous solutions. The 
extraction potential was compared against a commercial extractant (LIX 860N).

Results:  All metals were successfully extracted with pH0.5 between 4 and 6. The loaded organic phase was subse‑
quently stripped with an acidic solution. The extraction efficiency and pH0.5 of the CNSL-based extractant were similar 
to a commercial phenol-oxime extractant. The metals were stripped from the loaded organic phase with a recovery 
rate of 95% at a pH of 1.

Conclusions:  Cashew-based cardanol can be used to economically produce an oxime in a simple process. The natu‑
rally-based oxime has the economic potential to sustainably recover valuable metals from spent lithium-ion batteries.
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Background
Solvent extraction is commonly used in hydrometallur-
gical processes to separate the desired metal from aque-
ous solutions. With the use of careful pH control and a 
series of selective extraction and stripping stages, the 
separation of multiple desirable streams can be achieved 
[1]. Solvent extraction is considered a lower cost and 
more environmentally friendly option than traditional 
pyrometallurgical processes [2]. In addition to min-
eral production, solvent extraction is also used in metal 
recycling. Currently, the recycling process of lithium-ion 

batteries (LIBs) and many types of electronic waste relies 
on solvent extraction [3].

With the increasing demand for LIBs and the high pro-
duction of electronic waste, there is an urgent need for 
effective recycling both to recover valuable materials and 
for more environmentally acceptable disposal. While LIBs 
recycling facilities are available in developed countries, 
economic feasibility remains a challenge. These facilities 
are only available in countries with strict LIB regulations 
[3]. On the other hand, wastes from developed countries 
are often shipped to developing countries for processing 
and disposal. According to a CSIRO report, only 2% of 
Australian spent LIBs were recycled, whereas the major-
ity of the remainder was shipped overseas [4]. LIBs’ dis-
posal in landfills can cause severe ecological and health 
damages [3]. Recycling of many types of e-waste faces 
similar challenges [5]. The lack of recycling facilities is a 
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particularly pressing issue for developing countries with 
weak environmental regulations. Recycling metals, espe-
cially nickel and cobalt, avoid associated environmental 
impacts from the mining activities [6] and provides a 
method to recover valuable materials.

These problems show an urgent need to develop an 
economical and practical process with potential applica-
tion for localized or small-scale collection and recycling 
facilities. To facilitate this, a move away from industrial 
chemicals, which are effective but expensive, is needed. 
In addition to affordable costs, the chemicals should have 
lower toxicity and lower risks in handling and transporta-
tion. For instance, organic and less hazardous acids, cit-
ric acid [7], malic acid [8], and oxalic acid [9], have been 
used in leaching processes.

The extractant is the most specialized and expensive 
chemical among the required reagents for the processes 
[10]. Commonly used extractants are based on either a 
hydroxyoxime group [10] (such as the Acorga and LIX 
series) or phosphonic groups (Cyanex series) [11, 12], 
although a wide variety exists for specific metal selectiv-
ity. The extractants are often made from petrochemicals. 
For instance, the hydroxyoximes are synthesized via sev-
eral reaction steps such as oligomerisation and oximation 

[13]. The solvents (diluent) and extractants in current use 
represent a high operating cost alongside the generation 
of hazardous (organic) waste [14].

In this study, we utilize a natural-based chemical in 
extracting metals from LIBs. The chemical is made from 
natural cardanol, which is an alkyl-phenol found in the 
cashew nut shell liquor (CNSL) [15]. The cashew tree 
(Anacardium occidentale) is a native of Brazil and the 
Lower Amazons [16]. The tree is a valuable cash crop in 
tropical parts of Africa and Asia (Fig.  1a). The cashew 
nut shell (Fig.  1b) is a by-product of cashew processing 
and is typically treated as a waste stream. CNSL contains 
a high fraction of cardanol (Fig. 1c), up to wt. 25% [15]. 
It should be noted that the CNSL cardanol contains a 
15-carbon chain in the alkyl branch, whereas most indus-
trial alkylphenols have 12 or fewer carbons [17]. Further-
more, the CNSL cardanol has the hydrocarbon chain 
situated in the meta-position (Fig.  1c), which is distinct 
from most synthesized alkyl phenols [15]. The CNSL 
cardanol thus creates an oxime where the hydrocarbon 
chain is in the meta-position relative to the phenol group, 
as (Fig.  1d) distinct from the overwhelming majority of 
reported oxime-type extractants (including the common 
ACORGA and LIX series) which have an ortho-structure 

Fig. 1  a Cashew fruit, b cashew nut shell, c molecular structure of CNSL-based cardanol, d molecular structure of CNSL-based oxime, e the 
molecular structure of an industrial oxime (LIX 860N)
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(Fig. 1e) [18]. The underlying reason is that industrial oli-
gomerisation tends to form ortho- and para-alkyl-phenol 
only [13].

