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Abstract 

Background:  The increasing demand for food production has led to a tenfold increase in nitrogen (N) fertilizer 
use since the Green Revolution. Nowadays, agricultural soils have been turned into high-nitrifying environments 
that increase N pollution. To decrease N losses, synthetic nitrification inhibitors (SNIs) such as 3,4-dimethylpyrazole 
phosphate (DMPP) have been developed. However, SNIs are not widely adopted by farmers due to their biologically 
limited stability and soil mobility. On the other hand, allelopathic substances from root exudates from crops such as 
sorghum are known for their activity as biological nitrification inhibitors (BNIs). These substances are released directly 
into the rhizosphere. Nevertheless, BNI exudation could be modified or even suppressed if crop development is 
affected. In this work, we compare the performance of biological (sorghum crop) and synthetic (DMPP) nitrification 
inhibitors in field conditions.

Results:  Sorghum crop BNIs and DMPP prevented an increase in the abundance of ammonia-oxidizing bacteria 
(AOB) without affecting the total bacterial abundance. Both nitrification inhibitors maintained similar soil NH4

+ con‑
tent, but at 30 days post-fertilization (DPF), the sorghum BNIs resulted in higher soil NO3

− content than DMPP. Even 
so, these inhibitors managed to reduce 64% and 96%, respectively, of the NO3

−-N/NH4
+-N ratio compared to the 

control treatment. Similar to soil mineral N, there were no differences in leaf δ15N values between the two nitrification 
inhibitors, yet at 30 DPF, δ15N values from sorghum BNI were more positive than those of DMPP. N2O emissions from 
DMPP-treated soil were low throughout the experiment. Nevertheless, while sorghum BNIs also maintained low N2O 
emissions, they were associated with a substantial N2O emission peak at 3 DPF that lasted until 7 DPF.

Conclusions:  Our results indicate that while sorghum root exudates can reduce nitrification in field soil, even at the 
same efficiency as DMPP for a certain amount of time, they are not able to prevent the N pollution derived from N 
fertilization as DMPP does during the entire experiment.
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Background
Sorghum (Sorghum bicolor L. Moench) is a widely culti-
vated cereal, being the fifth most important after wheat, 
maize, rice and barley [1]. The heat tolerance and drought 

resistance that it possesses has made it well adapted to 
semiarid regions [2, 3]. While Africa and India cultivate 
sorghum for human food, which accounts for 40% of 
world sorghum production, countries in North America 
and Europe use sorghum for biomass production and 
livestock feed [4, 5]. However, sorghum is becoming rel-
evant for industrialized countries because its grain is safe 
for celiac and gluten-intolerant people [6]. Therefore, it 
can meet the growing demand for gluten-free foods and 
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beverages from consumers who cannot eat products con-
taining wheat, barley or rye [7]. Besides becoming a safe 
food product, sorghum is also known for the allelopathy 
of its root exudates. The molecules that have been char-
acterized in sorghum exudates are sorgoleone [8] and 
3,4-hydroxyphenyl propionate (MHPP) [9]. Sorgoleone 
was initially used for its substantial weed-suppressing 
capability [10], but later its potential as a biological nitri-
fication inhibitor (BNI) was discovered. More than 80% 
of the hydrophobic component of sorghum-exuded BNIs 
is sorgoleone [11], while MHPP comprises the hydro-
philic component. Both molecules can reduce nitrifica-
tion in soil [12, 13]. Subbarao et al. [14] characterize the 
BNI activity from MHPP and sorgoleone in the soil. Once 
these molecules are released from sorghum roots, their 
nitrification inhibitory action seems to be relatively stable 
over a pH range of 3.0 to 9.0. This is in contrast to BNIs 
release from other plants, such as Brachiaria humidi-
cola, whose molecules are reported to have a total loss 
of inhibitory function at pH ≥ 8.0. Moreover, the inhibi-
tory effect on soil nitrification of MHPP and sorgoleone 
appears to be stable in the temperature range of 20 to 
30 °C.

