Yin J, Jiang L, Wang L, Han X, Guo W, Li C, et al. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world’s oldest crops. Mol Ecol Resour. 2021;21(1):68–77.
Article
CAS
PubMed
Google Scholar
Ahmed I, Lockhart PJ, Agoo EM, Naing KW, Nguyen DV, Medhi DK, et al. Evolutionary origins of taro (Colocasia esculenta) in southeast Asia. Ecol Evol. 2020;10(23):13530–43.
Article
PubMed
PubMed Central
Google Scholar
Sharma S, Jan R, Kaur R, Riar CS. Taro (Colocasia esculenta). In: Nayik GA, Gull A, editors. Antioxidants in vegetables and nuts-properties and health benefits. Berlin: Springer; 2020. p. 341–53.
Chapter
Google Scholar
Sudhakar P, Thenmozhi V, Srivignesh S, Dhanalakshmi M. Colocasia esculenta (L.) Schott: pharmacognostic and pharmacological review. J Pharmacogn Phytochem. 2020;9(4):1382–6.
CAS
Google Scholar
FAO. FAOSTAT statistical database. Food and Agriculture Organization of the United Nations. 2018. http://www.fao.org/faostat/en/#home.
Bi ME, Teke AN, Christopher S, Annih MG, Charles F. Evaluation of fungicide against taro leaf blight disease caused by Phytophthora colocasiae in three agro-ecological zones of Cameroon. Asian Res J Agric. 2020. https://doi.org/10.9734/arja/2020/v13i330102.
Article
Google Scholar
Singh D, Jackson G, Hunter D, Fullerton R, Lebot V, Taylor M, et al. Taro leaf blight—a threat to food security. Agriculture. 2012;2(3):182–203.
Article
Google Scholar
Omane E, Oduro K, Cornelius E, Opoku I, Akrofi A, Sharma K, et al. First report of leaf blight of taro (Colocasia esculenta) caused by Phytophthora colocasiae in Ghana. Plant disease. 2012;96(2):292. https://doi.org/10.1094/PDIS-09-11-0789.
Article
CAS
PubMed
Google Scholar
Takor MC, Monono EY, Ntane OA, Ngale JE, Fontem LA. Assessing taro (Colocasia esculenta (L.) Schott) leaf blight incidence, severity, and farmers’ knowledge of the disease in Fako Division of Cameroon. Int J Pathog Res. 2020;5(2):17–29.
Article
Google Scholar
Alexandra S, Jamora N, Smale M, Ghanem ME. The tale of taro leaf blight: a global effort to safeguard the genetic diversity of taro in the Pacific. Food Security. 2020;12:1005–16.
Article
Google Scholar
Brooks F. Taro leaf blight. Plant Health Instr. 2015. https://doi.org/10.1094/PHI-I-2005-0531-01.
Article
Google Scholar
Tchameni SN, Mbiakeu SN, Sameza ML, Jazet PMD, Tchoumbougnang F. Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae. Environ Sci Pollut Res. 2018;25(30):29929–35.
Article
CAS
Google Scholar
Tiwari S, Chauhan PS. Ecological restoration and plant biodiversity. In: Upadhyay SK, Singh SP, editors. Bioprospecting of plant biodiversity for industrial molecules. Hoboken: Wiley; 2021.
Google Scholar
Butnariu M, Sarac I. Essential oils from plants. J Biotechnol Biomed Sci. 2018;1(4):35.
Article
Google Scholar
Yousefi M, Rahimi-Nasrabadi M, Pourmortazavi SM, Wysokowski M, Jesionowski T, Ehrlich H, et al. Supercritical fluid extraction of essential oils. TrAC Trends Anal Chem. 2019;118:182–93.
Article
CAS
Google Scholar
Irshad M, Subhani MA, Ali S, Hussain A. Biological importance of essential oils. In: El-Shemy HA, editor. Essential oils—oils of nature. London: IntechOpen; 2020.
Google Scholar
Merah O, Sayed-Ahmad B, Talou T, Saad Z, Cerny M, Grivot S, et al. Biochemical composition of cumin seeds, and biorefining study. Biomolecules. 2020;10(7):1054.
Article
CAS
PubMed Central
Google Scholar
Liao M, Xiao JJ, Zhou LJ, Yao X, Tang F, Hua RM, et al. Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. J Appl Entomol. 2017;141(9):721–8.
Article
CAS
Google Scholar
Elyemni M, Louaste B, Nechad I, Elkamli T, Bouia A, Taleb M, et al. Extraction of essential oils of Rosmarinus officinalis L. by two different methods: hydrodistillation and microwave assisted hydrodistillation. Sci World J. 2019. https://doi.org/10.1155/2019/3659432.
Article
Google Scholar
Chen F, Liu S, Zhao Z, Gao W, Ma Y, Wang X, et al. Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Ind Crops Prod. 2020;143: 111908.
Article
CAS
Google Scholar
Vinatoru M, Mason T, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal Chem. 2017;97:159–78.
Article
CAS
Google Scholar
Wang Y, Li R, Jiang Z-T, Tan J, Tang S-H, Li T-T, et al. Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Ind Crops Prod. 2018;114:164–72.
