Open Access

Comparative study of phytochemical profiles and morphological properties of some Damask roses from Iran

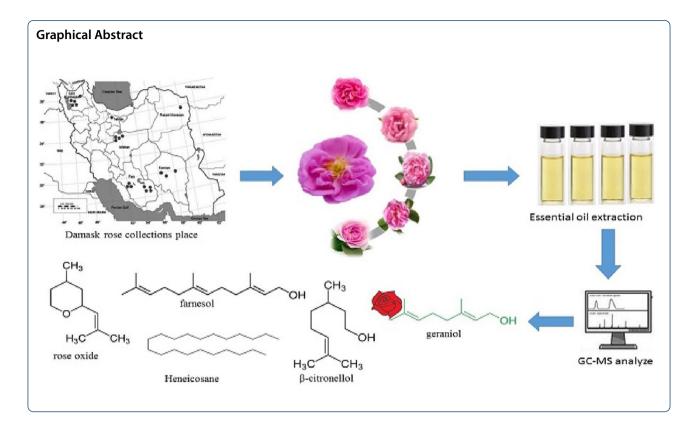
Mohammad Omidi^{1*}, Azizollah Khandan-Mirkohi¹, Mohsen Kafi¹, Omid Rasouli², Arezoo Shaghaghi³, Mahnaz Kiani⁴ and Zabihollah Zamani¹

Abstract

Background: Rosa damascena is an aromatic rose species, which is cultivated for its essential oil, and is widely used in perfume, cosmetic, pharmaceutical, and food industries in the world. This experiment was conducted to evaluate essential oil and morphological variations of 26 Damask rose genotypes. For this purpose, the effect of harvest time, i.e., early morning or evening, and sampling type, i.e., fresh or dried petals, on oil content was evaluated. In addition, the composition of essential oil of the genotypes was determined using gas chromatography-mass spectrometry (GC-MS).

Results: Results showed that early morning was the preferable time for flower collection based on oil content. Furthermore, the oil yield of fresh petals was higher than that of the dried petals. Twenty-five volatile compounds were found in the extracted oils. β -Damascenone, a key marker for the quality of rose oil, was found in 22 genotypes and was more than 1.5% concentration in G3, G6, and G11 genotypes. The highest components of the oil of Damask rose genotypes were nonadecane (42.51%), β -citronellol (40.82%), *n*-heneicosane (34.69%), geraniol (27.76%), and n-tricosane (14.2%). A wide variation in flower characteristics, such as petal color (from white to nearly red) and petal numbers from about 25 to 95, were also recorded. The G2, G5, and G15 genotypes, originated from Isfahan, Fars, and Kerman, respectively, were selected based on petal number, flower weight, and essential oil content in fresh and dried petals.

Conclusions: Results suggest that morphological and biochemical diversity of Damask rose genotypes can be used effectively to characterize genetic diversity between different genotypes and to select special traits in breeding programs.


Keywords: Damask rose, Essential oil, GC-mass spectrometry, Perfume, Volatile compounds

*Correspondence: m.omidighale@ut.ac.ir

¹ Department of Horticultural Sciences, University of Tehran, Karaj, Iran Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background

Damask rose (Rosa damascena Mill.) is a supreme fragrance species in the Rosaceae. It is derived from Rosa gallica and Rosa moschata [1]. This species is cultivated for its ornamental value and also for essential oil extraction in most parts of the northern hemisphere [2, 3]. Iran has been introduced as the genetic diversity center and the origin of Damask roses [4-10]. Nowadays, this species is cultivated extensively in Bulgaria, Iran, Turkey, France, Italy, Morocco, the USA, and India [11]. The global production of rose oil is about 4.5 tones per year [12]. The global rose oil market was valued at 278.7 million USD in 2018 [13]. Products of Damask rose, including essential oil, rose water, rose concrete, dried petals, dried flower buds, and rose absolute, are used in perfume, cosmetic, pharmaceutical, and food industries. Several pharmacological attributes, such as antibacterial, antioxidant, and anti-HIV effects have been found in rose oil [14-16].

Rosa damascena is cultivated in widespread ecological conditions, but specific climatic conditions are needed to produce high-quality essential oil. The quality of essential oil and flower yield of *R. damascena* is mainly affected by geographical origin and climatic conditions, time and stage of flower harvesting, method of extraction [5], and agricultural practices [17–21]. *Rosa damascena* grows wild in some parts of Iran and has vegetatively been propagated and long been cultivated [6]. Thus, various cultivars of Damask rose have been selected during the long cultivation history, and it has also been crossed naturally with local rose species [22]. The phenotypic homogeneity caused by continuous vegetative reproduction and environmental effects makes its mass production possible to produce rose oil [5, 9, 23].

The most important compounds of rose oil are β -citronellol, nonadecane, geraniol, eugenol, heneicosane, and phenols such as eugenol [24, 25]. In addition, some factors such as the concentration of ethanol used for extraction, storage period, and production conditions of flowers, can also affect key compounds in rose oil [5]. Several studies have been conducted on the chemical composition of essential oil in various populations of Damask rose by GC/MS through different extraction methods [3, 9, 15, 26–28], and also on genetic and morphological diversity of *Rosa damascena* [6, 10, 29–32]. The effect of micro-climate on Damask rose cultivation and the oil composition has been also reported [32, 33].

As we have access to the wide genetic diversity of *Rosa damascena* in Iran, it will be valuable to characterize their specific morphology and biochemical characteristics in more detail. Thus, the present study was carried out to determine the variations in the flower yield and morphological and chemical compositions of 26 different Iranian Damask rose genotypes by using gas chromatography-mass spectrometry (GC-MS).

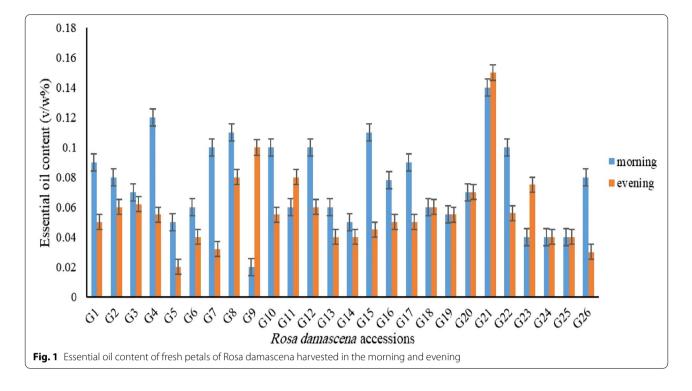
Materials and methods

Plant materials and collection site

26 Damask rose genotypes were selected for this study. These genotypes were previously collected from several parts of Iran (Table 1) and established in the research station for the Department of Horticulture, University of Tehran, Karaj, Iran (latitude 35°0.77′ N, longitude 50°0.93′ E and altitude 1251 m), based on a randomized block design with three replications in 2004 [8]. All samples were the same in size because of their yearly pruning. The average plant high was 165 cm and plant diameter was 123 cm. The current experiment was carried out during 2016–2018.

Evaluation of plant vegetative and flower characteristics

Morphological characteristics, such as plant height, crown diameter, number of main stems in each plant, number of flowers in main stems, angle of the secondary branches, internode length, and thorn density (one to five from high to low), were determined in 12 years old plants. Additionally, the length of stipule, peduncle, receptacle, and flower bud length and diameter prior to the opening stage were measured. Petal colors were determined visually and also measured with a colorimeter (Minolta CR-400 Chroma meter, Konica Minolta Sensing, Inc., Osaka, Japan) using the following parameters: L^* (lightness), a^* (redness), and b^* (yellowness). Color parameters were obtained through reflectance values and chroma calculated by the following formula [34]:


Chroma =
$$\sqrt{a^2 + b^2}$$
.

Isolation and content of essential oil

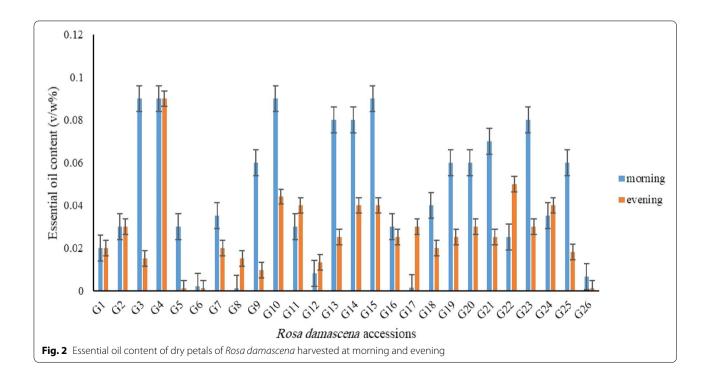

For the extraction of essential oil, fresh flowers from each accession were randomly collected (20 fresh flowers per accession). Flowers were harvested both in the morning and evening. For dried samples, the collected flowers were spread on wire shelves and kept in the shade for 2 weeks at room temperature [35]. A total of 200 g of fresh petals and 55 g of dry petals (equivalent

Table 1 Damask rose genotypes assessed in this study, their province of origin, collection site, and petal color

