Sparks AN. A review of the biology of the fall armyworm. Fla Entomol. 1979;62(2):82–7.
Article
Google Scholar
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 2018;26(2):286–300.
Article
Google Scholar
Goergen G, Kumar PL, Sankung SB, Togola A, Tamo M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE. 2016;11(10): e0165632. https://doi.org/10.1371/journal.pone.0165632.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharanabasappa SD, Kalleshwaraswamy CM, Asokan R, Swamy HMM, Maruthi MS, Pavithra HB, et al. First report of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Horti Ecosyst. 2018;24(1):23–9.
Google Scholar
Wan J, Huang C, Li CY, Zhou HX, Ren YL, Li ZY, et al. Biology, invasion and management of the agricultural invader: fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J Integr Agr. 2021;20(3):646–63.
Article
Google Scholar
Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm: impacts and implications for Africa. Outlooks Agr. 2017;28(5):196–201.
Google Scholar
Kasoma C, Shimelis H, Laing MD. Fall armyworm invasion in Africa: implications for maize production and breeding. J Crop Improv. 2020. https://doi.org/10.1080/15427528.2020.1802800.
Article
Google Scholar
Overton K, Maino JL, Day R, Umina PA, Bett B, Carnovale D, et al. Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): a review. Crop Protect. 2021. https://doi.org/10.1016/j.cropro.2021.105641.
Article
Google Scholar
Jiang YY, Liu J, Zhu XM. Analysis on the occurrence dynamics of invasion and future trend of fall armyworm Spodoptera frugiperda in China. China Plant Protect. 2019;39(2):33–5.
Google Scholar
Sun XX, Hu CX, Jia HR, Wu QL, Shen XJ, Zhao SY, et al. Case study on the first immigration of fall armyworm Spodoptera frugiperda invading into China. J Integr Agr. 2021;20(3):664–72.
Article
CAS
Google Scholar
Zhang L, Liu B, Jiang YY, Liu J, Wu KM, Xiao YT. Molecular characterization analysis of fall armyworm populations in China. Plant Protect. 2019;45(4):20–7.
Google Scholar
Wang L, Chen KW, Lu YY. Long-distance spreading speed and trend predication of fall armyworm, Spodoptera frugiperda. China J Environ Entomol. 2019;41(4):683–94.
Google Scholar
Jiang YY, Liu J, Xie MC, Li YH, Yang JJ, Zhang ML, et al. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protect. 2019;45(6):10–19.
Google Scholar
Wu ZW, Shi PQ, Zeng YH, Huang WF, Huang ZQ, Ma XH, et al. Population life tables of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on three host plants. Plant Protect. 2019;45(6):59–64.
Google Scholar
Qiu LM, Liu QQ, Yang XJ, Huang XY, Guan RF, Liu BP, et al. Feeding and oviposition preference and fitness of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), on rice and maize. Acta Entomol Sin. 2020;63(5):604–12.
Google Scholar
Sun Y, Liu XG, Lv GQ, Hao XZ, Li SH, Li GP. Comparison of population fitness of Spodoptera frugiperda (Lepidoptera: Noctuidae) feeding on wheat and different varieties of maize. Plant Protect. 2020;46(4):126–31.
Google Scholar
He LM, Wu QL, Gao XW, Wu KM. Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J Integr Agr. 2020;19:2–11.
Google Scholar
Fahrasmane L, Parfait B, Aurore G. Bananas, a source of compounds with health properties. Acta Hortic. 2014;1040:75–82.
Article
Google Scholar
Nyine M, Uwimana B, Swennen R, Batte M, Brown A, Christelova P, et al. Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE. 2017;12(6): e0178734. https://doi.org/10.1371/journal.pone.0178734.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martínez-Solorzano GE, Rey-Brina JC, Pargas-Pichardo RE, Enrique-Manzanilla E. Fusarium wilt by tropical race 4: current status and presence in the American continent. Agron Mesoamericana. 2020;31(1):259–76.