The use of crops that produce BNIs could be the first 
step towards a low-nitrifying agronomic environment in 
agricultural systems [15]. The tenfold increase in the use 
of nitrogen (N) fertilizers since the Green Revolution [16] 
has greatly augmented food production, but it has turned 
agricultural soils into high-nitrifying environments with 
significant environmental costs [17]. Nitrification is the 
biological transformation of N in the form of ammo-
nium (NH4

+) into oxidized N. Chemolithoautotrophic 
ammonia-oxidizing bacteria (AOB) and archaea (AOA) 
oxidize NH4

+ to hydroxylamine (NH2OH) through the 
ammonium monooxygenase enzyme (AMO) encoded 
by the amoA gene [18]. NH2OH is converted to nitrite 
(NO2

−) and then, nitrite-oxidizing bacteria (NOB) oxi-
dize it to nitrate (NO3

−) [19]. MHPP blocks the AMO 
enzyme, while sorgoleone blocks both the AMO and 
the HAO enzyme [14]. The chemical structure of sorgo-
leone, which has a hydroquinone head and a fatty acid 
tail with a terminal double bond, has the potential to dis-
rupt the electron flow between AMO and HAO enzymes 
and hence the nitrification activity [20]. Following with 
the final product of nitrification, as NO3

− is a nega-
tively charged anion, it is repelled by negatively charged 
soil colloids and is thus lost through leaching, causing 
eutrophication and contamination of groundwater sup-
plies [21]. Furthermore, in anoxic conditions, NO3

− is 
the substrate for a denitrification process that releases N 
gases such as nitrous oxide (N2O) [22]. The global warm-
ing potential (GWP) of N2O is 265 to 298 times higher 
than CO2 over a 100-year time horizon [23]. Therefore, 

it is necessary to reduce the pollution originating from 
the application of N fertilizer, particularly as its use is 
expected to double by 2050 [24].

Synthetic nitrification inhibitors (SNIs) have been 
developed to decrease N losses by suppressing soil-
nitrifier activity. The dimethylpyrazole-based SNI DMPP 
(3,4-dimethylpyrazole phosphate) is able to reduce AOB 
abundance, delaying the oxidation of NH4

+ while dimin-
ishing N2O emissions [25, 26]. However, the use of SNIs 
is not widely adopted by farmers [27]. The inhibitory 
effect does not last more than a few weeks, they have bio-
logically limited stability, and SNI mobility could prevent 
these molecules from acting on the sites of nitrification 
[15, 28]. On the other hand, BNIs are exuded directly into 
the rhizosphere, which is the main site of nitrification 
due to the great abundance of AOB and AOA [29]. More-
over, sorghum BNIs are known for being stable across a 
wide range of soil pH and temperature [14]. In addition, 
BNIs from sorghum can be released until close to physi-
ological maturity of the crop [14], which would ensure 
the presence of nitrification inhibitors during all the 
stages of crop development. Nevertheless, BNI exudation 
is related to the physiological state and development of 
the plant [30], so biotic or abiotic stresses that affect crop 
growth might modify the rate of BNI exudation or even 
prevent its release.

Sorghum allelopathy is highlighted in the framework of 
sustainable agriculture and its use could drive cultivation 
systems towards environmentally friendly agronomic 
practices that allow us to meet global food demand while 
reducing the loss of reactive N into the environment. For 
this reason, the aim of this work was to compare under 
field conditions the performance of biological and syn-
thetic nitrification inhibitors in retaining NH4

+ in soil for 
longer periods and reducing AOB growth and its effect 
on N2O emissions.