Genotype no.	Province of origin	Collecting site	Longitude (°)	Latitude (°)	Altitude	Petal color
G1	East Azerbaijan	Kashan, collection of Taghtiran Company	51.05	34.02	1814	Pink
G2	Isfahan	Kashan, collection of Taghtiran Company	51.05	34.02	1814	Dark pink
G3	Tehran	Kashan, collection of Taghtiran Company	51.05	34.02	1814	Pink
G4	Isfahan	Kashan, collection of Taghtiran Company	51.05	34.02	1814	Dark pink
G5	Fars	Kashan, collection of Taghtiran Company	51.05	34.02	1814	White
G6	Fars	Darab, Lyzangan	54.98	28.66	2018	Pale pink
G7	Fars	Darab, Rostagh	55.06	28.44	1314	Pink
G8	Fars	Darab, Ghale Biaban	54.87	28.52	1339	Pink
G9	Fars	Darab, Lyzangan	54.99	28.67	2070	Pale pink
G10	Fars	Maimand, Sahra sefid	52.79	28.83	1480	White
G11	Fars	Maimand, Kang	52.83	28.87	1649	Pink
G12	Fars	Maimand	52.76	28.86	1548	Pink
G13	Kerman	Bardsir	56.58	29.90	2070	Pale pink
G14	Kerman	Bardsir	56.61	29.87	2095	Pink
G15	Kerman	Mahan	57.24	30.12	1823	Pink
G16	East Azerbaijan	Osco	46.13	37.92	1567	Pink
G17	East Azerbaijan	Tabriz	46.43	38.01	1673	Pink
G18	East Azerbaijan	Osco	46.11	37.89	1575	Pink
G19	East Azerbaijan	Osco	46.18	37.90	1685	Dark pink
G20	East Azerbaijan	Ahar	47.04	38.44	1387	Pink
G21	Isfahan	Kashan	51.47	33.94	979	Pink
G22	Isfahan	Kashan	51.53	33.94	974	Pink
G23	Isfahan	Kashan	51.61	33.93	946	Pale pink
G24	Razavi Khorasan	Mashhad	59.46	36.61	1122	Pink
G25	Razavi Khorasan	Mashhad	59.43	36.38	1092	Pink
G26	East Azerbaijan	Tabriz	46.40	37.98	1783	White

to 200 g fresh petals) were subjected to hydrodistillation using 400 ml distilled water in a clevenger for 3 h with three replications [64]. The essential oil was measured directly in the extraction burette and the oil content (v/w) in flower was expressed as percentage on a fresh weight basis of essential oil per 200 g of fresh petals. The extracted oils were transferred into vials and stored at 4°C in the dark.

Table 2Measured morphological characters (mean \pm SE) of 26 Damask rose genotypes

Genotype no.	Plant height (cm)	Plant crown diameter(cm)	No. of main stems per plant	No. of nodes in the branch	Internode length (mm)	Seconda branches angle		ity Leaf stipule length (mm)
G1	111.8 + 5.5	69.4±5.13	14.2±2.0	10.5 ± 1.7	23.9 ± 1.2	73.1 ± 5.5	4.0 ± 00	15.9 ± 1.0
G2	160.5 + 4.7	123.9 ± 8.7	19.0 ± 1.8	27.2 ± 3.3	34.0 ± 3.9	83.3 ± 1.6	4.0 ± 00	16.8 ± 1.4
G3	111.2 + 35	104.0 ± 3.7	14.2±0.8	19.5 ± 1.7	29.3 ± 2.7	81.1 ± 2.3	4.0 ± 00	19.0 ± 1.2
G4	185.2 + 3.7	139.2 ± 4.2	16.4±0.9	34.1 ± 3.2	32.8 ± 3.1	85.5 ± 1.3	2.0 ± 00	18.5 ± 0.7
G5	129.4 + 4.5	107.8±4.8	16.9±1.0	23.8 ± 1.4	29.0 ± 2.4	66.7 ± 1.6	5.0 ± 00	20.0 ± 1.0
G6	174.1 + 6.1	152.9 ± 5.6	18.3 ± 1.7	27.2 ± 2.0	27.0 ± 2.3	78.3 ± 2.8	3.1 ± 0.2	14.6 ± 1.0
G7	177.1 + 2.8	135.8 ± 2.3	17.2 ± 1.1	32.1 ± 5.7	36.5 ± 4.0	83.3 ± 1.6	1.0 ± 00	26.6 ± 1.9
G8	194.4 + 3.3	148.0 ± 3.3	15.3±0.6	46.4 ± 4.1	37.2 ± 2.6	86.1 ± 1.4	1.0 ± 00	25.2 ± 1.1
G9	168.3 + 8.9	133.5 ± 4.3	15.0 ± 0.7	41.9 ± 6.4	36.3 ± 2.6	79.4 ± 2.4		26.2 ± 1.7
G10	200.6 + 4.8	113.0 ± 3.6	22.2 ± 1.5	35.9 ± 2.6	32.8 ± 3.2	82.2 ± 2.2		22.0 ± 1.2
G11	116.5 + 2.3	104.0 ± 4.8	11.4±0.9	16.9 ± 2.4	33.2 ± 3.1	86.6 ± 1.1	1.0 ± 00	24.1 ± 1.2
G12	205.4 + 3.0	153.9 ± 4.4	22.1 ± 1.3	38.2 ± 4.5	35.0 ± 1.7	78.3 ± 2.0		17.0 ± 0.7
G13	213.8 + 5.5	150.0 ± 2.8	35.3 ± 1.1	32.0 ± 2.1	33.7 ± 3.6	75.0 ± 2.0		19.5 ± 0.4
G14	182.5 + 3.5	114.0±3.1	19.8 ± 1.4	31.4 ± 2.8	30.2 ± 2.4	80.0 ± 2.3		20.5 ± 1.6
G15	201.3 + 4.3	160.0 ± 3.3	28.1 ± 0.9	33.0 ± 2.0	28.1 ± 1.9	77.8 ± 2.6		21.5 ± 1.2
G16	147.5 + 3.9	118.3 ± 6.3	17.5 ± 0.9	16.2 ± 1.6	28.9 ± 2.8	79.4 ± 1.7		18.9 ± 0.9
G17	122.7 + 5.1	101.2 ± 7.4	10.1 ± 1.2	11.4 ± 1.2	29.0 ± 2.8	84.4 ± 1.7		17.7 ± 0.6
G18	139.5 + 4.0	117.8 ± 4.0	21.2 ± 0.9	20.4 ± 2.0	30.7 ± 2.3	66.1 ± 0.1	4.0±00	19.4 ± 1.8
G19	143.8 + 1.9	146.2 ± 6.7	16.7 ± 0.6	23.4 ± 3.5	30.2 ± 3.2	66.7 ± 1.6		21.5 ± 1.2
G20	115.7 + 4.8	121.9 ± 3.9	14.1 ± 1.0	21.9 ± 2.8	28.7 ± 3.3	62.8 ± 1.7		20.2 ± 1.2
G21	167.8 + 3.6	125.9 ± 6.8	14.5 ± 1.2	28.1 ± 3.1	32.7 ± 3.4	80.0 ± 1.1	1.0 ± 0.0	47.2 ± 2.0
G22	200.4 + 3.5	123.9 ± 0.0 143.9 ± 3.0	20.4 ± 1.5	34.4 ± 3.5	33.0 ± 3.3	86.1 ± 1.4		23.2 ± 1.3
G23	186.2 + 4.8	129.7 ± 5.4	22.0 ± 0.8	40.7 ± 4.7	36.3 ± 2.5	82.2 ± 1.8		24.0 ± 1.8
G24	192.4 + 8.3	120.7 ± 0.1 136.1 ± 8.3	24.1 ± 1.5	28.5 ± 2.9	35.0 ± 0.3	80.5 ± 2.4		21.0 ± 1.0 20.5 ± 1.3
G25	154.1 + 3.4	134.5 ± 5.4	13.0 ± 0.5	13.7 ± 2.7	35.5 ± 3.8	83.3 ± 1.1	1.0 ± 0.0	25.1 ± 0.9
G25 G26	158.1 + .3.4	140.8 ± 3.8	13.0 ± 0.3 21.1 ± 1.7	15.7 ± 2.7 25.0 \pm 2.8	27.2 ± 2.5	75.0 ± 2.0		17.6 ± 1.3
Genotype No.	Leaf stipule width (mm)	Peduncle length (mm)	Receptacle length (mm)	Flower bud length (mm		er (mm)	No. of petals	Flower weight (gr)
G1	6.9 ± 0.4	14.8 ± 1.1	10.2 ± 1.3	16.5 ± 0.8	10.3 ± 0	.3	47.3 ± 1.2	2.3 ± 0.0
G2	20.4 ± 1.9	22.9 ± 1.8	7.7 ± 0.3	19.2 ± 1.3	11.9 ± 0	.4	95.2 ± 2.2	4.2 ± 0.0
G3	8.4 ± 0.8	18.8 ± 1.2	14.3 ± 1.0	20.9 ± 1.1	12.4 ± 0	.6	27.0 ± 1.4	2.6 ± 0.2
G4	10.1 ± 0.6	26.7 ± 1.5	10.6 ± 0.4	24.9 ± 0.7	9.5 ± 0	.3	30.4 ± 1.2	2.0 ± 0.0
G5	15.3 ± 0.9	22.2 ± 2.0	6.4 ± 0.2	22.5 ± 0.6	11.8 ± 0	.4	26.9 ± 0.5	2.7 ± 0.1
G6	7.6 ± 0.5	28.9 ± 2.5	8.9 ± 0.4	23.1 ± 1.0	12.6 ± 0	.7	30.9 ± 0.8	2.3 ± 0.0
G7	8.0 ± 0.5	32.2 ± 2.7	10.6 ± 0.4	25.1 ± 0.6	9.4±0	.2	29.5 ± 1.1	2.2 ± 0.0
G8	10.6 ± 0.8	29.5 ± 1.8	10.8 ± 0.2	26.7 ± 0.9	10.1 ± 0	.5	30.6±1.0	2.5 ± 0.0
G9	11.4 ± 0.7	24.1 ± 0.9	10.2 ± 0.7	22.7 ± 0.7	11.0 ± 0	.2	29.4±41.0	2.8 ± 0.1
G10	9.4 ± 0.9	30.0 ± 1.7	9.8 ± 0.4	26.0 ± 0.7	10.5 ± 0			2.9 ± 0.2
G11	10.6 ± 0.4	29.7 ± 1.5	10.8 ± 0.2	25.1 ± 0.7	10.3 ± 0			2.4 ± 0.0
G12	8.1 ± 0.4	32.6 ± 1.7	10.1 ± 0.5	25.7 ± 0.8	10.3 ± 0	.3	30.3 ± 1.0	2.3 ± 0.0
G13	7.5 ± 0.3	29.5 ± 2.6	9.4 ± 0.4	25.1 ± 1.0	10.2 ± 0	.2	32.0 ± 1.2	1.8 ± 0.2
G14	9.4±0.7	30.2 ± 1.9	9.2 ± 0.4	24.6 ± 0.7	9.9 ± 0			1.9 ± 0.0
G15	7.5 ± 0.8	35.7 ± 2.0	9.2 ± 0.5	24.9 ± 0.7	10.6 ± 0			1.5 ± 0.1
G16	11.3 ± 0.8	20.6 ± 2.5	6.9 ± 0.2	19.3 ± 0.5	9.5 ± 0			$1.9. \pm 0.1$
G17	11.9±0.4	20.4 ± 1.1	7.1 ± 0.4	21.4 ± 0.7	9.9 ± 0			1.6 ± 0.0
G18	11.0 ± 0.6	21.0 ± 1.2	7.9 ± 0.5	21.0 ± 0.9	9.5 ± 0	.3	43.5 ± 0.8	3.2 ± 0.3
G18 G19	11.0 ± 0.6 11.0 ± 0.6	21.0 ± 1.2 18.7 ± 1.5	7.9±0.5 7.3±0.0	21.0±0.9 21.7±0.5	9.5±0 10.4±0			5.2±0.5 2.3±0.0

