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Abstract 

Background:  Developing new pesticides with multi-function may be a suitable strategy to save time and cost and 
reduce the emergence of resistant strains of pests and pathogens. The organophosphorus derivatives have not been 
widely used in agriculture as fungicides. In this work, a series of six α-amino phosphonate derivatives were prepared 
and tested for their fungicidal and anti-phenol oxidase activities.

Results:  The prepared compounds revealed a promising anti-fungal activity against Macrophomina phaseo-
lina and Pythium aphanidermatum, especially M4, with MIC of 62 mg/L for M. phaseolina. M4 did not affect the fungus 
permeability rate of the cell membrane; however, it displayed a significant efficiency on mycelial soluble protein 
content. M4 and M3 with a hydroxyl group on the aniline moiety exhibited an observed anti-phenol oxidase activ-
ity. M4 inhibited the enzyme at 1 mg/mL. The DFT theoretical study revealed a significant correlation between the 
substituents of aniline moiety and the bioactivity of the studied compounds. The negative charge conspicuously 
influenced the anti-phenol oxidase activity.

Conclusions:  Our findings suggest the studied compounds as bases to design more effective α-amino phosphonate 
fungicides with additional anti-phenol oxidase activity.
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Background
There is a vast amount of literature that refers to the 
high expense and time consumption of developing a new 
antifungal agent [1–3]. The primary defect in using inor-
ganic compounds as fungicides is that they entail a slow 
disintegration and toxic residues [4]. Historically, most 
organophosphorus derivatives have been limited to use 
in agriculture as insecticides, and nowadays, increas-
ing attention is paid to develop new organophospho-
rus derivatives as fungicides [4]. Cerezin, Kitazin, and 

Pyrazophos are examples of the few organophosphorus 
compounds which are used as fungicides [4].

Phenol oxidase (PO) interferes with several biological 
pathways in insects like melanization and sclerotization 
cascades [5–9]; also, it is considered a critical defense 
tool against pathogens attack [6]. Therefore, inhibition 
of PO may serve as a good strategy for insects control by 
making their immune system feeble against pathogens 
[10].

Several studies have been carried out on the biologi-
cal activity of α-amino phosphonate derivatives [11–13]. 
The similarity between α-amino-phosphonic acid and 
its ester derivatives with natural amino acids has made 
it possible to use them as drugs to inhibit the activity of 
some enzymes [14, 15].
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The present paper aims to introduce a series of α-amino 
phosphonate derivatives with both antifungal and anti-
phenol oxidase activity. The fungicidal activity was 
assayed against two important plant pathogens belong 
to true fungi and Oomycetes (Macrophomina phaseolina 
and Pythium aphanidermatum). Also, the PO inhibitory 
activity was investigated against the Galleria mellonella 
PO enzyme. The density functional theory calculations 
were used to explain their bioactivities.

Materials and methods
Chemicals
All chemicals and solvents were purchased from Sigma 
Chemicals (Sigma-Aldrich, Steinheim, Germany). Thi-
ophanate-methyl 70% WP fungicide was obtained from 
commercial sources.

General procedures for synthesis α‑amino phosphonate 
derivative
Kabachnike Fields reaction and Pudovik reaction are 
the most versatile methods for preparing α-amino phos-
phonate derivative; these methods are considered useful 
pathways for prepare the construction of P–C–N bonds 
[16, 17]. The first step of our procedures was refluxing 
equimolar amounts (10 mmol) of benzaldehyde and ani-
line derivatives at 70 °C for 8 h in the presence of tetrahy-
drofuran (THF). After the reacting mixture was cooled 
to room temperature, the diethyl phosphite (10  mmol) 
was added to the prepared imine and continue to reflux 
the mixture for another 18–24 h to obtain the final com-
pound. The precipitate was filtered, and after evaporating 
the solvent the product was washed with water (Fig. 1). 

All synthesized compounds were elucidated based on the 
IR and NMR (1H, 13C, and 31P) spectroscopy.

