Hosny FA. Poultry sector-country review (Egypt). FAO Animal Production and Health Division: Italy; 2006.
Google Scholar
FAOSTAT, Food and Agriculture Organization of the United Nations. Statistics division, live animals, Egypt, Stocks, Chickens. http://www.fao.org/faostat/en/#data/QA. Accessed 30 July 2018.
Arifin B, Bono A, Janaun J. The transformation of chicken manure into mineralized organic fertilizer. J Sustain Sci Manag. 2006;1(1):58–63.
CAS
Google Scholar
Elasri O, Afilal ME. Potential for biogas production from the anaerobic digestion of chicken droppings in Morocco. Int J Recycl Org Waste Agric. 2016;5:195–204.
Article
Google Scholar
Ganoulis J. Risk analysis of wastewater reuse in agriculture. Int J Recycl Org Waste Agric. 2012;1(1):1–9.
Article
Google Scholar
Kostadinova G. Sanitary hygienic assessment of drinking water from underground source at a pig farm. Agric Sci Technol. 2013;5(4):448–54.
Google Scholar
Jun P, Gibbs M, Gaffney K. CH4 and N2O emissions from livestock manure. In: Penman J, Kruger D, Galbally I, editors. Good practice guidance and uncertainty management in national greenhouse gas inventories. Hayama: IPCC Task Force on National Greenhouse Gas Inventories; 2002. p. 321–81.
Google Scholar
Radwan AF, Hanafy AA, Elhelw M, El-Sayed AE-HA. Retrofitting of existing buildings to achieve better energy-efficiency in commercial building case study: hospital in Egypt. Alex Eng J. 2016;55(4):3061–71.
Article
Google Scholar
Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99(10):4044–64.
Article
PubMed
CAS
Google Scholar
El Asri O, Ramdani M, Latrach L, Haloui B, Ramdani M, Afilal ME. Comparison of energy recovery after anaerobic digestion of three Marchica lagoon algae (Caulerpa prolifera, Colpomenia sinuosa, Gracilaria bursa-pastoris). Sustain Mater Technol. 2017;11:47–52.
Google Scholar
El Asri O, Ramdani M, Latrach L, Haloui B, Mohamed R, elamin Afilal M. Energetic valorization of Nador lagoon algae and proposal to use it as a means of elimination of the eutrophication in this lagoon. Ecol Eng. 2017;103:236–43.
Article
Google Scholar
Budzianowski WM. A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sustain Energy Rev. 2016;54:1148–71.
Article
Google Scholar
Perlatti B, Forim MR, Zuin VG. Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. Chem Biol Technol Agric. 2014;1(1):5.
Article
CAS
Google Scholar
Kim Y, Kawahara N, Tsuboi K, Tomita E. Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine. Appl Energy. 2016;182:539–47.
Article
CAS
Google Scholar
Calise F, Cremonesi C, di Vastogirardi GN, d’Accadia MD. Technical and economic analysis of a cogeneration plant fueled by biogas produced from livestock biomass. Energy Procedia. 2015;82:666–73.
Article
CAS
Google Scholar
Van Aarle IM, Perimenis A, Lima-Ramos J, de Hults E, George IF, Gerin PA. Mixed inoculum origin and lignocellulosic substrate type both influence the production of volatile fatty acids during acidogenic fermentation. Biochem Eng J. 2015;103:242–9.
Article
CAS
Google Scholar
Perimenis A, et al. Metabolic profile of mixed culture acidogenic fermentation of lignocellulosic residues and the effect of upstream substrate fractionation by steam explosion. Biomass Convers. Biorefinery. 2015;6(1):25–37.
Article
CAS
Google Scholar
Elasri O, Mahaouch M, elamin Afilal M. The evaluation and the development of three devices for measurement of biogas production. Phys Chem News. 2015;75:75–85.
Google Scholar
Kafle GK, Kim SH, Sung KI. Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol. 2013;127:326–36.