Genotype No.	Leaf stipule width (mm)	Peduncle length (mm)	Receptacle length (mm)	Flower bud length (mm)	Flower bud diameter (mm)	No. of petals	Flower weight (gr)
G21	10.4 ± 0.6	32.4 ± 1.5	10.7±0.2	27.1 ± 0.9	10.1 ± 0.2	33.6 ± 1.6	2.3±0.1
G22	10.6 ± 0.7	29.2 ± 1.8	9.8 ± 0.4	28.5 ± 0.7	9.2 ± 0.3	31.5 ± 3.2	2.1 ± 0.1
G23	9.6 ± 0.7	35.9 ± 2.8	11.6 ± 0.4	24.0 ± 1.6	9.9 ± 0.2	26.6 ± 1.1	1.8 ± 0.1
G24	11.3 ± 1.2	26.5 ± 1.3	7.5 ± 0.2	20.2 ± 2.5	10.4 ± 0.1	24.1 ± 0.5	2.2 ± 0.0
G25	17.5 ± 1.7	35.9 ± 2.4	8.6 ± 0.6	24.3 ± 1.0	10.2 ± 0.2	27.2 ± 1.5	$2.8 \pm .0.0$
G26	7.8 ± 0.6	26.9 ± 1.5	8.2 ± 0.3	18.3 ± 0.6	10.8 ± 0.2	51.5 ± 1.7	2.4 ± 0.3

Table 2 (continued)

Gas chromatography (GC-FID) and (GC-MS)

GC-MS analysis of the oil samples was performed on a Thermo-UFM (Ultra-Fast model, Italy) gas chromatograph equipped with a P5 (non-polar) capillary column (10 m \times 0.1 mm), which employed helium (0.5 ml/min) as the carrier gas to split injection at 1:100. The oven temperature was set at 60 °C for 30 min, FID detector temperature was programmed at 285 °C at the rate of 80 °C/min, and the injector temperature was 280 °C. The relative amounts of individual components were calculated based on the GC peak areas by using a normalization method regarding response factor. The essential oil constituents were identified following an injection of n-alkanes (C₈-C₂₄) under the same conditions and confirmed according to Wiley 275-L library and literature [36-38]. The compounds were identified using commercial mass spectral libraries (NIST 05, Wiley 7th Mass spectra register) [37].

Statistical analysis

For the evaluation of morphological characteristics of vegetative and flower parts, the experiment was arranged in a randomized complete block design (RCBD) with three replications. Mean values were compared at 95% ($p \le 0.05$) and 99% ($p \le 0.01$) confidence intervals using the LSD test by Minitab 16 [39].

Results

Oil content in fresh and dry petals

In the majority of selected Damask rose genotypes, petals harvested in the morning time for dried and fresh petals had higher oil content in comparison with samples collected in the evening time with the exception of G9, G11, and G23 genotypes, for which a opposite trend was found (Fig. 1). The highest oil content in fresh petals was found in G21 for morning and evening harvest time, 0.14 and 0.15 (v/w%), respectively. Additionally, in G18, G19, G20, G24, and G25 genotypes the total volume of essential oil content in both harvesting times was similar (Fig. 1). In dried petals, the time of harvesting also affected the oil content. However, the oil content in dried petals was generally lower than in the fresh petals. Although in most genotypes a higher oil content of dried petals was recorded for the morning harvest time, there was no difference in the content of essential oil of dry petals between harvest times in G1, G2, and G4 genotypes. However, due to later flowering of G22 (0.05 v/w%) and G24 (0.04 v/w%) genotypes, the oil content in dried petals harvested in the evening time was more than in those harvested in the morning time (Fig. 2).

Morphological traits

There were clear differences in morphological characteristics between selected Damask rose genotypes (Table 2). The correlation matrix among morphological traits of R. damascena showed that the plant height was significantly (P=0.01) positively correlated with the plant crown diameter (r=0.72), No of nodes in branch (r=0.79), No of main stems per plant (r=0.70), flower bud length (r = 0.65), peduncle length (r = 0.69) (Table 3). Thorn density was negatively correlated with the flower bud length (r = -0.80) and peduncle length (r = -0.78). Moreover, a positive correlation (r=-0.60) was found between number of nodes in the branch and flower bud length. A significant (P=0.01) positive (r=0.74) correlation was found between flower bud length and peduncle length (Table 3). The flower peduncle length was positively correlated with most traits evaluated in this study. Different petal colors, from white to dark purple, were observed in the selected Damask rose genotypes (Table 1). The measurements of color parameters gave different values of L*, a*, and b*. The results showed highly significant differences among genotypes for all color traits (Table 4). Chroma values were also different between genotypes.

Essential oil components

Significant differences were found between chromatographic characteristics of the genotypes, indicating differences in their chemical compositions. In total, 25

		נפטר ב בטובומוטון בטבוובינים אבנוארביו נוב חומודדוטן אוטטקומו בוממברבים וודה ממוזמצביות קבווטלאבט			ווסוסקיימי יו	מומרורו ז וווי	י ממוזומזרכוז	יישיייש						
	Plant height	Plant crown diameter	Leaf stipule length	Leaf stipule width	No. of nodes in the branch	Flower bud diameter	No. of main stems per plant	Flower bud length	Reseptacle length	Peduncle length	Inter node length	Thorns density	Branches angle	No of petals
Plant height	-													
Plant crown diameter	0.726 ^b	-												
Leaf stipule length	0.129	0.082	-											
Leaf stipule width	- 0.242	- 0.109	0.046	-										
No. of nodes in the branch	0.799 ^b	0.621 ^b	0.214	- 0.206	-									
Flower bud diameter	- 0.193	- 0.005	- 0.248	0.153	- 0.048	-								
No. of main stems per plant	0.706 ^b	0.518 ^b	- 0.179	- 0.314	0.437 ^a	- 0.033	. 							
Flower bud length	0.650 ^b	0.488*	0.515 ^b	- 0.135	0.606 ^b	- 0.28	0.207	-						
Receptacle length	0.121	- 0.037	0.277	— 0.450 ^a	0.342	0.092	- 0.075	0.353	-					
Peduncle length	0.692 ^b	0.582 ^b	0.404 ^a	- 0.105	0.537 ^b	- 0.18	0.359	0.741 ^b	0.27					
Internode Iength	0.517 ^b	0.374	0.397 ^a	0.255	0.606 ^b	— 0.248	0.106	0.586 ^b	0.293	0.534 ^b				
Thorns density	— 0.527 ^b	— 0.297	— 0.430 ^a	0.178	— 0.411 ^a	0.413 ^a	— 0.114	— 0.803 ^b	— 0.481 ^a	— 0.783 ^b	— 0.530 ^b			
Branches angle	0.371	0.103	0.192	0.021	0.276	- 0.083	— 0.128	0.457 ^a	0.451 ^a	0.463 ^a	0.507 ^b	— 0.545 ^b	-	
No. of petals	- 0.325	- 0.191	- 0.258	0.482 ^a	- 0.313	0.141	— 0.16	— 0.578 ^b	— 0.414 ^a	— 0.480 ^a	- 0.212	0.434 ^a	- 0.165	-
^a Correlation ^b Correlation	is significant <i>i</i> is significant a	^a Correlation is significant at the 0.05 level ^b Correlation is significant at the 0.01 level												

Table 3 Correlation coefficients between the main morphological characters in *R. damascena* genotypes

were found in G20, G3, and G3, respectively (Table 5). Damascone (Z)- α , β -damascone, and β -damascenone are the trace components and quality markers for Damask rose oil, playing an important organoleptic role in rose oil [40]. The highest quantity of β -citronellol (40%) was recorded in G26, which is one of the most abundant acyclic terpenes in rose oil.