IR spectra (KBr pellets) were obtained with a Shi-
madzu, IR-60 model spectrometer. 1H, 13C, and 31P 
NMR spectra were recorded on a Bruker (Avance DRS) 
500  MHz spectrometer and chemical shifts were deter-
mined relative to TMS and 85% H3PO4, respectively, as 
external standards. Elemental analysis was performed on 
a Flash EA 1112 Thermo Finnigan instrument. Melting 
points were determined on an Electrothermal IA 9100 
digital melting point apparatus.

M1; Diethyl(2‑chlorophenyl)(2‑chlorophenylamino)
methylphosphonate
Mp: 110–112  °C. Light yellow powder, 1H NMR 
(500.13  MHz, d-DMSO, ppm): δ = 1.25 (m, 6H, CH3), 
4.10 (m, 4H, CH2), 6.96–8.44 (m, 8H, Ph), 8.23 (m, 1 H, 
CH-P), 10.40 (N–H). 13C NMR (125.77 MHz, d-DMSO, 
ppm)): δ = 29.7 (s, 2 C, CH3), 46.4 (d, 2 C, CH2), 61.5 
(s, 1C, CH-P), 113–135.1 (CPh), 152.7 (Cipso-CH), 158.6 
(Cipso-NH), 189. (CCl). 31P NMR (202.46  MHz, d-DMSO, 
ppm): δ = 0.29  ppm. IR data (KBr, cm–1): 3437 (υN–H); 
3059 w (CHAr); 2922  s (CHAliph); 1615  s (υAr); 1459  s 
(υAr); 1266  s (υP=O); 1043  s (υP–O). Anal. calcd. for 
C17H20Cl2NO3P: C, 52.59; H, 5.19; N, 3.61%. Found: C, 
52.83; H, 5.42; N, 3.37%.

M2; Diethyl(2,4‑dichlorophenyl)(2,4‑dichlorophenylamino)
methylphosphonate
Mp: 130–133  °C. Light yellow powder. 1H NMR 
(500.13  MHz, d-DMSO, ppm): δ = 1.24 (m, 6H, CH3), 
4.01 (m, 4H, CH2), 6.59–7.78 (m, 6H, Ph), 8.13 (m, 1 H, 

Fig. 1  The synthesis process of target compounds M1–M6 
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CH-P), 10.31 (N–H). 13C NMR (125.77 MHz, d-DMSO, 
ppm)): δ = 29.7 (s, 2 C, CH3), 46.4 (s, 2 C, CH2), 61.5 
(m, 1 C, CH-P), 113–135.5 (Cph), 157.7 (Cipso-CH), 158.6 
(Cipso-NH), 191.5 (CCl). 31P NMR (202.46 MHz, d-DMSO, 
ppm): δ = 0.34 s (d, 2JP–H = 11.9 Hz), ppm. IR data (KBr, 
cm–1): 3339 (m υN–H); 2982  s (CHAr); 2922  s (CHAliph); 
1617; 1583 (υAr); 1259 s (υP=O); 1037 s (υP–O). Anal. calcd. 
for C17H18Cl4NO3P: C, 44.67; H, 3.97; N, 3.06%. Found: 
C, 44.35; H, 3.84; N, 3.17%

M3; Diethyl(4‑chlorophenyl)(2‑hydroxyophenylamino)
methylphosphonate
Mp: 102–106  °C. Brownish-yellow powder. 1H NMR 
(500.13  MHz, d-DMSO, ppm): δ = 1.34(m, 6H, CH3), 
4.12(m, 4H, CH2), 6.43–7.46 (s, 1H, OH), 0.6.43–8.64 
(m, 8H, ph), 8.03 (m, 1H, CH-P), 9.97 (N–H). 13C NMR 
(125.77  MHz, d-DMSO, ppm)): δ = 39.9 (s, CH3), 45.5 
(s, CH2), 64.9 (m, 1 C, CH-P), 115.6–138 (CPh), 158.6 
(Cipso-CH), 156.1(Cipso-NH), 173.3 (COH), 190.9 (CCl). 31P 
NMR (202.46  MHz, d-DMSO, ppm): δ = 0.136  s (d, 
2JP–H = 11.8  Hz), ppm. IR data (KBr, cm–1): 3379b (υO–

H); 3304  m (υN–H); 3042 w (CHAr); 2925 w (CHAliph); 
1623 s;1582 s (υAr); 1230 s; 1196 s (υP=O); 1084 s (υP–O). 
Anal. calcd. for C17H21ClNO4P: C, 55.22; H, 5.72; N, 
3.79%. Found: C, 55.34; H, 5.80; N, 3.88%.