Previously, we synthesized an oxime from CNSL and 
successfully used it to extract gallium from bauxite pro-
cessing liquor [19]. This study explores the feasibility of 
the chemical to extract valuable metal from recycling 
LIBs and e-waste. Among the current LIBs, Lithium 
Nickel Manganese Cobalt Oxide (NMC) is the most com-
mon cathode due to its high capacity [20]. Consequently, 
the extraction of the natural-based extractants with three 
divalent metals, Ni2+, Co2+ and Mn2+, is investigated. 
Among a myriad of structures, complexes between phe-
nolic oxime extractants and a large number of transition 
metals, including vanadium, nickel, cobalt, copper, plati-
num, and palladium, have been reported [18], which is 
promising for their use in recovering valuable metals as 
part of the recycling process. Ultimately, this study aims 
to provide an economical and environmental friendly 
extractant for LIBs’ recycling.

Methods
Synthesis and characterization of CNSL‑oxime
Cardanol was received from a cashew nut shell process-
ing facility in Binh Phuoc Province, Vietnam. Cardanol 
was dissolved in triethylamine (volume ratio 3:2). The 
cardanol solution was stirred for 30 min and added to a 
mixture of SnCl4 and toluene (SnCl4:toluene volume ratio 
of 1:4) at the volume ratio of 1:1. The solution was stirred 
for 30 min before adding a mixture of formaldehyde and 
methanol (formaldehyde to methanol volume ratio of 
3:2). This solution was stirred constantly for 24 h at 25 °C. 
The resulting alkyl salicylaldehyde product was rinsed 
and filtered using toluene and deionized water.

The recovered alkyl salicylaldehyde was employed for 
the oximisation reaction (step 2 in Fig. 2). Alkyl salicyla-
ldehyde was dissolved into deionized water (1:1 weight 
ratio), mixed with the same amount of hydroxylamine 
hydrochloride, and stirred for 30  min. A mixture con-
stituting triethylamine and methanol (trimethylamine to 
methanol volume ratio of 1:2) was added into the solu-
tion to start the oximisation reaction [21]. The reaction 
was maintained for 6 h at 25  °C under constant stirring 

(at 200  rpm). The final oxime product was filtered and 
heated at 80 °C for 30 h to remove the organic solvent.

The intermediate (alkyl salicylaldehyde) and final 
(oxime) products were diluted in toluene at 5% for IR 
characterization (Spectrum Two PerkinElmer). The 
IR spectra are shown in Figs.  3 and 4. The characteris-
tic bands of the aldehyde group are clearly identified in 
Fig.  3: 1607  cm−1 (C=O bond) and three peaks in the 
range  3033–2882  cm−1 (C–H bonds). The characteris-
tic bands of the oxime group were confirmed in Fig.  4: 
1643  cm−1 (C=N–OH bond) and 3418  cm−1 (O–H 
bond). 

Chemicals for extractant study
In addition to the CNSL-based oxime, 5-nonylsalicyla-
ldoxime (LIX 860N-IC) was received from BASF Ltd. 
(Australia). Table  1 presents a list of metal compounds 
employed in the extraction study. All chemicals were 
obtained from Chem-Supply (Australia) and used as 
received, without any further purification.

Solvent extraction procedures
The aqueous solution was prepared by dissolving 
the exact amount of MnSO4·H2O, CoSO4·7H2O, and 
NiSO4·6H2O with the Mn:Co:Ni molar ratio of 1:1:1 
in doubly distilled water. The organic phase was pre-
pared by mixing extractant and kerosene (a mixture 
of CnH2n+2 with n between 10 and 16). The volumetric 
ratio between extractant solution (both LIX 860N-IC 
and natural oxime) and kerosene was 1:9. The extraction 
and stripping processes were performed by mechani-
cally contacting equal volumes (100 mL) of aqueous and 
organic solutions in a separating funnel. To generate the 
pH extraction equilibrium, a 3  M NaOH solution was 
employed to adjust the pH of the aqueous–organic mix-
ture. Such pH values of the aqueous–organic mixture or 
emulsion were continuously measured with an interme-
diate junction pH electrode (Ionode, IJ-44A) connected 
to a pH meter. After each addition of NaOH into the mix-
ture, the separating funnel was shaken for 10 min using 
Separatory Funnel Shaker (SR-2DW, Borg Scientific) and 
followed by its equilibrium at each sample point until the 
pH was stable to two decimal points.

Fig. 2  Chemical reactions to produce oxime from cardanol
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The loaded organic phase obtained from the extraction 
experiments was used for the stripping experiment. The 
loaded organic was contacted with deionized water at a 
volume ratio of 1:1. Acidic solution (5 wt. % of sulphu-
ric acid) was added to adjust the pH of the mixture. The 

stripping equilibrium was established with a similar pro-
cedure of the extraction experiment, that is shaken for 
10 min and allowed to separate.

The collected aqueous sample was digested with a 5% 
HNO3 solution and analyzed by employing ICP-OES 
equipment (NexION™ 350D-Optima 8300, PerkinElmer). 
All measurement was performed at room temperature 
and in triplicate.