Methods
Experimental design
This work was conducted in Pamplona, northern Spain 
(42° 47ʹ N, 1° 37ʹ W, 450  m above sea level), from May 
to October 2019. Table  1 describes the soil characteris-
tics of the upper horizon. Daily precipitation and mean 
temperatures are shown in Additional file 1: Fig. S1. Sor-
ghum (Sorghum bicolor L. var. PR88P68 Pioneer Cor-
teva Agriscience®) was sown under no-tillage at a rate 
of 15  kg seeds ha−1 on 15th May 2019 after a previous 
hairy vetch (Vicia villosa L.) winter cover crop. The vetch 
was terminated with 1.5  kg  ha−1 dose of glyphosate on 
29th April, rate that is routinely applied in no-till system 
from this region, and left on the soil surface. This experi-
ment consisted of three randomized N treatments with 
four replications (5  m × 5  m plots). The N treatments 
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were (1) sorghum without fertilizer (Control); (2) sor-
ghum fertilized with ammonium sulfate (AS) and (3) 
sorghum fertilized with ammonium sulfate combined 
with DMPP (AS + D). The fertilizer application rate was 
150  kg  N  ha−1 in the form of ammonium sulfate 21%, 
with the fertilizer hand broadcast on 7th July 2019 in a 
single application at the beginning of stem elongation 
(Z30) according to the Zadoks scale [31]. Fertilizer com-
bined with DMPP inhibitor was provided by EuroChem 
Agro Iberia S.L. The DMPP rate was 0.8% of the NH4

+-N 
applied with the fertilizer. As the purpose of this experi-
ment was only to measure the effects of the sorghum 
crop on N losses, sorghum was not harvested and it was 
terminated on 14th October 2019 and left on the soil sur-
face according to usual management practices.

Plant analysis
The N isotopic composition in sorghum leaves was deter-
mined with an elemental analyser (FlashEA1112 Ther-
moFinnigan) coupled to a mass spectrometer (DELTAplus 
Finnigan MAT) in the Unidade de Técnicas Instrumen-
tais de Análise, Servizos de Apoio á Investigación (SAI), 
Universidade da Coruña. To do so, one sorghum plant 
per plot was taken randomly at 10, 20, 30, and 60  days 
post-fertilization and dried at 80  °C in a circulation 
oven for 72  h until a constant dry weight was reached. 
Later, dry plants were ground with a ball miller (Retsch 
MM 500) at a frequency of 27  s−1 for 2 min. The values 
of the isotopic ratio of 100 mg of ground material were 
expressed as δ15N, in parts per thousand (‰) relative to 
atmospheric N2. The isotope composition values δ (‰) 
were obtained with the following equation:

where Rsample is the 15N/14N ratio of the plant sample and 
Rstandard is the 15N/14N ratio of the atmospheric N2.

Soil analysis
Soil N2O emissions were measured using the closed 
chamber method [36]. Gas samples were taken over 
60  days post-fertilization at decreasing sampling fre-
quency from three times per week over 2 weeks to twice 
per week in the subsequent 2 weeks and, finally, once per 
week until the end of measuring time. N2O samples were 
measured as detailed in [37].

Soil mineral N was determined based on the soil NH4
+ 

and NO3
− contents. Three soil subsamples (3 cm diam-

eter × 0.3  m depth) per plot were taken the day before 
the treatment application, and later at 10, 20, 30 and 
60  days post-fertilization. Then, soil subsamples were 
homogenized with rocks and roots being removed. The 

δsample

(

◦/◦◦
)

=

((

Rsample − Rstandard

)

/Rstandard

)

× 1000,

NH4
+ and NO3

− contents were determined as described 
in [37]. Each day of soil and/or gas measurement two 
additional soil subsamples (3 cm diameter × 0.3 m depth) 
were taken randomly from the field to determine soil 
water content. After removing rocks and roots, they 
were placed into a circulation oven at 80 °C for 72 h until 
a constant dry weight was reached. Following [38], soil 
water content was described as the percentage of water-
filled pore space (WFPS):

where 2.65 Mg m−3 was used as particle density. The den-
sity of the bulk soil was measured at the beginning of the 
experiment resulting in 1.0 Mg m−3.

Soil samples from mineral N determinations at 20 days 
post-fertilization were used to quantify the abundance of 
total bacteria (16s rRNA), and nitrifying (bacterial amoA) 
and denitrifying (nirK) populations. Quantification 
was done using quantitative polymerase chain reaction 
(qPCR) in a StepOne PlusTM Real-Time PCR System. 
Soil DNA isolation and gene amplification were carried 
out as explained in [39].

