Allen MF. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 2007;6:291–7.
Article
Google Scholar
Allen JW, Shachar-Hill Y. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol. 2009;149:549–60. https://doi.org/10.1104/pp.108.129866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez FJ, Konopka JB. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell. 2007;18:965–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ames RN, Reid CPP, Porter LK, Cambardella C. Hyphal uptake and transport of nitrogen from 2 15N-labeled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 1983;95:381–96.
Article
Google Scholar
Antolin-Llovera M, Petutsching EK, Ried MK, Lipka V, Nurnberger T, Robatzek S, Parniske M. Knowing your friends and foes—plant receptor-like kinases as initiators of symbiosis or defence. New Phytol. 2014;204:791–802.
Article
CAS
PubMed
Google Scholar
Atul-Nayyar A, Hamel C, Hanson K, Germida J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza. 2009;19:239–46. https://doi.org/10.1007/s00572-008-0215-0.
Article
CAS
PubMed
Google Scholar
Babikova Z, Johnson D, Bruce T, Pickett J, Gilbert L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays. 2014;36:21–6.
Article
PubMed
Google Scholar
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.
Article
CAS
Google Scholar
Barrett G, Campbell CD, Fitter AH, Hodge A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol. 2011;48:102–5. https://doi.org/10.1016/j.apsoil.2011.02.002.
Article
Google Scholar
Barrett G, Campbell CD, Hodge A. The direct response of the external mycelium of arbuscular mycorrhizal fungi to temperature and the implications for nutrient transfer. Soil Biol Biochem. 2014;78:109–17. https://doi.org/10.1016/j.soilbio.2014.07.025.
Article
CAS
Google Scholar
Baskaran P, Hyvonen R, Berglund SL, Clemmensen KE, Agren GI, Lindahl BD, Manzoni S. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytol. 2017;213:1452–65.
Article
CAS
PubMed
Google Scholar
Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol. 2013;4:149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, Kohl L, Giles M, Daniell TJ, van der Heijden MGA. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J. 2014;8:1336–45.
Article
CAS
PubMed
Google Scholar
Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature. 2002;419:389–92.
Article
CAS
PubMed
Google Scholar
Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, Řezáčová V, Gutierrez-Nunez MS, Gryndler M, Jansa J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:269–83. https://doi.org/10.1007/s00572-018-0825-0.
Article
CAS
PubMed
Google Scholar
Bukovská P, Gryndler M, Gryndlerová H, Püschel D, Jansa J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front Microbiol. 2016;7:711. https://doi.org/10.3389/fmicb.2016.00711.
Article
PubMed
PubMed Central
Google Scholar
Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth’s nitrogen cycle. Science. 2010;330:192–6.
Article
CAS
PubMed
Google Scholar
Cassman KG. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA. 1999;96:5952–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science. 2012;337:1084–7.
Article
CAS
PubMed
Google Scholar
Cliquet JB, Murray PJ, Boucaud J. Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol. 1997;137:345–9. https://doi.org/10.1046/j.1469-8137.1997.00810.x.
Article
CAS
PubMed
Google Scholar
Cordell D, Drangert JO, White S. The story of phosphorus: global food security and food for thought. Glob Environ Change. 2009;19:292–305.
Article
Google Scholar
Corrêa A, Cruz C, Ferrol N. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza. 2015;25:499–515.
Article
CAS
PubMed
Google Scholar
Courty PE, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse MA. Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol. 2011;156:952–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drigo B, Pijl AS, Duyts H, Kielak A, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, Van Veen JA, Kowalchuk GA. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA. 2010;107:10938–42. https://doi.org/10.1073/pnas.1005874107.
Article
PubMed
PubMed Central
Google Scholar
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Bjork RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366:1–27.
Article
CAS
Google Scholar
Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci. 2008;1:636–9.
Article
CAS
Google Scholar
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 2012;109:2666–71. https://doi.org/10.1073/pnas.1118650109.
Article
PubMed
PubMed Central
Google Scholar
Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 2014;203:646–56.