Google Scholar
Drenth A, Kema G. The vulnerability of bananas to globally emerging disease threats. Phytopathology. 2021;111(12):2146–61.
Article
PubMed
Google Scholar
Martínez-Solorzano GU, Rey-Brina JC. Bananas (Musa AAA): importance, production and trade in Covid-19 times. Agron Mesoamericana. 2021;32(3):1034–46.
Article
Google Scholar
Guedes RNC, Zanuncio TV, Zanuncio JC, Medeiros AGB. Species richness and fluctuation of defoliator Lepidoptera populations in Brazilian plantations of Eucalyptus grandis as affected by plant age and weather factors. Forest Ecol Manag. 2000;137:179–84.
Article
Google Scholar
Saeed S, Sayyed AH, Ahmad I. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J Pest Sci. 2010;83:165–72.
Article
Google Scholar
Kajita Y, Evans EW. Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biol Invasions. 2010;12(7):2293–302.
Article
Google Scholar
Moanaro, Choudhary JS. Influence of weather parameters on population dynamics of thrips and mites on summer season cowpea in Eastern Plateau and Hill region of India. J Agrometeorol. 2016;18(2):296–9.
Article
Google Scholar
Elsensohn JE, Schal C, Burrack HJ. Plasticity in oviposition site selection behavior in Drosophila suzukii (Diptera: Drosophilidae) in relation to adult density and host distribution and quality. J Econ Entomol. 2021;114(4):1517–22.
Article
PubMed
Google Scholar
Umbanhowar J, Hastings A. The impact of resource limitation and the phenology of parasitoid attack on the duration of insect herbivore outbreaks. Theor Popul Biol. 2002;62(3):259–69.
Article
PubMed
Google Scholar
Sequeira R, Dixon AFG. Life history responses to host quality changes and competition in the Turkey-oak aphid, Myzocallis boerneri (Hemiptera: Sternorrhyncha: Callaphididae). Eur J Entomol. 1996;93(1):53–8.
Google Scholar
Awmack CS, Leather SR. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol. 2022;47:817–44.
Article
Google Scholar
Zalucki MP, Daglish G, Firempong S, Twine P. The biology and ecology of Heliothis armigera (Hubner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in Australia: what do we know? Aust J Zool. 1986;34:779–814.
Article
Google Scholar
Wang WQ, Zheng YQ, Chen B, Soukasmone P, Xiao GL. Effects of different host plants on the growth, development and fecundity of potato tuber moth Phthorimaea operculella based on the age-stage two-sex life table. J Plant Protect. 2020;47(3):488–96.
Google Scholar
Chi H, Liu H. Two new methods for the study of insect population ecology. Bull I Zool. 1985;24(2):225–40.
Google Scholar
Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol. 1988;17(1):26–34.
Article
Google Scholar
Chi H, Su HY. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Popul Ecol. 2006;35(1):10–21.
Google Scholar
Qi X, Fu JW, You MS. Age-stage, two-sex life table and its application in population ecology and integrated pest management. Acta Entomol Sin. 2019;62(2):255–62.
Google Scholar
Xie W, Zhi JR, Ye JQ, Zhou YM, Li C, Liang YJ, et al. Age-stage, two-sex life table analysis of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) reared on maize and kidney bean. Chem Biol Technol Ag. 2021. https://doi.org/10.1186/s40538-021-00241-8.
Article
Google Scholar
Prasanna BM, Huesing JE, Eddy R, Peschke VM. Fall armyworm in Africa: a guide for integrated pest management. 1st ed. Mexico: The International Maize and Wheat Improvement Center; 2018. http://resilience-exchange.s3.amazonaws.com/attachments/uploads/4906/original/Fall_Armyworm_in_Africa__A_Guide_for_Integrated_Pest_Management.pdf.