Statistical analysis
Data obtained in this experiment were statistically ana-
lysed with one-way ANOVA followed by Duncan’s 
multiple range tests for separation of means between 
treatments using SPSS statistical software (IBM Corp. 
Released 2016. IBM SPSS Statistics for Windows, Version 
24.0. Armonk, NY: IBM Corp). Significant differences are 
expressed at p < 0.05.

Results
Fertilizer treatments did not have any effect on total bac-
terial abundance (Fig. 1a). Based on the 16S rRNA gene 
copy number, bacterial abundance ranged from 1.00·109 
to 1.10·109. Nitrifying bacteria were also not affected by 
N treatments, having an abundance of between 9.31·106 
and 1.01·107 amoA gene copy numbers g−1 dry soil 
(Fig.  1b). Alike AOB, denitrifying microorganisms nei-
ther were affected by addition of fertilizer. They showed 
an abundance that varied from 7.31·105 to 8.12·105 nirK 
gene copy numbers g−1 dry soil (Fig. 1c).

After fertilizer application, the soil NH4
+ content 

increased in AS and AS + D treatments maintaining 
higher values during the first 30 days post-fertilization 
(DPF) (Fig. 2a). At 30 DPF, the soil NH4

+ content of fer-
tilized treatments decreased to levels that were similar 
to the control treatment. However, it was observed that 

WFPS =

(

soil gravimetric water content× bulk density
)

×

(

1−
(

bulk density/particle density
))

−1
,
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the soil NH4
+ content from the AS and AS + D treat-

ments increased at 60 DPF, which might have been a 
consequence of mineralization. On the other hand, the 
AS treatment showed the highest soil NO3

− content 
during the 60 days of measurement (Fig. 2b). Although 
the AS + D treatment showed constant soil NO3

− con-
tent during the first 20 DPF, it was able to diminish its 
formation to levels of unfertilized treatment until 60 
DPF. Control treatment also showed low soil NO3

− 
content. Indeed, the highest NO3

−-N/NH4
+-N ratio 

throughout the experiment was observed in the con-
trol treatment (Fig. 2c). The AS and AS + D treatments 
had equally low ratios during the first 20 DPF because 
there were no differences between them in terms of soil 
NH4

+ and NO3
− content. Nevertheless, because the AS 

treatment did not decrease soil NO3
− levels at 30 DPF, 

the NO3
−-N/NH4

+-N ratio showed a sixfold increase 
compared to the AS + D treatment. Still, at 30 DPF both 
treatments were able to reduce the NO3

−-N/NH4
+-N 

ratio in AS and AS + D by 64% and 96%, respectively, 
compared to the control treatment.

Sorghum leaves from the control treatment showed 
the least negative δ15N values (Fig. 3a). The similarity in 
leaf δ15N values between the AS and AS + D treatments 
until 20 DPF indicated no effect from DMPP up to this 
point. However, at 30 DPF, both fertilizer treatments 
showed an increase in δ15N values that was greater in 
the AS treatment than the AS + D treatment, and the 
same δ15N values were maintained until 60 DPF. As 
expected, the unfertilized treatment possessed the 
lowest leaf N content (Fig.  3b). Fertilized treatments 
showed higher N contents that declined throughout the 
experiment until they reached similar N values to the 
control treatment at 60 DPF. In this case, there were no 
differences between the AS and AS + D treatments.

The treatment fertilized with AS showed a substan-
tial N2O emission peak at 3 DPF with an emission of 
38.7  g N2O-N ha−1 d−1 (Fig.  4a). Nevertheless, the 
peak was quickly reduced from 7 DPF, with N2O emis-
sions in the AS treatment maintained between 3.79 and 
0.74 g N2O-N ha−1 d−1. In contrast, the N2O emissions 
from the control and AS + D treatments were both 
low throughout the experiment, ranging from 4.23 to 
0.67  g N2O-N ha−1 d−1 for the control treatment and 
from 4.01 to 0.31  g N2O-N ha−1 d−1 for the AS + D 
treatment. Although N2O emissions from AS treat-
ment were reduced to levels similar to the control and 
AS + D treatments, it had the highest total cumulative 
N2O emissions due to the short emission peak (Fig. 4b). 
There were no differences between control and AS + D 
treatments in total cumulative N2O emissions, with 
reductions of 54% and 59%, respectively, compared to 
the AS treatment.
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Discussion
During the last few decades, root exudates from sorghum 
have been well studied due to the presence of allelopathic 
substances [40]. Lately, investigations have focused on 