Article
CAS
PubMed
Google Scholar
Fernandez CW, Koide RT. The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology. 2012;93:24–8.
Article
PubMed
Google Scholar
Fitter AH. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol. 2006;172:3–6.
Article
CAS
PubMed
Google Scholar
Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol. 1998;12:406–12.
Article
Google Scholar
Frossard E, Bünemann E, Jansa J, Oberson A, Feller C. Concepts and practices of nutrient management in agro-ecosystems: can we draw lessons from history to design future sustainable agricultural production systems? Die Bodenkultur. 2009;60:43–60.
Google Scholar
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 2008;320:889–92.
Article
CAS
PubMed
Google Scholar
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 2016;21:937–50.
Article
CAS
PubMed
Google Scholar
Gianinazzi-Pearson V, Lemoine MC, Arnould C, Gollotte A, Morton JB. Localization of β-(1-3) glucans in spore and hyphal walls of fungi in the Glomales. Mycologia. 1994;86:478–85.
CAS
Google Scholar
Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, Pretty J, Robinson S, Toulmin C, Whiteley R. The future of the global food system. Philos Trans R Soc B Biol Sci. 2010;365:2769–77.
Article
Google Scholar
Gooday GW, Zhu WY, Odonnell RW. What are the roles of chitinases in the growing fungus. FEMS Microbiol Lett. 1992;100:387–91.
Article
CAS
Google Scholar
Gough C, Cullimore J. Lipo-chitooligosaccharide signalling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact. 2011;24:867–78.
Article
CAS
PubMed
Google Scholar
Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 2005;435:819–23.
Article
CAS
PubMed
Google Scholar
Gregory PJ, Ingram JSI, Brklacich M. Climate change and food security. Philos Trans R Soc B Biol Sci. 2005;360:2139–48.
Article
CAS
Google Scholar
Gryndler M, Hršelová H, Stříteská D. Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol. 2000;45:545–51.
Article
CAS
Google Scholar
Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V. Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza. 2005;15:483–8. https://doi.org/10.1007/s00572-005-0352-7.
Article
CAS
PubMed
Google Scholar
Gryndler M, Jansa J, Hršelová H, Chvátalová I, Vosátka M. Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol. 2003;22:283–7. https://doi.org/10.1016/s0929-1393(02)00154-3.
Article
Google Scholar
Gryndler M, Vosátka M, Hršelová H, Chvátalová I, Jansa J. Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol. 2002;19:279–88.
Article
Google Scholar
Hawkins HJ, George E. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant. 1999;105:694–700. https://doi.org/10.1023/a:1026500810385.
Article
CAS
Google Scholar
Hawkins HJ, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil. 2000;226:275–85.
Article
CAS
Google Scholar
Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P. The carbon footprints of food crop production. Int J Agric Sustain. 2009;7:107–18.
Article
Google Scholar
Hodge A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol. 2001;151:725–34. https://doi.org/10.1046/j.0028-646x.2001.00200.x.
Article
CAS
PubMed
Google Scholar
Hodge A. Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol. 2003;157:303–14. https://doi.org/10.1046/j.1469-8137.2003.00662.x.
Article
PubMed
Google Scholar
Hodge A. Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv Appl Microbiol. 2014;89:47–99.
Article
PubMed
Google Scholar
Hodge A. Accessibility of inorganic and organic nutrients for mycorrhizas. In: Johnson NC, Gehring C, Jansa J, editors. Mycorrhizal mediation of soils. Fertility, structure, and carbon storage. Amsterdam: Elsevier; 2017. p. 129–48.
Chapter
Google Scholar
Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9. https://doi.org/10.1038/35095041.
Article
CAS
PubMed
Google Scholar
Hodge A, Fitter AH. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA. 2010;107:13754–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodge A, Helgason T, Fitter AH. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 2010;4:267–73.
Article
Google Scholar
Hodge A, Robinson D, Fitter AH. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol. 2000;145:575–84. https://doi.org/10.1046/j.1469-8137.2000.00602.x.