M4; Diethyl(2,4‑dichlorophenyl)(2‑hydroxyophenylamino)
methylphosphonate
Mp: 115–117 °C. Yellow powder. 1H NMR (500.13 MHz, 
d-DMSO, ppm): δ = 1.38 (m, 6H, CH3), 4.14(m, 4H, 
CH2), 6.92 (s,1H, OH), 8.21 (1H, CH-P), 7.21–7.88 (m, 
7H, ph), 9.10 (N–H), 13C NMR (125.77 MHz, d-DMSO, 
ppm)): δ = 39.8 (s, 2 C, CH3), 46.5 (s,2 C, CH2), 64.5 (m, 1 
C, CH-P), 115.3–138.1 (Cph), 151.9 (Cipso-CH), 155.1(Cipso-

NH), 173.0 (COH), 190.9 (CCl). 31P NMR (202.46  MHz, 
d-DMSO, ppm): δ 0.29 s (d, 2JP–H = 9.8 Hz), ppm. IR data 
(KBr, cm–1): 3461 m (υO–H); 3339 m (υN–H); 2983:2920 m 
(CHAr); 3076 w (CHAliph); 1475  s;1616  s (υAr); 1258  s 
(υP=O); 1095 s (υP–O). 1475: 1616 s (C=C). Anal. calcd. for 
C17H20Cl2NO4P: C, 50.51; H, 4.99; N, 3.47%. Found: C, 
50.78; H, 4.85; N, 3.36%

M5; Diethyl(phenyl)(4‑chlorophenylamino)
methylphosphonate
Mp: 84–87  °C. Dark yellow powder. 1H NMR 
(500.13  MHz, d-DMSO, ppm): δ = 1.24 (m, 6H, CH3), 
4.01(m 4H, CH2), 6.64, 7.75 (m, 9H, Ph), 8.03 (m, 1H, 
CH-P), 8.53 (N–H). 13C NMR (125.77  MHz, d-DMSO, 
ppm)): δ = 22.7 (s, 2 C, CH3), 29.72 (s,2 C, CH2), 77.04 
(m, 1 C, CH-P), 120.8–137.3 (Cph), 151.68 (Cipso-CH), 
158.8 (Cipso-NH), 191.8 (CCl). 31P NMR (202.46  MHz, 
d-DMSO, ppm): δ = 0.28  s (d, 2JP–H = 13.1  Hz), ppm. 
IR data (KBr, cm–1): 3330b (υN–H); 3266b (CHAr); 3202 

(CHAliph); 1610 s–1630 (υAr); 1201 m (υP=O); 1088 m (υP–

O). Anal. calcd. for C17H21ClNO3P: C, 57.71; H, 5.98; N, 
3.96%. Found: C, 57.59; H, 5.85; N, 3.98%

M6; Diethyl(4‑chlorophenyl)(phenylamino)
methylphosphonate
Mp: 87–90  °C. Yellow powder.1H NMR (500.13  MHz, 
d-DMSO, ppm): δ = 1.37 (m, 6H, CH3), 4.16(m, 4H, 
CH2),7.10–7.79 (m, 9H, ph), 8.11 (1H, CH-P), 8.45 
(N–H). 13C NMR (125.77  MHz, d-DMSO, ppm)): 
δ = 16.11 (s, 2 C, CH3), 30.3 (s 2 C, CH2), 63.6 (m, 1 C, 
CH-P), 116.23–150.5 (Cph), 151.9 (Cipso-CH), 156.1(Cipso-

NH), 160.72 (CCl). 31P NMR (202.46  MHz, d-DMSO, 
ppm): δ = 0.30 (d, 2JP–H = 12.8  Hz), ppm. IR data (KBr, 
cm–1): 3376b; (υN–H); 2978 w (CHAr); 2930b (CHAliph); 
1491 m—1626 m (υAr); 1245 s (υP=O); 1084 s (υP–O).