In the current study, neral was present in all genotypes, except in G3, G11, G14, and G18. A major concentration of neral was in G9 (10.83%) and G2 (10.25%). Geranial was found in G1, G2, G4, G5, G9, G10, G15, and G16 genotypes at low levels (Table 5). Neral and geranial are citral isomers, which have been found in Damask rose essential oil [28]. Farnesol, natural sesquiterpene alcohol in essential oils, was found to have the potential for alleviating massive inflammation, oxidative stress, and lung injury [41, 42]. Farnesol has been widely used in cosmetics, pharmaceuticals, industrial materials, and as a material for carotenoid and tocopherol [43]. Farnesol is a sesquiterpene trans and exists in some Damask genotypes. A higher amount of it was found in G17 (3.01%), and the highest e-e Farnesol was observed in G15 (8.28%).

Rose oxide is an insignificant component of rose oil [44]. In this study, the rose oxide has been found at low concentrations in G3, G11, G15, G19, G22, G23, and G26 (Table 5). Phenethyl alcohol is an enjoyable floral perfume belonging to aromatic alcohols, and one of the main components of rose hydrosols, which is mainly used in perfumery [2]. However, this compound was detected at low levels only in some genotypes including G6 (1.54%), G23 (0.40%), and G2 (0.33%). Phytol is a major component of plant-derived essential oils. It has been recognized for its wide range of pharmacological effects on the nervous system, including anxiolytic, antidepressant, and antimicrobial [45–47]. Several recent studies have suggested that some phytol-derivatives (phytanol, phytanyl amine, and phytanyl mannose) target tumor cells by induction of the expression of a range of chemokines and cytokines effects [48, 49]. Other hydrocarbon-like ingredients, n-docosane and n-tricosane, were also identified in Damask roses essential oil. Quantities of *n*-tricosane were much more than that of *n*-docosane in all genotypes. In the present study, G6 (9.33%) and G20 (14.20%) genotypes showed the highest contents of *n*-tricosane and *n*-docosane, respectively.

Discussion

Several studies have been conducted to date on the genetic diversity of *R. damascena* in Iran, which have shown a high diversity and genetic variation of this species [6, 8, 50]. In this study, *R. damascena* genotypes

Table 4 Color indices of petals of 26 Damask rose landraces (mean $\pm\,\text{SE})$

Genotype	L*	a*	b*	Chroma
G1	61.4±4.4	31.59 ± 3.6	-0.4 ± 0.4	38.6 ± 1.0
G2	37.3 ± 0.7	52.41 ± 2.1	8.8 ± 2.4	41.9 ± 4.1
G3	65.0 ± 3.2	32.5 ± 5.6	-5.0 ± 2.1	39.9 ± 0.7
G4	49.0 ± 1.7	47.8 ± 5.0	-1.8 ± 0.7	53.9 ± 2.1
G5	68.2 ± 1.2	23.4 ± 6.5	24.7 ± 3.8	41.3 ± 3.0
G6	67.3 ± 2.9	28.8 ± 3.1	0.9 ± 0.4	35.8 ± 2.0
G7	70.8 ± 1.4	26.5 ± 1.9	-0.9 ± 0.5	32.5 ± 3.1
G8	71.6 ± 1.4	28.1 ± 2.4	0.0 ± 0.6	34.1 ± 5.1
G9	74.8 ± 1.1	22.0 ± 3.4	22.3 ± 1.5	38.2 ± 2.9
G10	76.4 ± 3.3	27.5 ± 5.3	-3.1 ± 0.9	43.1 ± 2.5
G11	64.3 ± 1.0	36.3 ± 0.6	-3.6 ± 0.3	42.5 ± 3.0
G12	67.0 ± 1.9	25.9 ± 2.2	4.5 ± 1.6	31.3 ± 0.6
G13	59.5 ± 3.1	29.4 ± 2.8	-2.5 ± 0.5	36.5 ± 1.0
G14	55.9 ± 5.1	42.1 ± 2.3	-1.6 ± 1.7	49.1 ± 2.0
G15	60.6 ± 3.3	37.3 ± 4.5	-0.9 ± 3.0	44.3 ± 3.2
G16	41.7 ± 1.7	53.0 ± 1.8	-8.8 ± 0.8	60.7 ± 4.0
G17	63.2 ± 2.9	34.4 ± 4.0	-2.5 ± 0.5	41.5 ± 0.4
G18	43.6 ± 5.1	37.0 ± 2.9	1.6 ± 0.6	43.0 ± 7.9
G19	39.0 ± 2.4	35.0 ± 2.7	3.3 ± 1.8	42.2 ± 6.3
G20	55.8 ± 4.9	35.7 ± 7.6	3.7 ± 3.4	41.9 ± 4.5
G21	60.2 ± 0.2	25.7 ± 5.0	2.0 ± 0.4	32.8 ± 1.9
G22	66.2 ± 3.9	29.9 ± 6.5	-0.6 ± 1.6	36.9 ± 0.2
G23	65.7 ± 1.5	24.3 ± 3.0	-2.2 ± 0.8	41.3 ± 3.7
G24	66.3 ± 2.9	32.1 ± 3.4	0.3 ± 2.7	39.1 ± 1.4
G25	65.4 ± 3.1	33.1 ± 3.1	1.4 ± 1.4	40.1 ± 2.1
G26	79.0 ± 0.1	26.2 ± 0.4	19.3 ± 0.7	33.4 ± 1.8

compounds were identified in extracted oils of fresh petals of the 26 Iranian genotypes (Table 5). The principal components of the essential oils were *n*-heneicosane, citronellol, and nonadecane in all genotypes. Results show that geraniol is the highest component in Damask rose oil, except in G14 and G18. The highest concentration of geraniol was found in G5 (27.76%), G9 (27.33%), and G2 (27.27%), respectively. Geraniol has been reported to be one of the main essential oil components in Damask rose [5]. According to GC-MS results, the highest nonadecane contents (42.51%, 35.06%, 30.91%, and 30.26%) were found in essential oils of G12, G14, G11, and G19, respectively. Several studies indicated that heneicosane, heptadecane, nonadecane, and eicosane were abundant hydrocarbons in rose oil [32]. Furthermore, G14 (34.69%), G23 (30.92%), and G21 (30.82%) had the highest content of heneicosane. In the current study, damascone (Z)- α and β -damascenone were found in most genotypes, but β -damascone was less abundant. The highest concentrations of damascone (Z)- α (2.88%), β -damascone (0.96%), and β -damascenone (1.76%)

 Table 5
 Quantitative data for the 25 components of the essential oil content (%) from 26 Damask roses genotypes, determined by GC-MS

