Hong-Bo S, Li-Ye Chu D, Cheruth Abdul J, Chang-Xing Z (2008) Water-deficit stress-induced anatomical changes in higher plants C. R. Biogeosciences 331:215–225
Google Scholar
Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse grown lettuce. J Agric Food Chem 59:5504–5515
Article
CAS
PubMed
Google Scholar
Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163:723–730
Article
CAS
PubMed
Google Scholar
Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51:104–109
Article
CAS
Google Scholar
Sivak MN, Walker DA (1986) Photosynthesis in vivo can be limited by phosphate supply. New Phytol 102:499–512
Article
CAS
Google Scholar
Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudo hypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156
Article
PubMed Central
CAS
PubMed
Google Scholar
Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia Novo F (2001) Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183
Article
CAS
Google Scholar
Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia F (2001) Novo Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183
Article
CAS
Google Scholar
Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223
Article
CAS
Google Scholar
Handa S, Handa AK, Hasegawa PM, Bressan RA (1986) Proline accumulation and the adaptation of cultured plant cells to salinity stress. Plant Physiol 80:938–945
Article
PubMed Central
CAS
PubMed
Google Scholar
Heuer B (1994) Osmoregulatory role of proline in water and salt-stressed plants. In: Pessarakli M (ed) Handbook of Plant and Crop Stress. Marcel Dekker, Inc., New York, pp 363–381
Google Scholar
Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim JY, Mahe A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang B, Qiu YL (2006) Phylogenetic distWANG, B., and QIU, Y. L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. ribution and. (s.d.)
Article
CAS
PubMed
Google Scholar
Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic, London
Google Scholar
Auge R (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42
Article
Google Scholar
Kucey RMN, Paul EA (1982) Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated fababeans (Vicia faba L). Soil Bioi Biochem 14:407–412
Article
Google Scholar
Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85:25–31
Article
Google Scholar
Marschner H (1995) Mineral Nutrition of Higher Plants. Academic, London
Google Scholar
An-Dong SH, Qian L, Jian-Guo H, Ling Y (2013) Influence of arbuscular mycorrhizal fungi on growth, mineral nutrition and chlorogenic acid contents of lonicera confusa seedlings under field conditions. Pedosphere 23(3):333–339
Article
Google Scholar
Harrison M, van Buuren M (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629
Article
CAS
PubMed
Google Scholar
Pozo M, Azco’n-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398
Article
CAS
PubMed
Google Scholar
Slezak S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum root against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241
Article
Google Scholar
Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal funguspromoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769
Article
CAS
PubMed
Google Scholar
Rapparini F, Llusia J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and contents of Artemisia annua L. Plant Biol 10:108–122
Article
CAS
PubMed
Google Scholar
Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribu-tion of glandular hairs, and essential oil production in Ocimum basilicum L. Var Genovese Mycorrhiza 16:485–494
Article
CAS
Google Scholar
Copetta A, Lingua G, Berta G, MASOERO G (2006) Three arbuscular mycorrhizal fungi differently affect growth, distribution of glandular trichomes and essential oil composition in Ocimum basilicum var. Genovese. Proceedings of the 1st International Symposium on the Labiatae: Advances in Production. Biotechnol Utilisation 723:151–156
CAS
Google Scholar
Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
Article
CAS
PubMed
Google Scholar
Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293
Article
CAS
Google Scholar
Sundaresan P, Raja NU, Gunasekaran P (1993) Induction and accumulation of phytoalexins in cowpea roots infected with the mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. J Biosci 18:291–301
Article
CAS
Google Scholar
Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336
Article
CAS
PubMed
Google Scholar
Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251
Article
CAS
Google Scholar
Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52
Article
CAS
PubMed
Google Scholar
Pascual-Villalobos MJ, Ballesta-Acosta MC (2003) Chemical variation in an Ocimum basilicum germplasm collection and activity of the essential oil on Callosobruchus maculates. Biochem Syst Ecol 31:673–679
Article
CAS
Google Scholar
Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of photochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297
Article
CAS
PubMed
Google Scholar
Freitas MSM, Martins MA, Curcino Vieira IJ (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 39:887–894