Article
CAS
PubMed
Google Scholar
Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 1998;139:479–94. https://doi.org/10.1046/j.1469-8137.1998.00216.x.
Article
Google Scholar
Hodge A, Robinson D, Griffiths BS, Fitter AH. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 1999;22:811–20. https://doi.org/10.1046/j.1365-3040.1999.00454.x.
Article
Google Scholar
Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species. Funct Ecol. 2000;14:645–53. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00470.x.
Article
Google Scholar
Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil. 2015;386:1–19.
Article
CAS
Google Scholar
Hoeksema JD, Bruna EM. Context-dependent outcomes of mutualistic interactions. In: Bronstein JL, editor. Mutualism. Oxford: Oxford University Press; 2015. p. 181–202.
Chapter
Google Scholar
Jalonen R, Nygren P, Sierra J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 2009;32:1366–76.
Article
CAS
PubMed
Google Scholar
Jansa J, Bukovská P, Gryndler M. Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts—or just soil free-riders? Front Plant Sci. 2013;4:134.
Article
PubMed
PubMed Central
Google Scholar
Jansa J, Gryndler M. Biotic environment of the arbuscular mycorrhizal fungi in soil. In: Koltai H, Kapulnik Y, editors. Arbuscular mycorrhizas: physiology and function. Heidelberg: Springer; 2010. p. 209–36.
Chapter
Google Scholar
Jansa J, Mozafar A, Frossard E. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie. 2003;23:481–8.
Article
CAS
Google Scholar
Johansen A, Jakobsen I, Jensen ES. Hyphal transport of 15N-labeled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 1992;122:281–8. https://doi.org/10.1007/bf00336518.
Article
CAS
PubMed
Google Scholar
Johansen A, Jakobsen I, Jensen ES. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils. 1993;16:66–70.
Article
CAS
Google Scholar
Johansen A, Jakobsen I, Jensen ES. Hyphal N transport by vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil. 1994;160:1–9. https://doi.org/10.2307/1937216.
Article
CAS
Google Scholar
Johansen A, Jensen ES. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem. 1996;28:73–81.
Article
CAS
Google Scholar
Johnson NC. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 2010;185:631–47.
Article
CAS
PubMed
Google Scholar
Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC. Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut. 2007;150:107–24.
Article
CAS
PubMed
Google Scholar
Joner EJ, van Aarle IM, Vosátka M. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil. 2000;226:199–210.
Article
CAS
Google Scholar
Joner EJ, Ravnskov S, Jakobsen I. Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett. 2000;22:1705–8.
Article
CAS
Google Scholar
Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 2015;205:1537–51.
Article
CAS
PubMed
Google Scholar
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.
Article
CAS
PubMed
Google Scholar
Kobae Y, Kawachi M, Saito K, Kikuchi Y, Ezawa T, Maeshima M, Hata S, Fujiwara T. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza. 2015;25:411–7.
Article
CAS
PubMed
Google Scholar
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Dore J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Hogberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F, Mycorrhizal Genomics Initiative Consortium. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genet. 2015;47:410–5.
Article
CAS
PubMed
Google Scholar
Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000;148:511–7.
Article
CAS
PubMed
Google Scholar
Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiol Ecol. 2014;87:142–52.
Article
CAS
PubMed
Google Scholar
Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, Cruickshank R, Dopheide A, Handley KM, Hermans S, Kamke J, Lee CK, MacDiarmid R, Morales SE, Orlovich DA, Smissen R, Wood J, Holdaway R. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. N Z J Ecol. 2018;42:10.
Google Scholar
Leigh J, Fitter AH, Hodge A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiol Ecol. 2011;76:428–38.
Article
CAS
PubMed
Google Scholar
Leigh J, Hodge A, Fitter AH. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 2009;181:199–207. https://doi.org/10.1111/j.1469-8137.2008.02630.x.
Article
CAS
PubMed
Google Scholar
Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E, Jansa J. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza. 2011;21:689–702.
Article
CAS
PubMed
Google Scholar
Lenoir I, Fontaine J, Sahraoui ALH. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 2016;123:4–15.