No.	Compound	Rt ^a	LRI ^b	RI ^c	G1	G2	G3	G4	G5	G6	G7	G8	G9
1	Phenyl ethyl alcohol	11.75	1106	1111	-	0.334	_	_	0.309	1.541	-	0.302	0.400
2	Dihydro linalool	12.82	1131	1145	0.556	1.451	-	1.057	0.826	41.189	0.388	0.831	1.271
3	β-Citronellol	16.80	1223	1225	34.660	29.268	14.911	37.574	21.812	15.608	27.728	31.830	30.389
1	Neral	17.32	1235	1237	2.281	10.258	0	3.893	7.347	6.221	2.239	3.791	10.832
5	Geraniol	17.95	1249	1250	6.182	27.270	2.931	12.182	27.768	7.986	6.935	10.863	27.335
5	Linalyl acetate	18.16	1254	1257	0.220	-	-	-	0.470	-	-	-	0.291
7	Geranial	18.62	1264	1267	0.202	0.877	-	0.332	0.363	-	-	-	0.728
8	Dihydro citronellol acetate	21.04	1319	1320	0.232	0.454	-	0.278	0.408	-	-	-	0.360
9	Damascone (Ζ)-α	22.64	1355	1358	0.368	1.847	-	0.538	2.226	1.666	0.487	0.394	1.281
0	Damascenone (E)-β	23.87	1383	1384	0.762	_	1.766	0.526	0.308	1.761	0.704	0.812	0.274
1	Damascone (E)-β	25.17	1413	1414	_	0.528	0.967	_	_	_	_	-	0.253
12	Dodecen-1-ol (2E)	27.55	1469	1471	_	0.717	_	_	_	_	_	0.736	2.099
13	<i>n</i> Heptadecane	36.74	1700	1700	1.979	0.435	1.315	2.311	1.609	_	1.271	0.583	0.529
4	zz-Farnesol	36.68	1698	1698	0.638	1.026	0.503	_	_	_	_	0.584	1.367
15	(e e)-Farnesyl acetate	42.01	1845	1846	0.845	4.002	-	1.138	2.249	_	1.173	1.399	3.756
16	<i>n</i> -Octadecane	40.40	1800	1800	-	0.360	0.567	0.262	_	_	_	_	0.429
17	<i>n</i> -Hexadecanol	43.03	1874	1875	2.918	0.317	4.184	5.202	3.815	1.174	2.634	0.605	0.343
18	Nonadecane	43.92	1900	1903	27.229	5.580	28.927	19.81	14.812	5.455	23.574	10.710	4.347
19	<i>n</i> -Eicosane	47.33	2000	2004	2.587	1.362	4.330	1.850	1.542	_	3.260	2.646	1.242
20	<i>n</i> -Heneicosane	50.47	2100	2100	13.860	7.729	21.574	9.429	9.522	4.784	21.243	19.543	6.749
		53.54	2200	2100	0.286	0.405	0.724	9.429	9.322 0.224	9.335	0.578	0.749	0.749
21	n-Docosane												
22	<i>n</i> -Tricosane	56.48	2300	2303	3.236	4.874	6.506	2.480	3.295	2.635	6.039	11.177	3.905
23	e-e Farnesol	38.30	1742	1743	0.363	0.522	0.439	-	-	-	0.359	0.524	0.861
24	Phytol	45.37	1942	1943	-	-	-	-	-	-	-	0.311	-
25	Trans rose oxide	12.45	1122	1125	-	-	0.605	-	-	-	-	-	-
		Tatal			00 41 2	00 (25	00 250	00.072	00 01 0		00 (15	00 400	00 202
		Total	, pub	DI	99.413	99.625	90.256	98.873	98.912	99.360	98.615	98.400	99.393
۱o.	Compound	Total Rt ª	LRI ^b	RI ^c	99.413 G10	99.625 G11	90.256 G12	98.873 G13	98.912 G14	99.360 G15	98.615 G16	98.400 G17	99.393 G18
	Phenyl ethyl alcohol	Rt ^a 11.75	1106	RI^c	G10 0.240			G13 -	G14 0	G15 0.206	G16 0.224	G17 -	G18 -
	Phenyl ethyl alcohol Dihydro linalool	Rt^a 11.75 12.82		_	G10 0.240 0.716	G11	G12	G13	G14	G15	G16	G17	
	Phenyl ethyl alcohol	Rt ^a 11.75	1106	1111	G10 0.240	G11 -	G12 -	G13 -	G14 0	G15 0.206	G16 0.224	G17 -	G18 -
	Phenyl ethyl alcohol Dihydro linalool	Rt^a 11.75 12.82	1106 1131	1111 1145	G10 0.240 0.716	G11 - -	G12 - -	G13 - 1.776	G14 0 2.559	G15 0.206 10.647	G16 0.224 3.064	G17 - 4.434	G18 - 23.869
}	Phenyl ethyl alcohol Dihydro linalool β-Citronellol	Rt ^a 11.75 12.82 16.80	1106 1131 1223	1111 1145 1225	G10 0.240 0.716 30.77	G11 - - 10.249	G12 - 7.071	G13 - 1.776 15.382	G14 0 2.559 6.155	G15 0.206 10.647 29.638	G16 0.224 3.064 15.961	G17 - 4.434 18.993	G18 - 23.869
- - -	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral	Rt ^a 11.75 12.82 16.80 17.32	1106 1131 1223 1235	1111 1145 1225 1237	G10 0.240 0.716 30.77 3.914	G11 - 10.249 0	G12 - 7.071 2.085	G13 - 1.776 15.382 4.977	G14 0 2.559 6.155 –	G15 0.206 10.647 29.638 3.675	G16 0.224 3.064 15.961 5.110	G17 - 4.434 18.993 0.734	G18 - 23.869
-	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol	Rt ^a 11.75 12.82 16.80 17.32 17.95	1106 1131 1223 1235 1249	1111 1145 1225 1237 1250	G10 0.240 0.716 30.77 3.914 10.364	G11 10.249 0 2.244	G12 - 7.071 2.085	G13 - 1.776 15.382 4.977 13.467	G14 0 2.559 6.155 – –	G15 0.206 10.647 29.638 3.675 9.394	G16 0.224 3.064 15.961 5.110 12.120	G17 - 4.434 18.993 0.734 5.707	G18 - 23.869
- - - 	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16	1106 1131 1223 1235 1249 1254	1111 1145 1225 1237 1250 1257	G10 0.240 0.716 30.77 3.914 10.364 0.277	G11 10.249 0 2.244	G12 - 7.071 2.085	G13 - 1.776 15.382 4.977 13.467	G14 0 2.559 6.155 - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692	G16 0.224 3.064 15.961 5.110 12.120 2.762	G17 - 4.434 18.993 0.734 5.707 -	G18 - 23.869
5	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62	1106 1131 1223 1235 1249 1254 1264	1111 1145 1225 1237 1250 1257 1267	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268	G11 10.249 0 2.244	G12 - 7.071 2.085	G13 - 1.776 15.382 4.977 13.467	G14 0 2.559 6.155 - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285	G17 - 4.434 18.993 0.734 5.707	G18 - 23.869
- - - - 	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate	Rt^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04	1106 1131 1223 1235 1249 1254 1264 1319	1111 1145 1225 1237 1250 1257 1267 1320	G10 0.240 0.716 3.077 3.914 10.364 0.277 0.268 0.242	G11 - 10.249 0 2.244 - - -	G12 7.071 2.085 4.453	G13 - 1.776 15.382 4.977 13.467 0.554	G14 0 2.559 6.155 - - - - - - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 -	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320	G17 - 4.434 18.993 0.734 5.707 - - -	G18 - 23.869 14.855 - - - - - - - - - - - - -
0	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α	Rt^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64	1106 1131 1223 1235 1249 1254 1264 1319 1355	1111 1145 1225 1237 1250 1257 1267 1320 1358	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466	G11 - 10.249 0 2.244 - - - - -	G12 - 7.071 2.085 4.453 - - - 0.814	G13 - 1.776 15.382 4.977 13.467 0.554 - - 0.749	G14 0 2.559 6.155	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.219	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081	G17 - 4.434 18.993 0.734 5.707 - - - - -	G18 - 23.869 14.855 1.768
0 1	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascenone (Ε)-β	Rt^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.768	G11 10.249 0 2.244 1.707	G12 7.071 2.085 4.453 0.814 0.282	G13 - 1.776 15.382 4.977 13.467 0.554 0.749	G14 0 2.559 6.155	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247	G17 - 4.434 18.993 0.734 5.707 - - - - - 0.885	G18 - 23.869 14.855 - - - - 1.768 -
2 5 5 7 8 9 0 1 2	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascenone (Ε)-β	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.768 0.299	G11 - 10.249 0 2.244 - - - 1.707 0.531	G12 7.071 2.085 4.453 0.814 0.282	G13 - 1.776 15.382 4.977 13.467 0.554 0.749	G14 0 2.559 6.155 - - - - - - - - - - - - - - - - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270	G17 - 4.434 18.993 0.734 5.707 - - 0.885 0.418	G18 - 23.869 14.855 1.768
2 5 5 7 8 9 0 1 2 3	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascenone (Ε)-β Damascone (Ε)-β	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.249 0.299 0.199	G11 - 10.249 0 2.244 - - 1.707 0.531 0.317	G12 7.071 2.085 4.453 0.814 0.282 - 2.563	G13 - 1.776 15.382 4.977 13.467 0.554 0.554 - 0.749	G14 0 2.559 6.155 - - - - - - - - - - - - - - - - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 -	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270	G17 - 4.434 18.993 0.734 5.707 - - 0.885 0.418 0.423	G18 - 23.869 14.855 1.768 - 1.396
2 5 6 7 8 9 0 1 2 3 4	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascenone (Ε)-β Damascone (Ε)-β Dodecen-1-ol (2Ε) <i>n</i> Heptadecane <i>zz</i> -Farnesol	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55 36.74 36.68	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469 1700	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.242 0.466 0.299 0.199 1.923	G11 10.249 0 2.244 1.707 0.531 0.317 1.098	G12 7.071 2.085 4.453 0.814 0.282 - 2.563 5.856	G13 - 1.776 15.382 4.977 13.467 0.554 0.749 0.749 0.541 0.811	G14 2.559 6.155 - - - - - - - - - - - - -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 - 0.569	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 - 1.459	G17 - 4.434 18.993 0.734 5.707 - - - 0.885 0.418 0.423 0.76	G18 - 23.869 14.855
No. 2 3 4 5 5 7 10 11 12 13 14 15 16	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascone (Ε)-β Damascone (Ε)-β Dodecen-1-ol (2Ε) <i>n</i> Heptadecane	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 25.17 25.5 36.74	1106 1131 1223 1249 1254 1264 1319 1355 1383 1413 1469 1700 1698	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700 1698	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.768 0.299 0.199 1.923 0.432	G11 10.249 0 2.244 1.707 0.531 0.317 1.098 - 0.330	G12 7.071 2.085 4.453 0.814 0.282 - 2.563 5.856	G13 - 1.776 15.382 4.977 13.467 0.554 0.749 0.749 - 0.811 1.075	G14 0 2.559 6.155 - - - - - - - - - - 0.854 -	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 - 0.569 -	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 - 1.459 1.749	G17 4.434 18.993 0.734 5.707 - - - 0.885 0.418 0.423 0.76 3.017	G18 - 23.869 14.855 1.768 - 1.396 1.300
2 5 5 6 7 8 9 0 1 2 3 4 5 6	Phenyl ethyl alcohol Dihydro linalool β-Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Ζ)-α Damascenone (Ε)-β Damascone (Ε)-β Dodecen-1-ol (2Ε) <i>n</i> Heptadecane <i>z z</i> -Farnesol (e e)-Farnesyl acetate	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55 36.74 36.68 42.01 40.40	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469 1700 1698 1845 1800	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700 1698 1846 1800	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.242 0.466 0.249 0.249 0.249 0.249 0.242 0.462 0.299 0.199 1.923 0.432 1.295	G11 10.249 0 2.244 1.707 0.531 0.317 1.098 - 0.330 0.483	G12 7.071 2.085 4.453 0.814 0.282 - 2.563 5.856 - 1.643 0.309	G13 - 1.776 15.382 4.977 13.467 0.554 0.749 0.749 - 0.811 1.075 2.100	G14 2.559 6.155 - - - - - - - - 0.854 - - - 0.854	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 - 0.569	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 - 1.459 1.749 2.834 -	G17 - 4.434 18.993 0.734 5.707 - - - 0.885 0.418 0.423 0.76 3.017 0.870 -	G18 - 23.869 14.855 1.768 - 1.396 1.300 2.214
2 3 5 7 3 9 0 11 2 3 4 4 5 6 6 17	Phenyl ethyl alcohol Dihydro linalool β -Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Z)- α Damascone (E)- β Damascone (E)- β Dodecen-1-ol (2E) <i>n</i> Heptadecane <i>z z</i> -Farnesol (e e)-Farnesyl acetate <i>n</i> -Octadecane <i>n</i> -Hexadecanol	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55 36.74 36.68 42.01 40.40 43.03	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469 1700 1698 1845 1800 1874	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700 1698 1846 1800 1875	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.242 0.466 0.768 0.299 0.199 1.923 0.432 1.295 - 3.308	G11 10.249 0 2.244 1.707 0.531 0.317 1.098 - 0.330 0.483 3.430	G12 7.071 2.085 4.453 0.814 0.282 - 2.563 5.856 - 1.643 0.309 6.635	G13 - 1.776 15.382 4.977 13.467 0.554 0.749 0.749 - 0.811 1.075 2.100 - 1.788	G14 2.559 6.155 - - - - - - - 0.854 - - 2.386	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 - 0.569 - - 0.569 - - 0.569	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 - 1.459 1.749 2.834 - 1.386	G17 - 4.434 18.993 0.734 5.707 - - 0.885 0.418 0.423 0.76 3.017 0.870 - 1.119	G18 - 23.869 14.855 1.768 - 1.396 1.300 2.214 9.166
2 3 4 5 5 7 3 3 9 10 11 12 13 14 15 16 17 18	Phenyl ethyl alcohol Dihydro linalool β -Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Z)- α Damascenone (E)- β Damascenone (E)- β Dadecen-1-ol (2E) <i>n</i> Heptadecane <i>zz</i> -Farnesol (e e)-Farnesyl acetate <i>n</i> -Octadecane <i>n</i> -Hexadecanol Nonadecane	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55 36.74 36.68 42.01 40.40 43.03 43.92	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469 1700 1698 1845 1800 1874 1900	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700 1698 1846 1800 1875 1903	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.299 0.199 1.923 0.432 1.295 - 3.308 23.396	G11 10.249 0 2.244 1.707 0.531 0.317 1.098 - 0.330 0.483 3.430 3.430 3.0.914	G12 0.814 0.282 - 2.563 5.856 - 1.643 0.309 6.635 42.518	G13 - 1.776 15.382 4.977 13.467 0.554 0.749 - 0.749 - 0.811 1.075 2.100 - 1.788 13.052	G14 0 2.559 6.155 0.854 2.386 35.061	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.592 - 0.599 - 0.569 - - 0.497 9.54	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 1.270 - 1.459 1.749 2.834 - 1.386 19.044	G17 - 4.434 18.993 0.734 5.707 - - - 0.885 0.418 0.423 0.423 0.76 3.017 0.870 - 1.119 25.131	G18 - 23.869 14.855 1.768 - 1.396 1.300 2.214 9.166 12.882
2 3 5 7 3 9 0 11 2 3 4 4 5 6 6 17	Phenyl ethyl alcohol Dihydro linalool β -Citronellol Neral Geraniol Linalyl acetate Geranial Dihydro citronellol acetate Damascone (Z)- α Damascone (E)- β Damascone (E)- β Dodecen-1-ol (2E) <i>n</i> Heptadecane <i>z z</i> -Farnesol (e e)-Farnesyl acetate <i>n</i> -Octadecane <i>n</i> -Hexadecanol	Rt ^a 11.75 12.82 16.80 17.32 17.95 18.16 18.62 21.04 22.64 23.87 25.17 27.55 36.74 36.68 42.01 40.40 43.03	1106 1131 1223 1235 1249 1254 1264 1319 1355 1383 1413 1469 1700 1698 1845 1800 1874	1111 1145 1225 1237 1250 1257 1267 1320 1358 1384 1414 1471 1700 1698 1846 1800 1875	G10 0.240 0.716 30.77 3.914 10.364 0.277 0.268 0.242 0.466 0.242 0.466 0.768 0.299 0.199 1.923 0.432 1.295 - 3.308	G11 10.249 0 2.244 1.707 0.531 0.317 1.098 - 0.330 0.483 3.430	G12 7.071 2.085 4.453 0.814 0.282 - 2.563 5.856 - 1.643 0.309 6.635	G13 - 1.776 15.382 4.977 13.467 0.554	G14 2.559 6.155 - - - - - - - 0.854 - - 2.386	G15 0.206 10.647 29.638 3.675 9.394 0.692 0.219 - 0.314 0.594 0.592 - 0.569 - - 0.569 - - 0.569	G16 0.224 3.064 15.961 5.110 12.120 2.762 0.285 0.320 2.081 0.247 1.270 - 1.459 1.749 2.834 - 1.386	G17 - 4.434 18.993 0.734 5.707 - - 0.885 0.418 0.423 0.76 3.017 0.870 - 1.119	G18 - 23.869 14.855 1.768 - 1.396 1.300 2.214 9.166