Fungal and oomycete strains
We used Macrophomina phaseolina Mph44, which was 
isolated and identified previously, and its high virulence 
was confirmed [18]. It was originally obtained from 
melons with charcoal rot disease in Khorasan province. 
Pythium aphanidermatum 8P isolate was used due to its 
high pathogenicity [19]. It was isolated from sugar beet 
fields of west Azarbaijan province, Iran [19].

Fungicidal activity study
Mycelial growth and microsclerotia production inhibition 
assays
To investigate the fungicidal activity of the synthesized 
compounds, increasing concentrations were tested 
against the fungus using the poison food technique [20]. 
Briefly, different concentrations of the compounds were 
added to Petri plates containing a Potato Dextrose Agar 
(PDA) medium, then a mycelial disc (6 mm diameter, 3 to 
5 days old) of the fungus placed in the center of the plate, 
and incubated at 27  °C for 4  days. The mycelial growth 
inhibition was calculated using Eq. (1) [21, 22].

In which C is the diameter (mm) of the fungal colony in 
control, and T is the diameter (mm) of the fungal colony 
in the presence of the tested compound. Thiophanate-
methyl 70% WP was used as a positive control.

Cell membrane relative permeability rate
The relative permeability rate of the cell membrane was 
evaluated using the procedures of Kobno et al. [23] with 
some modifications. Five mycelial discs (7 days old) of the 
fungus were incubated into Czapek-Dox Broth medium 
for 5 days. Then the harvested mycelia were washed with 

(1)

Mycelial growth inhibition (MGI)% =

[

C− T

C

]

× 100
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double distilled water and 0.5 g of the mycelia was placed 
in a 50  mL tube containing 150  µg/mL of each tested 
compound. The conductivities were sequentially meas-
ured at 0 (J0), 5, 10, 30, 60, 180, 360 min (J1). After boiling 
which was followed by cooling, the conductivity (J2) was 
measured. The permeability (P%) were calculated by the 
formula: P % = [(J1-J0)/(J2-J0)] × 100 [23].

Preparing of the mycelium crude extract
The mycelium crude extract was prepared using the 
procedures of Wu et al. (2005) [24] with some modifica-
tions. Five mycelial discs (6 mm diameter, 7 days old) of 
the fungus were placed in an Erlenmeyer flask contain-
ing 90  mL of sterilized Czapek-Dox Broth medium and 
incubated in a rotary shaker (120 rpm, 27 °C for 15 days), 
then the tested compound was dripped into the culture 
medium at a concentration of 100  µg/mL. The myce-
lium was filtered, collected orderly at 0.5, 1, 3, 6, 12, and 
24 h and washed by water. Water was soaked with a fil-
ter paper, and the dried mycelium was weighed, and pre-
served at − 20 °C. 0.25 g of the dry mycelium was mixed 
with Tris–HCl buffer (2 mL, 50 mmol/L, pH = 7) in the 
mortar, triturated into paste quickly, and then centri-
fuged at 4  °C and 15,000g for 30  min. The clear upper 
layer was preserved at − 20 °C. Every treatment had three 
repetitions [24].

Mycelial soluble protein content
The mycelial soluble protein content was evaluated using 
a modified method of Hatada et  al. [25]. 150 µL of the 
mycelial extract was mixed with Coomassie brilliant blue 
G-250 solution (3 mL), after 5 min, the absorbance value 
of the mixture was measured at 595 nm. Tris–HCl buffer 
served as the control [25].