their ability to inhibit the nitrification pathway. There are 
several greenhouse and microcosm studies where mol-
ecules such as sorgoleone and MHPP have been charac-
terized and their potential as BNIs investigated [8, 9, 12, 

0

20

40

60

80
So

il
N

H
4+ -

N
ah 

N gk(
-1

)

0

20

40

60

80

So
il

N
O

3- -N
(k

g 
N

 h
a-

1 )
a

b

10 20 30 60

Control a b b b

AS a a b a

AS+D a a a a

10 20 30 60

Control a b ab b

AS a a a a

AS+D a a b b

0

10

20

30

0 20 40 60

N
O

3—
N

/N
H

4+ -
N

Days post-fertilization

c

10 20 30 60

Control a a a a

AS b b b ab

AS+D b b c b

Fig. 2  Soil mineral nitrogen evolution over 60 days post-fertilization in the form of NH4
+ (a), NO3

− (b) and the NO3−-N/NH4+-N ratio (c). 
Control = sorghum without fertilization; AS = sorghum fertilized with ammonium sulfate; AS + D = sorghum fertilized with ammonium 
sulfate + DMPP. Different letters indicate significant differences using the Duncan test (p < 0.05; n = 4)



Page 7 of 12Bozal‑Leorri et al. Chem. Biol. Technol. Agric.            (2021) 8:51 	

14]. One of the main aspects to consider in the attempt 
to improve agricultural sustainability is whether these 
substances could have a negative effect on soil health. 
Encouragingly, while MHPP molecules reduce AOB 
abundance, they do not exert a general negative impact 
on the soil bacterial community, as indicated by main-
tenance of 16S rRNA gene abundance in microcosm 
experiments [12]. In the same manner, no effects on total 
bacterial abundance have been observed in soil from pot-
grown sorghum that release different quantities of sorgo-
leone [13]. Here, we corroborate that sorghum plants do 
not alter total bacterial abundance under field conditions 
(Fig. 1a). This is a confirmation that both sorghum root 
exudates and the synthetic nitrification inhibitor (SNI) 
DMPP do not produce general deleterious effects because 

DMPP also had no effect on 16S rRNA abundance, as 
reported here (Fig.  1a) and in several other studies [41, 
42]. Nevertheless, previous work with DMP-based nitri-
fication inhibitors and with sorgoleone has shown that 
there are some shifts in non-target bacterial abundance, 
even when the total bacterial abundance is not altered, 
with SNIs associated with decreases in bacterial diversity 
[43] and BNIs associated with changes in bacterial net-
works (BNIs) [44]. These studies are still preliminary, so 
further work should expand these analyses to determine 
exactly what effects are exerted by these compounds on 
the soil microbiota.

Fertilizer stimulates root development, changes the soil 
pH and increases the availability of nutrients for micro-
organisms and, consequently, the soil bacterial consortia 
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are greatly influenced [45–47]. Specifically, the AOB pop-
ulation exhibits a strong response to N fertilizers [48]. 
Shortly after the fertilizer application, soils tend to show 
a large increase in amoA abundance [39, 49]. This growth 
can be avoided by applying SNIs such as DMPP, and the 
AOB population size is maintained at the level of unfer-
tilized soils (Fig. 1b) [50, 51]. Furthermore, the objective 
of BNIs is to suppress soil nitrification by decreasing the 
ammonia-oxidizing microorganisms’ populations [52]. 
Interestingly, in the absence of DMPP (AS treatment) we 
also observed no increases in amoA abundance in soils. 
The lack of AOB growth may be associated with the use 
of glyphosate as an herbicide to terminate winter vetch 
crop. Several studies have examined the effect of glypho-
sate on soil microbiology, but the results are highly 
variable. While some authors described that the use of 
glyphosate cause negative impacts on microbial commu-
nity structure [53, 54], others affirmed that glyphosate is 
able to increase soil microbial biomass and respiration 
[55, 56] or, at least, have no significant impact at all [57, 
58]. Nevertheless, it has been reported that the applica-
tion of glyphosate at higher rates than in this experiment 
(1.5 kg ha−1) had no effect on AOB and AOA abundances 
[59, 60]. Moreover, glyphosate is routinely applied in 
no-till systems from this region. Therefore, it is reason-
able that we could conclude that the inhibition of AOB 
growth was due to the action of BNI molecules present in 
sorghum root exudates. This is the first field demonstra-
tion that sorghum can avert AOB growth with the same 
efficiency as SNIs.