Table 5 (continued)

n-Octadecane

n-Hexadecanol

n-Heneicosane

n-Docosane

n-Tricosane

e-e Farnesol

Phytol

Nonadecane

n-Eicosane

No.

22

23

24

25

No. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Compound	Rtª	LRI ^b	RI ^c	G10	G11	G12	G13	G14	G15	G16	G17	G18
<i>n</i> -Tricosane	56.48	2300	2303	3.908	7.617	5.285	10.522	10.017	8.290	10.170	6.019	5.288
e-e Farnesol	38.30	1742	1743	-	0.343	-	13.495	0	8.282	0	0	
Phytol	45.37	1942	1943	-	3.795	-	-		0	0	1.059	
Trans rose oxide	12.45	1122	1125	-	0.544	-	-	0	0.208	0	0	0
	Total			98.801	97.338	99.727	98.196	98.605	98.660	99.362	98.348	86.255
Compound	Rt ^a	LRI ^b	RI ^c	G19	G20	G21	G22	G23	G24	G25	G26	Mean (G1–G26)
Phenyl ethyl alcohol	11.75	1106	1111	0.103	0.187	-	0.165	0.409	0.145	-	0.267	0.1860
Dihydro linalool	12.82	1131	1145	0.553	0.989	-	0.723	0.484	0.921	0.542	0.680	3.8282
β-Citronellol	16.80	1223	1225	33.163	19.397	11.808	29.668	14.940	12.245	24.152	40.826	22.271
Neral	17.32	1235	1237	0.414	3.549	2.867	3.018	0.308	1.142	2.245	2.254	3.1986
Geraniol	17.95	1249	1250	2.211	13.797	6.415	19.244	4.208	10.152	5.014	11.024	9.9722
Linalyl acetate	18.16	1254	1257	-	2.377	-	0.152	-	0.1452	-	-	0.3055
Geranial	18.62	1264	1267	-	-	-	-	-	-	-	-	0.1260
Dihydro citronellol acetate	21.04	1319	1320	0.221	0.471	-	0.180	-	0.110	-	0.207	0.1341
Damascone (Ζ)-α	22.64	1355	1358	0.233	2.880	-	0.571	-	-	0.154	0.283	0.7356
Damascenone (E)-β	23.87	1383	1384	0.785	0.199	0.415	0.775	0.979	0.315	0.875	1.135	0.6493
Damascone (E)-β	25.17	1413	1414	0.170	-	-	0.166	0.519	-	-	0.197	0.2812
Dodecen-1-ol (2E)	27.55	1469	1471	0.195	-	-	0.144	-	0.124	-	-	0.3527
n Heptadecane	36.74	1700	1700	2.532	0.644	1.174	1.296	0.545	2.153	1.987	1.287	1.3457
<i>z z</i> -Farnesol	36.68	1698	1698	-	0.364	-	-	0.707	0.102	0	0.181	0.4519
(e e)-Farnesyl acetate	42.01	1845	1846	0.224	2.279	0.603	1.534	0.336	1.369	0.172	0.160	1.2127

^a Rt[.] retention time (min)

^b LRI: RI from literature [38]

^c RI: experimentally determined

Trans rose oxide

showed a remarkable diversity in petal color from dark pink (G3/Tehran genotype) to pale pink (G9/Fars genotype) and white (G2/ Isfahan and G26/ East Azerbaijan genotypes). However, the majority of them were pink or pinkish (Fig. 3; Table 4). Some anthocyanins such as pelargonidin and cyanidin in the petal cells are responsible for the color of rose flowers [51]. Petals of industrial oilbearing damask roses grown in the world are typically pink, while wild roses usually have pink or white flowers [52]. Karami et al. [33] reported a positive relationship between essential oil content and anthocyanin concentration in Damask rose.

40.40

43.03

43.92

47.33

50.47

53.54

56.48

38 30

45.37

12.45

Total

1800

1874

1900

2000

2100

2200

2300

1742

1942

1122

1800

1875

1903

2004

2100

2195

2303

1743 0

1943 0

1125

_

3.829

30.264

2.919

15.751

0.346

4.215

0.187

98.322

1.270

14.43

2.323

18.080

0.824

14.205

98.281

0

0

0

2.033

29.524

4.193

30.824

0.718

8.920

0

0

0

99.498

2.302

18.540

2.212

13.986

0.330

3.575

0 1 0 0

98.690

0

0

1.979

22.789

4.469

30.925

1.056

11.113

3.375

0439

99.584

0

1.452

20.145

3.697

20.142

0.456

4.152

0.245

79.216

0

0

The number of petals is a very important indicator of the total essential oil. Significant negative correlations between thorn density and morphological characteristics, excluding bud diameter, were observed. Additionally, there was a significant positive correlation (0.39**) between the number of petals and thorn density (Table 3). Therefore, it is possible to select genotypes with a higher flower weight and number of flowers in attempts to improve the flower yield and essential oil content [7, 32].

0.475

1.302

25.485

2.156

10.145

0.214

5.264

2.740

82.929

0

0

_

2.242

20.396

2.231

12.05

0.262

2.677

0210

98.586

0

0

0.1963

2.9372

20.224

2.7638

16.947

1.1652

6.3611

0.6598

0.4512 0.0883

96.663

According to the results (Figs. 1, 2), harvesting time had a major effect on essential oil content, and the morning harvested flowers had a higher essential oil content.