Anti‑phenol oxidase activity
Phenol oxidase inhibitory activity was measured using 
Ullah et  al. [26] method with some modifications. The 
Haemolymph of the fifth instar larvae of Galleria mel-
lonella was collected by placing them at − 20  °C for 
10 min. They were surface sterilized with 70% EtOH, cut 
at the abdominal prolegs, and blended into a pre-chilled 
sterile polypropylene tube. Then it diluted with 10  mM 
phosphate-buffered saline solution and kept on ice. Then 
it centrifuged at 4 °C and 15,000g for 15 min. The super-
natant was collected and used as an enzyme source. Dif-
ferent concentrations of the tested compounds (50, 250, 
500, and 1000 µg/mL dissolved in DMSO) were prepared, 
then phenol oxidase (PO) inhibition was determined 
using a L-3,4-dihydroxyphenylalanine (L-DOPA) sub-
strate-based assay carried out in a microplate,100 µL of 
distilled water, 20 µL PBS buffer, 20 µL of the substrate, 
20 µL of the tested compound were added to each well 

then 20 µL of the enzyme source was added. The absorb-
ance was detected at 490 nm for 30 min [26]. Three rep-
licates were used for each treatment, and Kojic acid was 
used as a positive control. The tested compounds (50, 
250, 500, and 1000 µg/mL dissolved in DMSO) were pre-
pared, then phenol oxidase (PO) inhibition was deter-
mined using a L-3,4-dihydroxyphenylalanine (L-DOPA) 
substrate-based assay carried out in a microplate,100 µL 
of distilled water, 20 µL PBS buffer, 20 µL of the substrate, 
20 µL of the tested compound were added to each well 
then 20 µL of the enzyme source was added. The absorb-
ance was detected at 490 nm for 30 min [26]. Three rep-
licates were used for each treatment, and Kojic acid was 
used as a positive control.

Density functional theory (DFT) analysis
All the calculations were carried out using density func-
tional theory (DFT) as implemented in the Gaussian 
09 package [27] Geometries were optimized using the 
B3LYP functional with the 6-31G** basis set. The energies 
were reevaluated by additional single point calculations 
at each optimized geometry using the 6-311G** ++ basis 
set. [27–30]. The natural population was calculated using 
the NBO program (NBO Version 3.1) [31].

Statistical analysis
The experiments were carried out in a completely ran-
dom design with three replications. Data were analyzed 
using analysis of variance (ANOVA), and mean com-
parison was conducted by the least significant differ-
ence (LSD) using SAS software [32] using a personal 
computer. The results are presented as means and their 
standard errors (SE).

Results and discussion
Anti‑fungal activity
The synthesized compounds were evaluated for their fun-
gicidal activity against two important plant pathogens, 
including Macrophomina phaseolina from the true fungi 
and Pythium aphanidermatum from the Oomycetes. The 
true fungi and Oomycetes differ from each other in sev-
eral points [1]. Thus, using these pathogens in our assays 
may help to have a clear view of how these compounds 
can affect the selected pathogens.

The compounds were tested at concentrations up 
to 400  mg/L. M1 and M2 showed significant activ-
ity against both pathogens at all of the tested concen-
trations. M4 and M3 exhibited full inhibition of M. 
phaseolina at concentrations from 400 to 100  mg/L. 
Moreover, M4 inhibited the growth of P. aphanider-
matum at any of the tested concentrations; thus, we 
have tested these compounds at lower doses (Table 1). 
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The MIC of M4 was about 62  mg/L for M. phaseo-
lina and less than 100  mg/L for P. aphanidermatum, 
while M3 had MICs about 175 and 200 mg/L. M5 dis-
played 90% ± 2.51 inhibition of P. aphanidermatum at 
400 mg/L, while M6 showed weaker activity against the 
pathogens compared to other compounds (Table  1). 
As can be noted from Table 1, there are no significant 
differences in the fungicidal activity on both M. pha-
seolina and P. aphanidermatum. These findings sug-
gest that the tested compounds may interfere with 
the same targets within the pathogens or might have 
multiple modes of action. Consequently, future stud-
ies are required to understand their mode of action on 
both True fungi and Oomycetes. All tested compounds 
showed a level of fungicidal activity against M. phaseo-
lina; thus, we studied the impact of different R-substit-
uents on their activity. Figure  1 and Table  1 indicate 
that all compounds having substituents on both rings 
(i.e., M1, M2, M3, and M4) showed higher activity. In 
contrast, the compounds contain only one substituent 
displayed a weak comparative activity, which implies 
that both rings and their substituents are essential to 
improve their fungicidal activity. M5 with a Cl-sub-
stituent on the aniline moiety showed higher activ-
ity than M6 with Cl-substituent on the phenyl moiety. 
Additionally, when OH-substituent replaces the Cl-
substituent on the aniline moiety as in M3 and M4, we 
observed a significant increase in the fungicidal activity. 
Furthermore, having a hydroxyl group on the aniline 
increased the fungicidal activity more than chlorines. 
It may suggest that the aniline ring and its substituents 