Soil mineral N is a useful tool to monitor the activ-
ity of AOB based on the oxidation of NH4

+ to NO3
−. 

The use of SNIs such as DMPP maintains soil NH4
+ for 

longer periods due to a delay in NH4
+ oxidation as a 

consequence of AOB inhibition [61]. When ammonium-
based fertilizers are applied without nitrification inhibi-
tors, soil NH4

+ increases substantially followed by a rapid 
decrease and the appearance of NO3

− [62, 63]. In our 
work, AS treatment kept soil NH4

+ content in parallel 
with the AS + D treatment (Fig. 2a). This could be a con-
sequence of BNIs released by sorghum, demonstrating 
the ability to maintain NH4

+ content at the same level as 
DMPP, which aligns with the equal AOB populations in 
both soils (Fig. 1b). Although 20% of total N losses from 
field-applied N occur through volatilization of ammonia, 
the great majority of N losses occur after microbial reac-
tions transform NH4

+ in soils into NO3
− [64]. Therefore, 

it seems that the use of BNI could be a good option to 
reduce soil N losses due to its ability to withhold NH4

+ 
oxidation derived from the inhibition of AOB growth. 
Nonetheless, the capacity of BNIs to diminish nitrifica-
tion seemed to decline over time, as suggested by the 
daily evolution of soil mineral N (Fig.  2a, b). Although 
soil NH4

+ and NO3
− contents were equivalent between 

AS- and AS + D-treated soils, differences arose after 20 
DPF. The NO3

−-N/NH4
+-N ratio under AS treatment 

increased relative to the AS + D treatment (Fig.  2c), 
which may indicate that the efficiency of BNIs in reduc-
ing NH4

+ oxidation only lasted until 20 DPF. It would be 
interesting to track AOB abundance over time for longer 
in further studies to examine the effect of this possible 
decline in BNI activity on AOB growth. These differ-
ences in the NO3

−-N/NH4
+-N ratio were also associated 

with an effect on sorghum leaf δ15N values. The natural 
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variation in the heavy N isotope (15N) has now being 
used with increasing frequency in physiological studies 
related to N metabolism [65–67]. For example, N fixa-
tion processes, both free and biological, tend to impover-
ish δ15N because the value of the atmospheric N2 is zero. 
Thus, because the sorghum crop was sown after winter 
vetch, which is an N-fixing crop, the leaf δ15N values of 
the sorghum control treatment were below zero (Fig. 3). 
In addition, [66] noted that plants grown with NH4

+ as 
the sole source of N demonstrated a decrease in δ15N. 
Therefore, as suggested by [68], δ15N can be used as an 
indicator of the origin of the main N source available to 
the plant during its development. The lower δ15N values 
of the AS and AS + D treatments indicated that the sor-
ghum crops were exposed to a dominating ammonium 
nutrition for a longer period than the control treatment. 
Nevertheless, at 30 DPF, the NO3

−-N/NH4
+-N ratio in 

soils from the AS treatment showed an increase com-
pared to the AS + D treatment (Fig.  2c), probably due 
to the aforementioned decline in BNI effectivity. This 
means that sorghum plants under AS had greater access 
to NO3