Article
CAS
PubMed
Google Scholar
Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–7.
Article
CAS
PubMed
Google Scholar
Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A. Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 2000;146:155–61. https://doi.org/10.1046/j.1469-8137.2000.00615.x.
Article
Google Scholar
Marschner H. Mineral nutrition of higher plants. London: Academic Press; 1995.
Google Scholar
Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB, Hainaut M, Kuo RC, LaButti K, Lindahl BD, Lindquist EA, Lipzen A, Khouja HR, Magnuson J, Murat C, Ohm RA, Singer SW, Spatafora JW, Wang M, Veneault-Fourrey C, Henrissat B, Grigoriev IV, Martin FM, Perotto S. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–29.
Article
CAS
PubMed
Google Scholar
McDougall R, Kristiansen P, Rader R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc Natl Acad Sci USA. 2019;116:129–34.
Article
CAS
PubMed
Google Scholar
McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4
+. Ecosystems. 2010;13:177–93. https://doi.org/10.1007/s10021-009-9309-6.
Article
CAS
Google Scholar
Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A. Bacterial community structure and colonization patterns of Fagus sylvatica L-ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza. 2000;9:271–8.
Article
Google Scholar
Morrien E. Understanding soil food web dynamics, how close do we get? Soil Biol Biochem. 2016;102:10–3.
Article
CAS
Google Scholar
Mosse B. Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature. 1957;179:923–4.
Article
Google Scholar
Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K, Ahern KR, Romag A, Brutnell TP, Gutjahr C, Geldner N, Roux C, Martinoia E, Konopka JB, Paszkowski U. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat Plants. 2017;3:17073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nampally M, Rajulu MBG, Gillet D, Suryanarayanan TS, Moerschbacher BB. A high diversity in chitinolytic and chitosanolytic species and enzymes and their oligomeric products exist in soil with a history of chitin and chitosan exposure. Biomed Res Int. 2015. https://doi.org/10.1155/2015/857639.
Article
PubMed
PubMed Central
Google Scholar
Newsham KK, Fitter AH, Watkinson AR. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol. 1995;10:407–11.
Article
CAS
PubMed
Google Scholar
Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol. 2013;15:1870–81.
Article
CAS
PubMed
Google Scholar
Pearson JN, Jakobsen I. Symbiotic exchange of carbon and phosphorus between cucumber and 3 arbuscular mycorrhizal fungi. New Phytol. 1993;124:481–8.
Article
CAS
Google Scholar
Pimentel D, Pimentel MH. Food, energy, and society. Boca Raton: CRC Press; 2007.
Google Scholar
Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol. 2016;6:4332–46.
Article
PubMed
PubMed Central
Google Scholar
Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci. 2017;8:390.
Article
PubMed
PubMed Central
Google Scholar
Quilliam RS, Hodge A, Jones DL. Sporulation of arbuscular mycorrhizal fungi in organic-rich patches following host excision. Appl Soil Ecol. 2010;46:247–50.
Article
Google Scholar
Rains KC, Bledsoe CS. Rapid uptake of 15N-ammonium and 13C-15N-glycine by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest. Soil Biol Biochem. 2007;39:1078–86. https://doi.org/10.1016/j.soilbio.2006.11.019.
Article
CAS
Google Scholar
Ravnskov S, Larsen J, Olsson PA, Jakobsen I. Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol. 1999;141:517–24. https://doi.org/10.1046/j.1469-8137.1999.00353.x.
Article
CAS
Google Scholar
Riquelme M. Tip growth in filamentous fungi: a road trip to the apex. Annu Rev Microbiol. 2013;67:587–609.
Article
CAS
PubMed
Google Scholar
Saia S, Benitez E, Garcia-Garrido JM, Settanni L, Amato G, Giambalvo D. The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. J Agric Sci. 2014;152:370–8. https://doi.org/10.1017/s002185961300004x.
Article
Google Scholar
Sapkota R, Nicolaisen M. High-througput sequencing of nematode communities from total soil DNA extractions. BMC Ecol. 2015;15:3.