Google Scholar
Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S (2005) Effect of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. J Basic Microbiol 45:182–189
Article
PubMed
Google Scholar
Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79
Article
CAS
PubMed
Google Scholar
Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587
Article
CAS
PubMed
Google Scholar
Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311
Article
CAS
PubMed
Google Scholar
Ferahani HA, Lekaschi MH, Hamidi A (2008) Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander. Adv Nat Appl Sci 2:55–59
Google Scholar
Tsuro M, Inoue M, Kameoka H (2001) Variation in essential oil components in regenerated lavender (Lavandula vera DC) plants. Sci Hortic 88:309–317
Article
CAS
Google Scholar
Perner H, Schwarz P, Bruns C, Maeder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474
Article
PubMed
Google Scholar
Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096
Article
CAS
Google Scholar
Hazzoumi Z, Moustakime Y, Khalid A (2014) Effect of gibberellic acid (GA), indole acetic acid (IAA) and benzylaminopurine (BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in Ocimum gratissimum L. Springer Plus 3:321
Article
PubMed Central
PubMed
Google Scholar
Madeira SVF, Rabelo M, Soares PMG, Souzaa EP, Meireles AVP, Montenegro C, Limaa RF, Assreuya AMS, Criddle DN (2005) Temporal variation of chemical composition and relaxant action of the essential oil of Ocimum gratissimum L. (Labiatae) on guinea-pig ileum. Phytomedicine 12:506–509
Article
CAS
PubMed
Google Scholar
Yayi E, Gbenou JD, Léon Akanni A, Mansour M, Jean Claude Chalchat O (2004) gratissimum L., siège de variations chimiques complexes au cours du développement C. R. Chimie 7:1013–1018
Article
CAS
Google Scholar
Hayman P e (1970) Improved procedures for clearing and staining parasite and vesiculaire-arbiscular mycorrhizal fungi for rapid assassment of infection trans. Brit Mycolsoc 55:158–161
Article
Google Scholar
Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Meesure du taux de mycorhization VA d’un système radiculaire. Recherche des méthodes d’estimation ayant une signification fonctionnelle. In: Bay G-P, Gianinazzi S (ed) Physiological aspect of mycorrizea. INRA, Paris, pp 217–221
Google Scholar
Bandurska H (1991) Akumulacja wolnej proliny jako przejaw metabolicznej reakcji roœlin na dzia³anie stresu wodnego. Wiad. Bot. 35:35–46
Google Scholar
Ribereau-Gayon P, Stonestreet E (1966) Les composes phénoliques des végétaux
Google Scholar
Bates LS, Waldren RP, Teare JD (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–207
Article
CAS
Google Scholar
McKinney (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315–332
Google Scholar
Clevenger JF (1928) Determination of volatile oil. J Ann Pharm Assoc 17(4):346–351
CAS
Google Scholar
Rasouli-Sadaghianil MH, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4(21):2222–2228
Google Scholar
Zolfaghari M, Nazeri V, Sefidkon F, Rejali F (2013) Effects Effect of arbuscular mycorrhizal fungi on plant growth and essential oil contents and composition of Ocimum basilicum L. Iran J Plant Physiol 3(2):643–650
Google Scholar
Davies J, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration–response in gas exchange and water relations. Physiol Planta 87:45–53
Article
CAS
Google Scholar
Snellgrove RC, Stribley DP, Tinker PB, Lawlor DW (1986) The effect of vesicular-arbuscular mycorrhizal infection on photosynthesis and carbon distribution in leek plants. See Ref 13:421–424
Google Scholar
Allen MF, Smith WK, Moore TS, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis (HBK) Lag ex Steud. New Phytol 88:683–693
Article
Google Scholar
Fredeen AL, Terry N (1988) Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean. Can J Bot 66:2311–2316
Google Scholar
Snellgrove RC, Splittstoesser WE, Stribley DR, Tinker RB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75–S7
Article
Google Scholar
Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New Perspect Mol Stud Mycorrhiza 13:309–317
Article
Google Scholar
Rosa LP, dos Santos MA, Matvienko B, dos Santos EO, Sikar E (2004) Greenhouse gases emissions by hydroelectric reservoirs in tropical regions. Climatic Change 66(1–2):9–21
Article
CAS
Google Scholar
Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. Mycorrhizas. In: Khachatourians GG, Arora DK (ed) Applied Mycology and Biotechnology, Vol. 2. Agriculture and Food Production. Elsevier, Amsterdam, pp 275–310
Google Scholar
Iker H, Leonor A, Sergi M-b (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311
Article
Google Scholar
Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955–1979
Article
CAS
PubMed
Google Scholar
Sheppard JW, Peterson JF (1976) Chlorogenic acid and Verticillium wilt of tobacco. Can J Plant Sci 56:157–160
Article
CAS
Google Scholar
Mucciarelli M, Scannerini S, Bertea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytologist 158(3):579–591
Article
Google Scholar