− than sorghum under the AS + D treatment. As 
a consequence, the δ15N values of the AS treatment were 
less negative than those of AS + D at 30 DPF (Fig.  3a). 
In addition, δ15N values of the fertilized treatments did 
not attain the values of the control without fertilization. 
This indicates that while BNIs are less efficient than the 
synthetic inhibitor DMPP, they still promote a certain 
amount of plant NH4

+ nutrition.
The main process responsible for N2O production in 

soils is denitrification [69]. N2O emissions are related to 
soil water content [70], but the humid Mediterranean 
climate is characterized by a hot and dry summer. The 
threshold between water-limited and aeration-limited 
microbial processes is supposed to occur at soil moisture 
levels of 60% WFPS [70]. Therefore, since the soil WFPS 
of the present study did not exceed 25% most of the time 
(Additional file 2: Fig. S2), it is possible that denitrifiers 
were not responsible for N2O emissions. This may have 
been due to the lack of variation between treatments in 
the abundance of the nirK gene at 20 DPF (Fig. 1c). On 
the other hand, nitrifying microorganisms can also pro-
duce N2O via nitrifiers’ denitrification processes [71]. 
Nevertheless, although nitrifying populations might have 
been responsible for the emission peak in the AS treat-
ment at 3 DPF (Fig. 4a), at the same time there were no 
differences in AOB abundance at 20 DPF between AS 
and AS + D (Fig. 1b). We hypothesized that the presence 
of the N2O emission peak at 3 DPF and the inhibition of 
AOB growth at 20 DPF is related to the amount of BNIs 
released by the sorghum roots. The release of BNIs is 
influenced by soil NH4

+ content, which at higher concen-
trations has been shown to stimulate greater BNI release 

in sorghum roots [72]. Therefore, the limited soil NH4
+ 

content before the N2O measurements did not promote 
the release of enough BNIs to reduce nitrification in the 
first few days after fertilizer application. Nonetheless, 
BNI release increased in sorghum after the addition of 
ammonium-based fertilizer, inhibiting AOB growth at 20 
DPF, and this occurred despite a lack of complete inhibi-
tion of nitrification during the first 7 DPF. The fact that 
the N2O emission peak in the AS treatment was reduced 
before 7 DPF, while the N2O emission peaks of fertilized 
treatments without nitrification inhibitors lasted more 
than 15 days [51, 73] is in line with this hypothesis. Dur-
ing the rest of the experiment, sorghum exudates were 
able to maintain low N2O emissions similar to the AS + D 
treatment, which showed great efficiency in reducing 
them, as described in other studies [74–76]. Nonetheless, 
this indicates that even though BNIs have a similar effi-
ciency to SNIs in reducing N2O emissions, the delay in 
BNI release due to the absence of high soil NH4

+ content 
does not prevent N2O emissions in the short-term.

Conclusions
The use of allelopathic substances from plants to reduce 
nitrification in the soil is a topic of increasing inter-
est. BNI inhibition could be a nature-based solution to 
diminish N losses, avoiding reliance on new technologies 
that are not widely adopted. BNIs from sorghum were 
able to prevent an increase in amoA after N fertilization 
with the same efficiency as DMPP. Moreover, total bac-
terial abundance was not affected by either the presence 
of sorghum roots exudates or by DMPP. In addition, both 
BNIs and SNIs maintained similar soil NH4

+ contents 
throughout the experiment. However, sorghum root 
exudates could not prevent the appearance of soil NO3

− 
after 20 DPF, which might indicate that the BNI effect 
decreases in efficiency after a certain amount of time. 
While DMPP maintained low N2O emissions throughout 
the experiment, the AS treatment presented one peak at 
3 DPF that lasted until 7 DPF. Since the release of BNIs 
is related to the soil NH4

+ concentration, we hypothesize 
that the limited soil NH4

+ concentration before the N2O 
measurements did not allow release of enough BNIs to 
avoid this emission peak. Therefore, although sorghum 
root exudates can reduce nitrification in field soil, even 
with the same efficiency as DMPP for a certain amount of 
time, they are not able to prevent the N pollution derived 
from N fertilization as DMPP does during the entire 
experiment.
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