have a higher impact on the fungicidal activity than 
phenyl ring substituents.

The effect on the relative permeability rate of the cell 
membrane
The relative permeability rate of the cell membrane of M. 
phaseolina was detected in the presence and absence of 
M2  and M4  to evaluate the cytotoxic impact of synthe-
sized derivatives at 150 µg/mL. In the case of M2, the rel-
ative permeability rate of the cell membrane was higher 
than the control in the first 100  min; however, it was 
found to be lower than control with a longer treatment 
time. In contrast, when fungus treated with M4, the rela-
tive permeability rate of the cell membrane was always 
lower than the control; moreover, within 300 min, it was 
less than M2-treated fungus and differed after that. The 
relative permeability rate of thiophanate methyl-treated 
fungus was always higher than control and other treat-
ments (Fig. 2).  It seems that the cell membrane was not 
affected by M2 and M4 compounds, which may decrease 
the ability of these molecules to inhibit the fungus growth 
by interfering with the cell membrane.

The effect on mycelial soluble protein content
The soluble protein content was detected in the presence 
and absence of the M4 compound at 100 µg/mL. Figure 3 
displayed that within an hour, the soluble protein con-
tent was higher than control, then it dropped in a time-
dependent manner. It can be seen that the soluble protein 
content was 19.7 ± 0.68% and 25.91% ± 1.89 lower than 
the control in 12 and 24  h, respectively; moreover, it 
was lower than thiophanate methyl-treated fungus after 

Table 1  Growth inhibition values of the tested compounds

*Inhibition was measured experimentally (mean ± SE), replicate number n = 3

–: The compound was tested at this concentration

Plant pathogens Concentration 
(mg/L)

M1 M2 M3 M4 M5 M6

M. phaseolina 400 100 ± 0* 100 ± 0 100 ± 0 100 ± 0 42 ± 2.36 34 ± 2.08

300 94 ± 1.52 96 ± 1 100 ± 0 100 ± 0 0 0

200 90 ± 1 95 ± 1.5 100 ± 0 100 ± 0 0 –

150 85 ± 3.06 91 ± 1.32 96 ± 2.64 100 ± 0 – –

100 62.5 ± 2.3 82.5 ± 1.44 90 ± 1.3 100 ± 0 – –

50 – – 55 ± 3.05 90 ± 2 – –

25 – – – 63 ± 1.15 – –

P. aphanidermatum 400 100 ± 0 100 ± 0 100 ± 0 100 ± 0 90 ± 2.51 0

300 90 ± 1.73 100 ± 0 100 ± 0 100 ± 0 0 0

200 67.5 ± 1.32 95 ± 1 100 ± 0 100 ± 0 0 –

100 23 ± 1.52 93 ± 0.76 35 ± 4.04 100 ± 0 – –

50 – – 0 25 ± 1.81 – –

25 – – – 20 ± 1.52 – –
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Fig. 2  The effect of compounds M2 and M4 on membrane permeability of M. phaseolina at 150 µg/mL. The results were compared with control 
(without compound) at the corresponding period. The error bars represent the mean ± SE of the three repeats (P < 0.05)

Fig. 3  The effect of compound M4 on the mycelial soluble protein content of M. phaseolina at 100 µg/mL as compared to control (without 
compound) at the corresponding period. Thiophanate-methyl 70% WP was used as positive control. The error bars represent the mean ± SE of the 
three repeats (P < 0.05)
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8 h. These results suggest that M4 may reduce pathogen 
growth by inhibiting protein synthesis.