Article
PubMed
PubMed Central
Google Scholar
Scarcelli JJ, Colussi PA, Fabre AL, Boles E, Orlean P, Taron CH. Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase. FEMS Yeast Res. 2012;12:305–16.
Article
CAS
PubMed
Google Scholar
Shinya T, Nakagawa T, Kaku H, Shibuya N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol. 2015;26:64–71.
Article
CAS
PubMed
Google Scholar
Schuster M, Martin-Urdiroz M, Higuchi Y, Hacker C, Kilaru S, Gurr SJ, Steinberg G. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol. 2016;1:11.
Article
CAS
Google Scholar
Smil V. Detonator of the population explosion. Nature. 1999;1999(400):415.
Article
CAS
Google Scholar
Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. Amsterdam: Academic Press; 2008.
Google Scholar
Smith FA, Smith SE. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil. 2011;348:63–79.
Article
CAS
Google Scholar
Spohn M, Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-a soil zymography analysis. Plant Soil. 2014;379:67–77.
Article
CAS
Google Scholar
Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S. Planetary boundaries: guiding human development on a changing planet. Science. 2015;347:1217.
Article
CAS
Google Scholar
Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ. Trajectories of the Earth system in the anthropocene. Proc Natl Acad Sci USA. 2018;115:8252–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
St. John TV, Coleman DC, Reid CPP. Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology. 1983;64:957–9. https://doi.org/10.2307/1937216.
Article
Google Scholar
Storer K, Coggan A, Ineson P, Hodge A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 2018;220:1285–95.
Article
CAS
PubMed
Google Scholar
Talbot JM, Martin F, Kohler A, Henrissat B, Peay KG. Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem. 2015;88:441–56.
Article
CAS
Google Scholar
Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 2005;28:1247–54. https://doi.org/10.1111/j.1365-3040.2005.01360.x.
Article
CAS
Google Scholar
Tanwar A, Aggarwal A, Parkash V. Sugarcane bagasse: a novel substrate for mass multiplication of Funneliformis mosseae with onion as host. J Cent Eur Agric. 2013;14:1519–28. https://doi.org/10.5513/jcea01/14.4.1386.
Article
Google Scholar
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327:818–22.
Article
CAS
PubMed
Google Scholar
Tharanathan RN, Kittur FS. Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr. 2003;43:61–87.
Article
CAS
PubMed
Google Scholar
Thirkell TJ, Cameron DD, Hodge A. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. 2016;39:1683–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NFD, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclauxm FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, Van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110:20117–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett. 2006;254:34–40.
Article
CAS
PubMed
Google Scholar
Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil. 2016;398:1–24.
Article
CAS
Google Scholar
Verbruggen E, Jansa J, Hammer EC, Rillig MC. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J Ecol. 2016;104:261–9.
Article
CAS
Google Scholar
Verbruggen E, Veresoglou SD, Anderson IC, Caruso T, Hammer EC, Kohler J, Rillig MC. Arbuscular mycorrhizal fungi—short-term liability but long-term benefits for soil carbon storage? New Phytol. 2013;197:366–8.
Article
PubMed
Google Scholar
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7:737–50.
Google Scholar
Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 2012;159:789–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang WX, Shi JC, Xie QJ, Jiang YN, Yu N, Wang ET. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 2017;10:1147–58.
Article
CAS
PubMed
Google Scholar
Whiteside MD, Digman MA, Gratton E, Treseder KK. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 2012;55:7–13.
Article
CAS
Google Scholar
Whiteside MD, Garcia MO, Treseder KK. Amino acid uptake in arbuscular mycorrhizal plants. PLoS ONE. 2012;7:e47643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong W, Jousset A, Guo S, Karlsson I, Zhao QY, Wu HS, Kowalchuk GA, Shen QR, Li R, Geisen S. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634–8.
Article
PubMed
Google Scholar
Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 2018;12:2339–51.
Article
CAS
PubMed
PubMed Central
Google Scholar