Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018;90(1):135–59.
Article
Google Scholar
MacLean AM, Bravo A, Harrison MJ. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell. 2017;29(10):2319–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pumplin N, Harrison MJ. Live-Cell imaging reveals periarbuscular membrane domains and organelle location in medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 2009;151(2):809–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett. 2010;13(3):394–407.
Article
PubMed
Google Scholar
Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, Craig A, et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci Data. 2016;10(3):160028.
Article
CAS
Google Scholar
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333(6044):880–2.
Article
CAS
PubMed
Google Scholar
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, et al. Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza. 2013;23(8):597–625.
Article
CAS
PubMed
Google Scholar
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 2016;21(11):937–50.
Article
CAS
PubMed
Google Scholar
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo Z-B. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ. 2019;1:1. https://doi.org/10.1111/pce.13471.
Article
Google Scholar
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the roles of aquaporins in plant–microbe interactions. Cells. 2018;11(7):12.
Google Scholar
Jakobsen I, Abbott LK, Robson AD. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol. 1992;120(3):371–80.
Article
CAS
Google Scholar
Smith SE, Jakobsen I, Grønlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition1. Plant Physiol. 2011;156(3):1050–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S-Y, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell. 2012;24(10):4236–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot. 2015;66(13):4061–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison MJ, Dewbre GR, Liu J. A Phosphate transporter from medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002;14(10):2413–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30(3):310–22.
Article
CAS
PubMed
Google Scholar
Paszkowski U, Kroken S, Roux C, Briggs SP. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2002;99(20):13324–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol. 2009;182(1):200–12.
Article
CAS
PubMed
Google Scholar
Volpe V, Giovannetti M, Sun X-G, Fiorilli V, Bonfante P. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant, Cell Environ. 2016;39(3):660–71.
Article
CAS
Google Scholar
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 2007;173(1):11–26.
Article
CAS
PubMed
Google Scholar
Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem. 2008;283(36):24673–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, et al. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta. 2009;229(5):1023–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 2005;42(2):236–50.
Article
CAS
PubMed
Google Scholar
Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, et al. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci. 2013;4:533.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Xu Y, Jiang H, Jiang C, Du Y, Gong C, et al. Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by Arbuscular Mycorrhizal Fungi. Int J Mol Sci. 2016;17:6.
Google Scholar
Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie M-N, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 2017;214(2):632–43.
Article
CAS
PubMed
Google Scholar
Liu F, Xu Y, Han G, Wang W, Li X, Cheng B. Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant Cell Physiol. 2018;59(8):1683–94.
Article
PubMed
Google Scholar
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, et al. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 2010;64(6):1002–17.
Article
CAS
PubMed
Google Scholar
Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci. 2013;4:426.
Article
PubMed
PubMed Central
Google Scholar
Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, et al. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol. 2013;198(3):836–52.
Article
CAS
PubMed
Google Scholar
Harrison MJ, van Buuren ML. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995;378(6557):626–9.
Article
CAS
PubMed
Google Scholar
Benedetto A, Magurno F, Bonfante P, Lanfranco L. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza. 2005;15(8):620–7.
Article
CAS
PubMed
Google Scholar
Fiorilli V, Lanfranco L, Bonfante P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta. 2013;237(5):1267–77.
Article
CAS
PubMed
Google Scholar
Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, et al. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J. 2016;10(1):130–44.
Article
CAS
PubMed
Google Scholar
Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact. 2007;20(9):1055–62.
Article
CAS
PubMed
Google Scholar
Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, et al. Arbuscular Mycorrhizal Symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont. Mol Plant. 2016;9(12):1583–608.
Article
CAS
PubMed
Google Scholar
Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, et al. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol. 2016;211(4):1202–8.
Article
CAS
PubMed
Google Scholar
Wild R, Gerasimaite R, Jung J-Y, Truffault V, Pavlovic I, Schmidt A, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science. 2016;352(6288):986–90.
Article
CAS
PubMed
Google Scholar
Maeda T, Kobayashi Y, Kameoka H, Okuma N, Takeda N, Yamaguchi K, et al. Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Commun Biol. 2018;1(1):87.
Article
PubMed
PubMed Central
Google Scholar
Lin W-Y, Huang T-K, Chiou T-J. NITROGEN limitation adaptation, a target of MicroRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell. 2013;25(10):4061–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azevedo C, Saiardi A. Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective. Trends Biochem Sci. 2017;42(3):219–31.
Article
CAS
PubMed
Google Scholar
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci. 2013;110(50):20117–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N. GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol. 2006;43(2):102–10.
Article
PubMed
CAS
Google Scholar
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2012;109(7):2666–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ngwene B, Gabriel E, George E. Influence of different mineral nitrogen sources (NO3−–N vs. NH4+–N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza. 2013;23(2):107–17.
Article
CAS
PubMed
Google Scholar
Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 2009;150(1):73–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobae Y, Tamura Y, Takai S, Banba M, Hata S. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol. 2010;51(9):1411–5.
Article
CAS
PubMed
Google Scholar
Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, et al. Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol. 2009;184(2):399–411.