Anti‑phenol oxidase activity
The activity of synthesized compounds on the insects 
immune-associated characteristics was tested on the  G. 

mellonella  phenol oxidase enzyme. Both  M4  and  M3 
revealed phenol oxidase inhibitory activity more than 
kojic acid (Figs.  4, 5).  M4  inhibited the enzyme activ-
ity by 100% at 1000  µg/mL; also, it showed 86% ± 1.73 
and 73.67% ± 2.02 of enzyme inhibition at 500 and 
250  µg/mL, respectively.  M3  displayed 34.3% ± 1.2 to 

Fig. 4  Phenol oxidase inhibition by increasing concentrations of tested compounds. The treatments compression was done using LSD test based 
on completely random design. Values are averages of three replications (n = 3). The error bars represent the mean ± SE of the three repeats

Fig. 5  Phenol oxidase inhibitory activity of M1 and M4. The black color indicates the interaction between the enzyme and the substrate in NC 
(the negative control without compound). M4 inhibited the enzyme activity in a concentration-dependent manner, M1 also showed moderate 
inhibitory activity, (KA = kojic acid at 1000 µg/mL)
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88.3% ± 4.05 of enzyme inhibition at 50 to 1000  µg/
mL. M1 and M2 without OH-substituent on the aniline 
moiety were less capable than M3 and M4. M1 exhibited 
54% ± 2.65 to 17.67% ± 3.17 inhibition at 1000 to 50 µg/
mL, respectively, while M2 did not exceed 52.3% ± 2.67 at 
the highest dose (Fig. 4). The anti-phenol oxidase activity 
was not significantly affected whether the molecule has 
one or two Cl-substituents on the phenyl ring; however, 
it increased considerably by replacing the Cl-substitu-
ent with OH-substituent on the aniline moiety. These 
findings indicate the crucial role of the hydroxyl group 
in the phenol oxidase inhibitory activity of tested com-
pounds. Phenol oxidase interferes with several biological 
pathways in insects like melanization and sclerotization 
cascades [5–9]. By the inhibition of phenol oxidase, our 

compounds may interfere with the insects immune sys-
tem and block the melanization process which leads to 
the weakness of insects defense [5–9].

DFT calculation
We performed DFT calculations M1–M4, M6, and 
the phenol oxidase substrate L-DOPA. The plots of the 
frontier orbitals, their calculated energy, and their natu-
ral atomic charge distribution are mentioned in Fig.  6 
and Table  2. The Highest Occupied Molecular Orbital 
(HOMO) and Lowest Unoccupied Molecular Orbital 
(LUMO) are helpful tools for evaluating the molecules’ 
bioactivity [32–36]. They refer to the parts of the mol-
ecules that can interact with the receptors [37]. Fig-
ure 6 showed that the HOMO orbital delocalized on the 

Fig. 6  DFT comparison of M1–M4 and M6 and L-DOPA. The DFT calculations were carried out with Gaussian 09 software, HOMO and LUMO maps 
were extracted from GuassView 6.0 program based on the optimized structures

Table 2  Natural atomic charges of the compounds M1–M4 calculated by NBO analysis

*The natural atomic charges of L-DOPA refers to the nitrogen and oxygen atoms of hydroxyls bonded to the ring

Name P O1 O2 O3 N R1 R2 R3 R4

M1 2.336 − 1.104 − 0.852 − 0.860 − 0.631 – Cl (− 0.025) – Cl (− 0.008)

M2 2.348 − 1.098 − 0.850 − 0.860 − 0.641 Cl (–0.015) Cl (− 0.005) Cl (0.007) Cl (0.023)

M3 2.318 − 1.101 − 0.853 − 0.865 − 0.639 – O (− 0.711) Cl (− 0.018) –

M4 2.339 − 1.098 − 0.845 − 0.862 − 0.648 – O (− 0.707) Cl (0.005) Cl (0.005)