Article
PubMed
CAS
Google Scholar
El Asri O, Hafidi I, elamin Afilal M. Comparison of biogas purification by different substrates and construction of a biogas purification system. Waste Biomass Valorization. 2015;6(4):459–64.
Article
CAS
Google Scholar
Ergüder T, Güven E, Demirer G. Anaerobic treatment of olive mill wastes in batch reactors. Process Biochem. 2000;36(3):243–8.
Article
Google Scholar
APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington, D.C: American Public Health Association and Water Environment Federation; 2005.
Google Scholar
Bouteleux C, et al. Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals. Appl Environ Microbiol. 2005;71(2):734–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol. 2010;101(16):6368–73.
Article
PubMed
CAS
Google Scholar
Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 2013;48(5–6):901–11.
Article
CAS
Google Scholar
Wittmann C, Zeng A-P, Deckwer W-D. Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Appl Microbiol Biotechnol. 1995;44(3–4):519–25.
Article
PubMed
CAS
Google Scholar
Rinzema A, Boone M, van Knippenberg K, Lettinga G. Bactericidal effect of long chain fatty acids in anaerobic digestion. Water Environ Res. 1994;66(1):40–9.
Article
CAS
Google Scholar
Zaccheria F, Mariani M, Ravasio N. The use of rice bran oil within a biorefinery concept. Chem Biol Technol Agric. 2015;2(1):23.
Article
CAS
Google Scholar
Hwu C-S, Tseng S-K, Yuan C-Y, Kulik Z, Lettinga G. Biosorption of long-chain fatty acids in UASB treatment process. Water Res. 1998;32(5):1571–9.
Article
CAS
Google Scholar
Pereira MA, Sousa DZ, Mota M, Alves MM. Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnol Bioeng. 2004;88(4):502–11.
Article
PubMed
CAS
Google Scholar
Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol. 2000;74(1):3–16.
Article
CAS
Google Scholar
Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B. Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy. 2007;32(6):965–75.
Article
CAS
Google Scholar
Brown D, Li Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol. 2013;127:275–80.
Article
PubMed
CAS
Google Scholar
Hansen KH, Angelidaki I, Ahring BK. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 1998;32(1):5–12.
Article
CAS
Google Scholar
Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev. 2011;15(1):821–6.
Article
CAS
Google Scholar
Neves L, Oliveira R, Alves MM. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem. 2004;39(12):2019–24.
Article
CAS
Google Scholar
Nazaitulshila R, Idris A, Harun R, Wan Azlina WAKG. The influence of inoculum to substrate ratio on the biochemical methane potential of fat, oil, and grease in batch anaerobic assays. Energy Sources Part Recovery Util Environ Eff. 2015;37(6):590–7.
Article
CAS
Google Scholar
Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy. 1993;5(1):95–111.
Article
CAS
Google Scholar
Yoon Y-M, Kim S-H, Shin K-S, Kim C-H. Effects of substrate to inoculum ratio on the biochemical methane potential of piggery slaughterhouse wastes. Asian Australas J Anim Sci. 2014;27(4):600–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li C, Champagne P, Anderson BC. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresour Technol. 2011;102(20):9471–80.
Article
PubMed
CAS
Google Scholar
Kalyuzhnyi SV. Batch anaerobic digestion of glucose and its mathematical modeling. II. Description, verification and application of model. Bioresour Technol. 1997;59(2–3):249–58.
Article
CAS
Google Scholar
Li Y, Zhang R, Chen C, Liu G, He Y, Liu X. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol. 2013;149:406–12.
Article
PubMed
CAS
Google Scholar
Krylova NI, Khabiboulline RE, Naumova RP, Nagel MA. The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure. J Chem Technol Biotechnol. 1997;70(1):99–105.
Article
CAS
Google Scholar
Zhou J, et al. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol. 2016;217:44–9.
Article
PubMed
CAS
Google Scholar