Article
CAS
Google Scholar
Choi O, Cho SK, Kim J, Park CG, Kim J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed. 2016;6(4):308–14.
Article
CAS
Google Scholar
Tran HN, Graham L, Adukwu EC. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl Microbiol Biotechnol. 2020;104(20):8911–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fokunang C, Mbong G, Manju E, Tembe-Fokunang E, Hanna R. Screen house and field resistance of taro cultivars to taro leaf blight disease (Phytophtora colocasiae). Br Biotechnol J. 2016. https://doi.org/10.9734/bbj/2016/14317.
Article
Google Scholar
Evelyn M, Charles F, Grace M, Estella T-F, Hanna R. Evaluation of latent infection, bio-deterioration and yield of Colocasia esculenta (L.) Schott, caused by taro leaf blight disease (Phytophthora colocasiae Raciborski). J Adv Biol Biotechnol. 2017. https://doi.org/10.9734/JABB/2017/16479.
Article
Google Scholar
Lucas JA. Plant pathology and plant pathogens. Hoboken: Wiley; 2020.
Google Scholar
Sameza ML, Boat MAB, Nguemezi ST, Mabou LCN, Dongmo PMJ, Boyom FF, et al. Potential use of Eucalyptus globulus essential oil against Phytophthora colocasiae the causal agent of taro leaf blight. Eur J Plant Pathol. 2014;140(2):243–50.
Article
CAS
Google Scholar
Wang D, Zhang J, Jia X, Xin L, Zhai H. Antifungal effects and potential mechanism of essential oils on Collelotrichum gloeosporioides in vitro and in vivo. Molecules. 2019;24(18):3386.
Article
CAS
PubMed Central
Google Scholar
Khan N, Shreaz S, Bhatia R, Ahmad SI, Muralidhar S, Manzoor N, et al. Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia. 2012;83(3):434–40.
Article
CAS
PubMed
Google Scholar
Rao PV, Gan SH. Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med. 2014. https://doi.org/10.1155/2014/642942.
Article
PubMed
PubMed Central
Google Scholar
Kazemi M, Mokhtariniya S. Essential oil composition of bark of Cinnamomum zeylanicum. J Essent Oil Bear Plants. 2016;19(3):786–9.
Article
CAS
Google Scholar
Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia. 2016;112:116–31.
Article
CAS
PubMed
Google Scholar
Cheng S-S, Liu J-Y, Chang E-H, Chang S-T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Biores Technol. 2008;99(11):5145–9.
Article
CAS
Google Scholar
Sun Q, Li J, Sun Y, Chen Q, Zhang L, Le T. The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem. 2020;317: 126405.
Article
CAS
PubMed
Google Scholar
Wei J, Bi Y, Xue H, Wang Y, Zong Y, Prusky D. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J Appl Microbiol. 2020;129(2):256–65.
Article
CAS
PubMed
Google Scholar
Goel N, Rohilla H, Singh G, Punia P. Antifungal activity of cinnamon oil and olive oil against Candida Spp. isolated from blood stream infections. J Clin Diagn Res. 2016;10(8):DC09.
CAS
PubMed
PubMed Central
Google Scholar
Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TE. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol. 2018;5(1):1–16.
Article
Google Scholar
Singh H, Srivastava M, Singh A, Srivastava A. Cinnamon bark oil, a potent fungitoxicant against fungi causing respiratory tract mycoses. Allergy. 1995;50(12):995–9.
Article
CAS
PubMed
Google Scholar
Zheng J, Liu T, Guo Z, Zhang L, Mao L, Zhang Y, et al. Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut. Sci Rep. 2019;9(1):1–10.
Google Scholar
Matheron M, Porchas M. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 2000;84(4):454–8.
Article
CAS
PubMed
Google Scholar
Bi Y, Jiang H, Hausbeck MK, Hao JJ. Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Dis. 2012;96(6):797–803.
Article
PubMed
Google Scholar
Walker CA, van West P. Zoospore development in the oomycetes. Fungal Biol Rev. 2007;21(1):10–8.
Article
Google Scholar
Nazzaro F, Fratianni F, Coppola R, Feo VD. Essential oils and antifungal activity. Pharmaceuticals. 2017;10(4):86.
Article
PubMed Central
Google Scholar
Khan SN, Khan S, Iqbal J, Khan R, Khan AU. Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans. Front Microbiol. 2017;8:1641.
Article
PubMed
PubMed Central
Google Scholar
Pootong A, Norrapong B, Cowawintaweewat S. Antifungal activity of cinnamaldehyde against Candida albicans. Southeast Asian J Trop Med Public Health. 2017;48(1):150–8.
PubMed
Google Scholar
Sun Q, Shang B, Wang L, Lu Z, Liu Y. Cinnamaldehyde inhibits fungal growth and aflatoxin B 1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl Microbiol Biotechnol. 2016;100(3):1355–64.
Article
CAS
PubMed
Google Scholar
Baysal-Gurel F, Cinar A. First report of leaf blight caused by Phytophthora colocasiae infecting taro in Turkey. Plant Dis. 2015;99(10):1445.
Article
Google Scholar