Article
CAS
PubMed
Google Scholar
Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol. 2008;147(1):429–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L. A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci. 2014;5:1.
Article
Google Scholar
Guether M, Volpe V, Balestrini R, Requena N, Wipf D, Bonfante P. LjLHT1. 2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus. Biol Fertil Soils. 2011;47(8):925.
Article
CAS
Google Scholar
Bonneau L, Huguet S, Wipf D, Pauly N, Truong H-N. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol. 2013;199(1):188–202.
Article
CAS
PubMed
Google Scholar
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in petunia hybrida. PLoS ONE. 2014;9(3):e90841.
Article
PubMed
PubMed Central
CAS
Google Scholar
Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, et al. Suppression of Arbuscule Degeneration in Medicago truncatula phosphate transporter4 Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. Plant Cell. 2015;27(4):1352–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JW, Shachar-Hill Y. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol. 2009;149(1):549–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol. 2013;197(2):606–16.
Article
CAS
PubMed
Google Scholar
Casieri L, Gallardo K, Wipf D. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta. 2012;235(6):1431–47.
Article
CAS
PubMed
Google Scholar
Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol. 2014;204(3):609–19.
Article
CAS
PubMed
Google Scholar
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Front Plant Sci. 2014;2:5.
Google Scholar
Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma. 2004;223(2):183–9.
CAS
PubMed
Google Scholar
Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular Mycorrhizal Fungus. J Plant Physiol. 1999;154(5):718–28.
Article
CAS
Google Scholar
Baslam M, Garmendia I, Goicoechea N. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic. 2013;17(164):145–54.
Article
CAS
Google Scholar
Garcia K, Zimmermann SD. The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci. 2014;5:337.
Article
PubMed
PubMed Central
Google Scholar
Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013;36(10):1771–82.
Article
CAS
PubMed
Google Scholar
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 2014;164(4):1600–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balestrini R, Chitarra W, Antoniou C, Ruocco M, Fotopoulos V. Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. J Agric Sci. 2018;156(5):680–8.
Article
Google Scholar
Krajinski F, Biela A, Schubert D, Gianinazzi-Pearson V, Kaldenhoff R, Franken P. Arbuscular mycorrhiza development regulates the mRNA abundance of Mtaqp1 encoding a mercury-insensitive aquaporin of Medicago truncatula. Planta. 2000;211(1):85–90.
Article
CAS
PubMed
Google Scholar
Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R. Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry. 2007;68(1):122–9.
Article
CAS
PubMed
Google Scholar
Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, et al. Insights On the Impact of Arbuscular Mycorrhizal Symbiosis On Tomato Tolerance to Water Stress. Plant Physiol. 2016. p. 00307.2016.
Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A, et al. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biol. 2012;12(1):186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li T, Sun Y, Ruan Y, Xu L, Hu Y, Hao Z, et al. Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Mycorrhiza. 2016;26(8):879–93.
Article
CAS
PubMed
Google Scholar
Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact. 2014;27(4):349–63.
Article
PubMed
CAS
Google Scholar
Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, et al. Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett. 2004;574(1–3):31–6.
Article
CAS
PubMed
Google Scholar
Furini A, editor. Plants and Heavy Metals. Springer Netherlands; 2012. (SpringerBriefs in Biometals). www.springer.com/us/book/9789400744400. Accessed 5 Dec 2018.
Faber BA, Zasoski RJ, Burau RG, Uriu K. Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant Soil. 1990;129(2):121–30.
Article
CAS
Google Scholar
Joner EJ, Briones R, Leyval C. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil. 2000;226(2):227–34.
Article
CAS
Google Scholar
Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 2006;223(6):1115–22.
Article
PubMed
CAS
Google Scholar
Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry. 2007;68(1):139–46.
Article
CAS
PubMed
Google Scholar
Malcová R, Rydlová J, Vosátka M. Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza. 2003;13(3):151–7.
Article
PubMed
CAS
Google Scholar
Ramírez-Flores MR, Rellán-Álvarez R, Wozniak B, Gebreselassie M-N, Jakobsen I, Olalde-Portugal V, et al. Co-ordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae. Plant Cell Physiol. 2017;58(10):1689–99.
Article
PubMed
CAS
Google Scholar
Shabani L, Sabzalian MR, Mostafavi pour S. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza. 2016;26(1):67–76.
Article
CAS
PubMed
Google Scholar
Fuentes A, Almonacid L, Ocampo JA, Arriagada C. Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil. 2016;407(1):355–66.
Article
CAS
Google Scholar
González-Chávez CA, Miller B, Maldonado-Mendoza IE, Scheckel K, Carrillo-González R. Localization and speciation of arsenic in Glomus intraradices by synchrotron radiation spectroscopic analysis. Fungal Biol. 2014;118(5–6):444–52.
Article
CAS
Google Scholar
Maldonado-Mendoza IE, Harrison MJ. RiArsB and RiMT-11: two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol. 2018;122(2–3):121–30.
Article
CAS
PubMed
Google Scholar
González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, et al. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol FG B. 2005;42(2):130–40.