L-DOPA – − 0.694* − 0.715 – − 0.851 – – – –
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aniline moiety and the P–C–N bridge in all the com-
pounds (M1–M4, and M6), which refer to the impact of 
the aniline moiety on their bioactivity. These findings are 
in agreement with the experimental results that indicated 
the importance of the aniline moiety substituents on the 
fungicidal activity. According to the Klopman-Salem 
equation [37–40], the interaction between two systems 
(e.g., enzyme and substrate) can be controlled by two 
major factors, the charges of the interacted atoms and the 
delocalization position of the frontier molecular orbitals. 
Thus, we have studied the delocalization of the frontier 
molecular orbitals of M1–M4 compounds and compared 
them with the enzyme–substrate L-DOPA. L-3,4-dihy-
droxyphenylalanine or L-DOPA acts as a substrate for 
phenol oxidase enzyme [5, 41, 42]. This molecule inter-
acts with the copper-binding region within the enzyme 
[42–45]. We have investigated the inhibitory activity of 
our molecules based on their similarity with L-DOPA in 
the delocalization of the frontier molecular orbitals and 
charge distribution. As can be seen in Fig. 6, the HOMO 
orbital delocalized in a suitable section on the aniline 
moiety and the hydroxyl groups of M3 and M4. How-
ever, a tiny section of the HOMO orbital delocalized on 
the phosphorus and phosphorus-related oxygen atoms in 
M1 and M2 compounds, which reduces their impact on 
the compounds’ reactivity. Also, compared to L-DOPA 
(− 6.124  eV), the energy of HOMO in M3 and M4 
(− 5.757 eV and − 5.742 eV) have more differences than 
the energy of HOMO in M1 and M2 (− 6 eV, − 6.145 eV). 
It could be said that the bioactivity is not only orbital-
controlled in the compounds having phenolic oxygen 
(M3 and M4) but also is controlled by the atomic charge, 
as can be indicated in NBO analysis.

Natural population analysis (NPA)
As can be noted from Table 2, the atomic charges of the 
phosphorus and oxygen atoms bonded to phosphorus 
are similar in all molecules (M1–M4), which may indi-
cate that this part is not the primary factor affecting their 
bioactivity. Both M3 and M4 have OH-substituent on the 
aniline moiety (R2 substituent); this makes their struc-
ture similar to the enzyme–substrate L-DOPA, which has 
two hydroxyl groups interact with the copper-binding 
region within the enzyme [42–45]. When Cl-substituent 
replaces the OH-substituent in R2 in  M1  and  M2, the 
anti-phenol oxidase activity significantly dropped down. 
Table 2 displays the small negative charge of the hydroxyl 
oxygen atoms of both M3  (− 0.711) and M4  (− 0.707). 
These charges are almost equal to the charge of hydroxyl-
oxygen atoms in L-DOPA (− 0.715 and − 0.694) (Table 2). 
It can be concluded that the negative charge of the oxy-
gen atom related to the aniline-hydroxyl group may 
control the anti-phenol oxidase activity of both M3 and 

M4. Phenol oxidase is an essential protein for an insect’s 
immunity and defense, and it is involved in the encap-
sulation and melanization process as a defense reaction 
[5, 7–9]. These hydroxyl-related oxygen of M3 and M4 
may interact with the copper-binding region within the 
enzyme active site [42–45] and prevent the melanization 
process. These theoretical studies displayed the impor-
tance of the aniline moiety on the fungicidal activity of 
our compounds; besides, it showed the impact of charge 
distribution in their anti-phenol oxidase activity.

Conclusions
This paper has investigated the dual bioactivity of some 
α-amino phosphonate derivatives. Most of the synthe-
sized compounds revealed a level of fungicidal activity 
against both  Macrophomina phaseolina, and  Pythium 
aphanidermatum especially M4. Both M3 and M4 dis-
played a good anti-phenol oxidase activity, which 
may imply their capacity to interfere with the insects 
immune system. The theoretical study pointed out the 
role of charge distribution on the phenol oxidase inhib-
itory activity. It indicated the impact of the aniline moi-
ety substituents on the fungicidal activity. We hope that 
our compounds will serve as a base for the future to 
develop novel organophosphorus fungicides with addi-
tional insects phenol oxidase inhibitory activity, also; 
the authors suggest further assays on both target and 
non-target organisms.
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