Results and discussion
The metal loading (oil phase percentage, E) of each metal 
was evaluated by the following equation:

Fig. 3  IR absorbance of alkyl salicylaldehyde

Fig. 4  IR absorbance of oxime, showing characteristic bands: 3418 cm−1 (O–H bond) and 1643 cm−1 (C=N–OH bond)

Table 1  List of chemicals for extraction study

Name Formula Grade (%)

Cobalt (II) sulfate heptahydrate CoSO4·7H2O  ≥ 99

Nickel (II) sulfate hexahydrate NiSO4·6H2O  ≥ 99

Manganese (II) sulfate monohydrate MnSO4·H2O  ≥ 99



Page 5 of 7Phan et al. Chem. Biol. Technol. Agric.            (2021) 8:37 	

where [M]0 and [M]e (mg L−1) are the initial and equilib-
rium metal concentration in the aqueous phase, respec-
tively; V0 and Ve (mL) are the initial and equilibrium 
volumes of the aqueous phase, respectively.

The extraction and stripping isotherms of the CNSL-
based extractant and commercial (LIX series) extract-
ant are shown in Figs. 5 and 6. As expected, the metals 
are transferred to the oil phase at higher pH and trans-
ferred to the aqueous phase at low pH. The pH-depend-
ent behavior is consistent with the photon ionization of 
oxime at a high pH [10]. The commercial and naturally 
based oximes were shown to have similar extracting 
and stripping capacities. While the CNSL-based mol-
ecule has 15 carbons in the hydrocarbon chain, against 
the nine-carbon chain in LIX 860N-IC, it also has three 
double bonds. In addition, the 15-carbon “tail” is in 
the meta- (rather than ortho-) orientation to the phe-
nol group. The length of the carbon chain can impact 
the hydrophobicity of the extractant and complexes 
[13]. A short carbon chain can increase water solubil-
ity, and reduce loading efficiency and phase separation. 

(1)E =
[M]0V0 − [M]eVe

[M]0V0
· 100% ,

A longer carbon chain, in contrast, decreases solubil-
ity and hinders the stripping process. However, there 
is no noticeable impact of the molecular structure on 
the extraction capacity  in this instance. The natural-
based extractant can extract all three metals within the 
intermediate pH range, indicating that the change in 
hydrophobicity is too weak to have a significant impact 
on the loading and stripping processes. Both the com-
mercial (LIX) and CNSL-based extractant show simi-
lar equilibrium curves for the three metals (Ni, Co and 
Mn) due to the complex formation of the oxime group 
[10]. Conversely, both extractants can collect the three 
metals at an intermediate pH, making them practical 
choices for generating a combined product that can be 
sent off-site to another refinery for further processing.  

The data were fitted with Gaussian distribution by an 
error function (error f):

where pH0.5 is the equilibrium pH (at which the metal ion 
is present equally in the two phases), and δ is the width of 
the distribution.

(2)E =
1

2

(

1+ error f

[

pH− pH0.5

δ
√
2

])

,

Fig. 5  a Extraction equilibrium and b stripping equilibrium of 
CNSL-based oxime [lines represents fitting according to Eq. (2)]

Fig. 6  a Extraction equilibrium and b stripping equilibrium of LIX 
(lines represents fitting according to Eq. (2))
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The error function is a well-accepted model for prob-
ability theory and given by [22]

The fitting data are tabulated in Table 2.
The results demonstrate the potential of CNSL to 

recover Ni, Mn, and Co as part of the recycling process. 
Most of the existing LIBs recycling aims to recover cobalt 
[3], the most valuable metal in the cathode. However, 
battery manufacturers tend to increase nickel content to 
improve capacity [23, 24]. For instance, the LIBs for elec-
tric vehicles are now relying on NMC 622 (60% Ni, 20% 
Mn, and 20% Co) [25] and NMC 811 [20]. Consequently, 
a recycling facility should recover both Ni and Co. In 
comparison with these two metals, Mn has a lower eco-
nomic value and is often a nuisance in Ni–Co production 
[26]. The natural-based extractant allows the recovery 
of the metals that could then be sent as a crystalline or 
matte product for further processing and recovery.

It is important to highlight that CNSL is an abundant 
by-product in many developing countries in Asia, Africa, 
and South America [27]. These developing countries 
can effectively utilize natural resources for metal recov-
ery. The current price of CNSL is around US $300–400 
per tonne, and it is often used as fuel. The synthesizing 
agents required for the production of the oxime are com-
mon chemicals. The overall cost of synthesized oxime is 
estimated ~ US $2000–3000 per tonne, which is about 
20% of the current price of the industrial oxime. In addi-
tion to being low cost, the natural oxime has a low carbon 
footprint and significantly reduces the environmental 
impact of LIBs’ recycling [28].

Conclusions
A natural-based extractant was synthesized from cashew 
nut shell liquor and used to extract a mixture of metals 
from an aqueous solution. It was found that the product 
has a similar extraction potential as a commercial oxime. 
The natural chemical is abundant in many developing 
countries and could be used for economically reclaiming 
valuable metals from spent batteries.

(3)error f (x) =
2

√
π

x
∫
0
e−t2dt.
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