Article
PubMed
CAS
Google Scholar
González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N. GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza. 2010;20(2):137–46.
Article
PubMed
CAS
Google Scholar
Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci. 2014;14:55.
Google Scholar
Tamayo E, Knight SAB, Valderas A, Dancis A, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis uses a reductive iron assimilation pathway for high-affinity iron uptake. Environ Microbiol. 2018;20(5):1857–72.
Article
CAS
PubMed
Google Scholar
Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PAHM, Pieterse CMJ. Iron and immunity. Annu Rev Phytopathol. 2017;55(1):355–75.
Article
CAS
PubMed
Google Scholar
Solaiman MZ, Saito M. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol. 1997;136(3):533–8.
Article
CAS
Google Scholar
Pfeffer PE, Douds DD, Bécard G, Shachar-Hill Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 1999;120(2):587–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124(3):949–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes JK, Hodge A, Fitter AH, Atkin OK. Mycorrhizal respiration: implications for global scaling relationships. Trends Plant Sci. 2008;13(11):583–8.
Article
CAS
PubMed
Google Scholar
Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem. 2009;41(6):1233–44.
Article
CAS
Google Scholar
Romero-Munar A, Del-Saz NF, Ribas-Carbó M, Flexas J, Baraza E, Florez-Sarasa I, et al. Arbuscular mycorrhizal symbiosis with Arundo donax decreases root respiration and increases both photosynthesis and plant biomass accumulation. Plant, Cell Environ. 2017;40(7):1115–26.
Article
CAS
Google Scholar
Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D. The medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol Plant. 2012;5(6):1346–58.
Article
CAS
PubMed
Google Scholar
Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, et al. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol. 2011;168(11):1256–63.
Article
CAS
PubMed
Google Scholar
Baier MC, Keck M, Gödde V, Niehaus K, Küster H, Hohnjec N. Knockdown of the symbiotic sucrose synthase mtsucs1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol. 2010;152(2):1000–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison MJ. A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J Cell Mol Biol. 1996;9(4):491–503.
Article
CAS
Google Scholar
Ge L, Sun S, Chen A, Kapulnik Y, Xu G. Tomato sugar transporter genes associated with mycorrhiza and phosphate. Plant Growth Regul. 2008;55(2):115–23.
Article
CAS
Google Scholar
Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J Cell Mol Biol. 2012;69(3):510–28.
Article
CAS
Google Scholar
Chen L-Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014;201(4):1150–5.
Article
CAS
PubMed
Google Scholar
Manck-Götzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci. 2016;14:7.
Google Scholar
Kafle A, Garcia K, Wang X, Pfeffer PE, Strahan GD, Bücking H. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula: carbon allocation in tripartite interactions. Plant, Cell Environ. 2019;42(1):270–84.
Article
CAS
Google Scholar
Zhao S, Chen A, Chen C, Li C, Xia R, Wang X. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiol Plant. 2018;12:3.
Google Scholar
Schüßler A, Martin H, Cohen D, Fitz M, Wipf D. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature. 2006;444(7121):933–6.
Article
PubMed
CAS
Google Scholar
Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell. 2011;23(10):3812–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ait Lahmidi N, Courty P-E, Brulé D, Chatagnier O, Arnould C, Doidy J, et al. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiol Biochem PPB. 2016;107:354–63.
Article
CAS
PubMed
Google Scholar
Gabriel-Neumann E, Neumann G, Leggewie G, George E. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. J Plant Physiol. 2011;168(9):911–9.
Article
CAS
PubMed
Google Scholar
Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D, et al. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet. 2014;10(1):e1004078.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, et al. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics. 2018;19:6.
Article
CAS
Google Scholar
Sun X, Chen W, Ivanov S, MacLean AM, Wight H, Ramaraj T, et al. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol. 2019;221(3):1556–73.
Article
CAS
PubMed
Google Scholar
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018;220(4):1161–71.
Article
CAS
PubMed
Google Scholar
Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol CB. 2012;22(23):2242–6.
Article
CAS
PubMed
Google Scholar
Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 2017;214(4):1631–45.
Article
CAS
PubMed
Google Scholar
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science. 2017;356(6343):1172–5.
Article
CAS
PubMed
Google Scholar
Brands M, Wewer V, Keymer A, Gutjahr C, Dörmann P. The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Plant J. 2018;95(2):219–32.
Article
CAS
PubMed
Google Scholar
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Life. 2017;6:e29107.
Google Scholar
Wewer V, Brands M, Dörmann P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J Cell Mol Biol. 2014;79(3):398–412.
Article
CAS
Google Scholar
Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, et al. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J Cell Mol Biol. 2012;69(5):906–20.
Article
CAS
Google Scholar
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356(6343):1175–8.
Article
CAS
PubMed
Google Scholar
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, et al. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Curr Biol CB. 2016;26(8):987–98.
Article
CAS
PubMed
Google Scholar
Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, et al. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proc Natl Acad Sci. 2018;115(39):E9239–46.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, et al. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Mol Plant. 2018;11(11):1344–59.
Article
CAS
PubMed
Google Scholar