Fig. 3 Essential oil content of fresh petals of Rosa damascena harvested in the morning and evening

Moreover, there was no positive relationship between oil content and petal number. This is consistent with the results of some reports, in which the oil content of the damask rose flowers depended on the time of harvesting, and the petals harvested in the morning had a higher oil content [5, 23]. Results of the current study also showed that the essential oil content was influenced by harvesting time in the majority of 26 genotypes of the Damask

rose, confirming that morning time was the optimal time for harvest, which is consistent to earlier reports [53-56].

Large differences in the content of essential oils (Table 5) were observed between 26 selected Damask rose genotypes, which is in agreement with the results of researches who reported high variations in the volatile compounds of Damask rose oil [11, 18, 32]. It has been reported that the quantity and composition of essential oil ingredients are significantly influenced by the genotype and agronomic conditions, as well as plant and flower developmental stage and harvesting time [57-59]. Overall, the content of monoterpenes (citronellol, nerol, and E-geraniol), sesquiterpenes, and aliphatic hydrocarbons was high (Table 5). Furthermore, e-geraniol, a major rose-oil component, was high in all 26 selected Damask rose genotypes. The percentage of four major hydrocarbons (heptadecane, nonadecane, eicosane, and heneicosane) were also high in the extracted essential oils (Table 5). Similar to other reports, this study revealed high variations between Rosa damascena genotypes regarding oil content and components, morphological diversity, and petal color [9, 60–63].

Conclusions

Results from this study revealed that Damask rose genotypes in Iran have significant diversity in morphological characteristics, oil content, and also composition. The harvesting time of Damask rose flowers significantly affected the essential oil yield, and, for most genotypes, harvesting is recommended to be performed in the morning, but for higher oil content of G2 and G5 genotypes, evening harvesting time might be recommended. The varied deviations in petal colors, petal numbers, and essential oil content in genotypes were observed in this experiment. Thus, the existence of these characteristics and a good chemical variation shown in the profiling reveal that the studied collection of Damask rose is a good source for the selection of the industrial oil-bearing damask rose cultivars and those that could be used as an ornamental plant in the landscape because of its uniquely fragrant flowers. Compared with the other genotypes, G5 and G21 had the highest essential oil content. 25 volatile compounds were identified in the essential oil of Damask rose genotypes. The highest concentration of geraniol, β -citronellol, nonadecane, and β -damascenone were found in G12 (42.51%), G26 (40.82%), G5 (27.76%), and G3 (1.76%) genotypes, respectively. It has been found that the most abundant compounds are of several main classes including alcohols (citronellol, geraniol, nerol) and hydrocarbons (heptadecane, nonadecane, eicosane, and heneicosane). In conclusion, the morphological and biochemical diversity of Damask rose genotypes can be

used effectively to characterize genetic diversity between different genotypes and to select special traits in breeding programs.

Acknowledgements

Not applicable.

Author contributions

MO, AKH, and MK conceived and designed the study; MO and ASH contributed to literature research; MO performed the experiments and collected the results; OR and MO analyzed and interpreted the data; MO and MK were major contributors in writing the manuscript; ZZ, AKH and MK guided all aspects of the research project and revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587, Iran.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Horticultural Sciences, University of Tehran, Karaj, Iran. ²Department of Horticultural Sciences, Tarbiat Modares University, Tehran 31587-77871, Iran. ³Department of Horticultural Sciences, University of Urmia, Urmia, Iran. ⁴Texas A&M AgriLife Research Center, Amarillo, TX, USA.

Received: 27 February 2022 Accepted: 10 July 2022 Published online: 25 July 2022

References

- Iwata H, Kato T, Ohno S. Triparental origin of damask roses. Gene. 2000;259(2):53–9. https://doi.org/10.1016/S0378-1119(00)00487-X.
- Moein M, Zarshenas MM, Delnavaz S. Chemical composition analysis of rose water samples from Iran. Pharma Biol. 2014;52(10):1358–61. https:// doi.org/10.3109/13880209.2014.885062.
- Moein M, Etemadfard H, Zarshenas MM. Investigation of different damask rose (*Rosa damascena* mill) oil samples from traditional markets in Fars (Iran) focusing on the extraction method. Trends Pharma Sci. 2016;2(1):51–8.
- Rusanov K, Kovacheva N, Vosman B, Zhang L, Rajapakse S, Atanassov A, Atanassov I. Microsatellite analysis of *Rosa damascena* mill genotypes reveal genetic similarity between genotypes used for rose oil production and old damask rose varieties. Theo Appl Genet. 2005;111(4):804–9. https://doi.org/10.1007/s00122-005-2066-9.
- Baydar H, Baydar NG. The effects of harvest date, fermentation duration and tween 20 treatment on essential oil content and composition of industrial oil rose *Rosa damascena* mill. Ind Crops Prod. 2005;21(2):251–5. https://doi.org/10.1016/S0926-6690(04)00056-1.
- Babaei A, Tabaei-Aghdaei SR, Khosh-Khui M, Omidbaigi R, Naghavi MR, Esselink GD, Smulders MJ. Microsatellite analysis of damask rose *Rosa damascena* mill genotypes from various regions in Iran reveals multiple genotypes. BMC Plant Biol. 2007;7(1):1–6. https://doi.org/10.1186/ 1471-2229-7-12.

- Tabaei-Aghdaei SR, Babaei A, Khosh-Khui M, Jaimand K, Rezaee MB, Assareh MH, Naghavi MR. Morphological and oil content variations amongst damask rose *Rosa damascena* mill landraces from different regions of Iran. Sci Hortic. 2007;113(1):44–8. https://doi.org/10.1016/j. scienta.2007.01.010.
- Kiani M, Zamani Z, Khalighi A, Fatahi R, Byrne DH. Wide genetic diversity of *Rosa damascena* mill germplasm in Iran as revealed by RAPD analysis. Sci Hortic. 2008;115(4):386–92. https://doi.org/10.1016/j.scienta.2007.10. 013.
- Kazaz S, Erbas S, Baydar H, Dilmacunal T, Koyuncu MA. Cold storage of oil rose *Rosa damascena* mill flowers. Sci Hortic. 2010;126(2):284–90. https:// doi.org/10.1016/j.scienta.2010.06.018.
- Nasri F, Fadakar A, Yousefi B, Zahedi B. Evaluation of genetic diversity of some damask rose *Rosa damascena* mill genotypes of Kurdistan province using morphological traits. J Ornam Plants. 2016;6(4):237–43.
- Sharma S, Kumar R. Effect of temperature and storage duration of flowers on essential oil content and composition of damask rose *Rosa* × *damascena* mill under western Himalayas. J Appl Res Med Aroma Plants. 2016;3(1):10–7. https://doi.org/10.1016/j.jarmap.2015.10.001.
- Kovacheva N, Rusanov K, Atanassov I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotech & Biotech Equip. 2010;24(2):1793–8. https://doi. org/10.2478/V10133-010-0032-4.
- Global "Rose Essential Oil Market" 2019 Industry Research Report. Market research report; 2019. https://www.grandviewresearch.com/industryanalysis/rose-oil-market.
- Kaul K, Karthigeyan S, Dhyani D, Kaur N, Sharma RK, Ahuja PS. Morphological and molecular analyses of *Rosa damascena* × R bourboniana interspecific hybrids. Sci Horti. 2009;122(2):258–63. https://doi.org/10. 1016/j.scienta.2009.05.027.
- Boskabady MH, Shafei MN, Saberi Z, Amini S. Pharmacological effects of Rosa damascena. I J B M Sci. 2011;14(4):295–307.
- Gorji-Chakespari A, Nikbakht AM, Sefidkon F, Ghasemi-Varnamkhasti M, Valero EL. Classification of essential oil composition in damask rose mill genotypes using an electronic nose. J Appl Res Medi Aroma Plants. 2017;4:27–34. https://doi.org/10.1016/j.jarmap.2016.07.004.
- 17. Dobreva A, Kovacheva N. Daily dynamics of the essential oils of *Rosa damascena* mill and rosa alba I. Agri Sci Tech. 2010;2(2):71–4.
- Rusanov K, Kovacheva N, Rusanova M, Atanassov I. Traditional *Rosa damascena* flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem. 2011;129(4):1851–9. https://doi.org/10.1016/j.foodchem.2011.05.132.
- Pal PK, Singh RD. Understanding crop-ecology and agronomy of *Rosa* damascena mill for higher productivity. Aus J Crop Sci. 2013;7(2):196–205.
- Koksal N, Aslancan H, Sadighazadi S, Kafkas E. Chemical investigation on Rosa damascena mill volatiles effects of storage and drying conditions. Acta Sci Polonorum Hortorum Cultus. 2015;14(1):105–14.
- Krupčík J, Gorovenko R, Špánik I, Sandra P, Armstrong DW. Enantioselective comprehensive two-dimensional gas chromatography A route to elucidate the authenticity and origin of *Rosa damascena* miller essential oils. J Sep Sci. 2015;38(19):3397–403. https://doi.org/10.1002/jssc.20150 0744.
- 22. Widrlechner MP. History and utilization of *Rosa damascena*. Econ Bot. 1981;35(1):42–58. https://doi.org/10.1007/BF02859214.
- Rusanov K, Kovacheva N, Stefanova K, Atanassov A, Atanassov I. Rosa damascena—genetic resources and capacity building for molecular breeding. Biotech & Biotech Equipt. 2009;23(4):1436–9. https://doi.org/10. 2478/V10133-009-0009-3.
- Erbas S, Baydar H. Variation in scent compounds of oil-bearing rose Rosa damascena mill produced by headspace solid phase microextraction hydrodistillation and solvent extraction. Rec Natural Prod. 2016;10(5):555–65.
- Saint-Lary L, Roy C, Paris JP, Martin JF, Thomas OP, Fernandez X. Metabolomics as a tool for the authentication of rose extracts used in flavor and fragrance area. Metabolomics. 2016. https://doi.org/10.1007/ s11306-016-0963-3.
- Aydinli M, Tutaş M. Production of rose absolute from rose concrete. Flavor Fragr. 2003;18(1):26–31. https://doi.org/10.1002/ffj.1138.
- 27. Abdel-Hameed ESS, Bazaid SA, Hagag HA. Chemical characterization of *Rosa damascena* miller var trigintipetala Dieck essential oil and it's in vitro

genotoxic and cytotoxic properties. J Esse Oil Res. 2016;28(2):121-9. https://doi.org/10.1080/10412905.2015.1099120.

- Nedeltcheva-Antonova D, Stoicheva P, Antonov L. Chemical profiling of Bulgarian rose absolute *Rosa damascena* mill using gas chromatography–mass spectrometry and trimethylsilyl derivatives. Ind Crops Prod. 2017;108:36–43. https://doi.org/10.1016/j.indcrop.2017.06.007.
- Kiani M, Zamani Z, Khalighi A, Fatahi R, Kiani M. Collection and evaluation of morphological diversity of damask rose genotypes of Iran. Iranian J Horti Sci. 2011;41:223–33.
- 30. Yousefi B. Screening of *Rosa damascena* mill landraces for flower yield and essential oil content in cold climates. Folia Hortic. 2016;28(1):31–40. https://doi.org/10.1515/fhort-2016-0005.
- Mitrofanova I, Grebennikova O, Brailko V, Paliy A, Marko N, Lesnikova-Sedoshenko N, Mitrofanova O. Physiological and biochemical features of some cultivars in essential oil rose *Rosa* × *damascena* mill growing in situ and in vitro. Int J PharmTech Res. 2016;9(7):226–32.
- Baydar H, Erbas S, Kaza S. Variations in floral characteristics and scent composition and the breeding potential in seed-derived oil-bearing roses *Rosa damascena* mill. Turkish J Agri For. 2016;40(4):560–9. https:// doi.org/10.3906/tar-1512-57.
- Karami A, Khosh-Khui M, Salehi H, Saharkhiz MJ, Rowshan V. Headspace analysis of floral scent from two distinct genotypes of Iranian damask rose *Rosa damascena* mill. J Esse Oil Bear Plant. 2013. https://doi.org/10. 1080/0972060X.2013.813266.
- 34. McGuire RG. Reporting of objective color measurements. Hort Sci. 1992;27(12):1254–5. https://doi.org/10.21273/HORTSCI.27.12.1254.
- 35. Khan MA, Rehman SU. Extraction and analysis of essential oil of Rosa species. Int J Agric Biol. 2005;7:973–4.
- Shibamoto T. Retention indices in essential oil analysis. New York: Huethig Verlag Wiley; 1987. p. 259–79.
- McLafferty FW, Stauffer DB. The Wiley NBS registry of mass spectral data. New York: Wiley; 1989. p. 518.
- Adams RP. Identification of essential oils by ion trap mass spectroscopy. California: Academic press. San Diego; 2012. p. 302.
- Meyer R, Krueger D. Minitab guide to statistics. Hoboken: Prentice Hall PTR; 2001. p. 80.
- 40. Ohloff G, Demole E. Importance of the odoriferous principle of bulgarian rose oil in flavour and fragrance chemistry. J Chroma. 1987;406:181–3. https://doi.org/10.1016/S0021-9673(00)94029-9.
- Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Báo SN, Kyaw CM, Silva-Pereira I. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule on paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob. 2009;8(1):13. https:// doi.org/10.1186/1476-0711-8-13.
- 42. Hammer KA, Carson CF. Antibacterial and antifungal activities of essential oils. In: Halldor T, editor. Lipids and essential oils as antimicrobial agents. Wiley; 2011.
- Clarke S. Chapter 3-Families of compounds that occur in essential oils. In: Clarke S, editor. Essential chemistry for aromatherapy. Elsevier: Amsterdam; 2008. p. 41–77.
- Leffingwell JC, Leffingwell D. GRAS flavor chemicals-detection thresholds. Perfumer & Flavor. 1991;16(1):1–19.
- Murbach Teles Andrade BF, Nunes Barbosa L, da Silva PI, Júnior AF. Antimicrobial activity of essential oils. J Essential Oil Res. 2014;26(1):34–40. https://doi.org/10.1080/10412905.2013.860409.
- Pereira JC, Mario LRJ. Phytol a natural diterpenoid with pharmacological applications on central nervous system: a review. Recent Pat Biotechnol. 2014;8(3):194–205.
- 47. Gutbrod K, Romer J, Dörmann P. Phytol metabolism in plants. Prog Lipid Res. 2019;74:1–17. https://doi.org/10.1016/j.plipres.2019.01.002.
- Aachoui Y, Chowdhury RR, Fitch RW, Ghosh SK. Molecular signatures of phytol-derived immunostimulants in the context of chemokine–cytokine microenvironment and enhanced immune response. Cell Immunol. 2011;271(2):227–38. https://doi.org/10.1016/j.cellimm.2011.07.001.
- Chowdhury RR, Fitch RW, Ghosh SK. Efficacy of phytol-derived diterpenoid immunoadjuvants over alum in shaping the murine host's immune response to staphylococcus aureus. Vaccine. 2013;31(8):1178–86. https:// doi.org/10.1016/j.vaccine.2012.12.069.
- Kiani M, Zamani Z, Khalighi A, Fatahi R, Byrne DH. Microsatellite analysis of iranian damask rose *Rosa damascena* mill germplasm. Plant Breed. 2010;129(5):551–7. https://doi.org/10.1111/j.1439-0523.2009.01708.x.

- Schmitzer V, Veberic R, Osterc G, Stampar F. Color and phenolic content changes during flower development in groundcover rose. A Soci Horti Sci. 2010;135(3):195–202. https://doi.org/10.21273/JASHS.135.3.195.
- Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanin's, betalains and carotenoids. Plant J. 2008;54(4):733–49. https://doi. org/10.1111/j.1365-313X.2008.03447.x.
- Ackermann IE, Banthorpe DV, Fordham WD, Kinder JP, Poots I. β-Glucosides of aroma components from petals of rosa species: assay, occurrence, and biosynthetic implications. Plant Physiol. 1989;134(5):567– 72. https://doi.org/10.1016/S0176-1617(89)80148-8.
- Winterhalter P, Sefton MA, Williams PJ. Two-dimensional GC-DCCC analysis of the glycoconjugates of monoterpenes, norisoprenoids, and shikimate-derived metabolites from riesling wine. J Agri Food Chem. 1990;38(4):1041–8. https://doi.org/10.1021/jf00094a028.
- Cherchi G, Deidda D, Gioannis BD, Marongiu B, Pompei R, Porcedda S. Extraction of Santolina insularis essential oil by supercritical carbon dioxide: Influence of some process parameters and biological activity. Flavour Fragr J. 2001;16(1):35–43. https://doi.org/10.1002/1099-1026(200101/02) 16:1%3C35::AID-FFJ942%3E3.0.CO;2-Y.
- Jamoussi B, Romdhane M, Abderraba A, Hassine BB, Gadri AE. Effect of harvest time on the yield and composition of Tunisian myrtle oils. Flavour Fragr J. 2005;20(3):274–7. https://doi.org/10.1002/ffj.1453.
- Marotti M, Piccaglia R, Giovanelli E, Deans SG, Eaglesham E. Effects of planting time and mineral fertilization on peppermint *Mentha x piperita L* essential oil composition and its biological activity. Flavour Fragr J. 1994;9(3):125–9. https://doi.org/10.1002/ffj.2730090307.
- Croteau R, Gershenzon J. Genetic control of monoterpene biosynthesis in mints *Mentha Lamiaceae* in genetic engineering of plant secondary. Metabolism. 1994. https://doi.org/10.1007/978-1-4615-2544-8_8.
- Kothari SK, Singh UB. The effect of row spacing and nitrogen fertilization on scotch spearmint (*Mentha gracilis* Sole). J Esse Oil Rese. 1995;7(3):287– 97. https://doi.org/10.1080/10412905.1995.9698521.
- Farooq A, Khan MA, Ali A, Riaz A. Diversity of morphology and oil content of *Rosa damascena* landraces and related rosa species from Pakistan. Pak J Agri Sci. 2011;48(3):177–83.
- Baydar H, Schulz H, Krüger H, Erbas S, Kineci S. Influences of fermentation time hydro-distillation time and fractions on essential oil composition of damask rose *Rosa damascena* mill. J Essent Oil Bear Plants. 2008;11(3):224–32. https://doi.org/10.1080/0972060X.2008.10643624.
- Kumar R, Sharma S, Kaundal M, Sood S, Agnihotri VK. Variation in essential oil content and composition of damask rose *Rosa damascena* mill flowers by salt application under mid hills of the western Himalayas. J Esse Oil Bear Plants. 2016;19(2):297–306. https://doi.org/10.1080/0972060X.2016. 1153985.
- Mohamadi M, Mostafavi A, Shamspur T. Effect of storage on essential oil content and composition of *Rosa damascena* mill petals under different conditions. J Essen Oil Bear Plants. 2011;14(4):430–41. https://doi.org/10. 1080/0972060X.2011.10643598.
- 64. European Pharmacopoeia. European directorate for the quality of medicines and healthcare. Council of Europe. 8th edn. Strasbourg. 2014. Vol. 1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com