Chi H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. 2022. http://140.120.197.173/Ecology/. National Chung Hsing University, Taichung Taiwan. Accessed 21 Feb 2022.
Jha RK, Chi H, Tang LC. A comparison of artificial diet and hybrid sweet corn for the rearing of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) based on life table characteristics. Environ Entomol. 2012;41(1):30–9.
Article
PubMed
CAS
Google Scholar
Goodman D. Optimal life histories, optimal notation, and the value of reproductive value. Am Nat. 1982;119(6):803–23.
Article
Google Scholar
Cai WZ, Pang XF, Hua BZ, Liang GW, Song DL. General entomology. 2nd ed. Beijing: China gricultural University Press; 2011. p. 443.
Google Scholar
Wu KM. Management strategies of fall armyworm (Spodoptera frugiperda) in China. Plant Protect. 2020;46(2):1–5.
CAS
Google Scholar
Sharanabasappa SD, Kalleshwaraswamy CM, Maruthi MS, Pavithra HB. Biology of invasive fall army worm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize. Indian J Entomol. 2018;80(3):540–3.
Article
Google Scholar
Prasifka JR, Bradshaw JD, Meagher RL, Nagoshi RN, Steffey KL, Gray ME. Development and feeding of fall armyworm on Miscanthus × giganteus and switchgrass. J Econ Entomol. 2009;102(6):2154–9.
Article
PubMed
CAS
Google Scholar
Barros EM, Torres JB, Ruberson JR, Oliveira MD. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomol Exp Appl. 2010;137(3):237–45.
Article
Google Scholar
Zhao M, Yang JG, Wang ZY, Zhu JS, Jiang YY, Xu ZC, et al. Spodoptera frugiperda were found damaging potato in Shandong province. Plant Protect. 2019;45(6):84–6.
CAS
Google Scholar
Huang Q, Ling Y, Jiang T, Pang GQ, Jiang XB, Fu CQ, et al. Feeding preference and adaptability of Spodoptera frugiperda on three host plant. J Environ Entomol. 2019;41(6):1141–5.
Google Scholar
Maruthadurai R, Ramesh R. Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J. E. smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa India. Phytoparasitica. 2020;48(10):15–23.
Article
CAS
Google Scholar
Acharya R, Malekera MJ, Dhungana SK, Sharma SR, Lee KY. Impact of rice and potato host plants is higher on the reproduction than growth of corn strain fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2022. https://doi.org/10.3390/insects13030256.
Article
PubMed
PubMed Central
Google Scholar
Zou CH, Yang JJ. Spodoptera frugiperda harms Coix. China Plant Protect. 2019;39(8):47.
Google Scholar
Liu YQ, Wang XQ, Zhong YW. Fall armyworm Spodoptera frugiperda feeding on cabbage in Zhejiang. Plant Protect. 2019;45(6):90–1.
Google Scholar
Zhou SC, Li SB, Su RR, Wang XY, Zheng XL, Lu W. Preliminary report on the damage of Spodoptera frugiperda on Maranta arundinacea in Guangxi. Plant Protect. 2020;46(2):209–211+221.
Google Scholar
Fang M, Yao L, Tang QF, Li GT, Jiang XC. Feeding adaptability of fall armyworm Spodoptera frugiperda to several weeds. J Plant Protect. 2020;47(5):1055–61.
Google Scholar
Moraes T, da Silva AF, Leite NA, Karam D, Mendes SM. Survival and development of fall armyworm (Lepidoptera: Noctuidae) in weeds during the off-season. Fla Entomol Soc. 2020;103(2):288–92.
Article
CAS
Google Scholar
Guangxi Agriculture and Rural Affairs Bureau: Agricultural Technology Promotion Column. http://nynct.gxzf.gov.cn/njtg/wjtz/t8016889.shtml. Accessed 12 Apr2022.
Thompson JN. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl. 1988;47(1):3–14.
Article
Google Scholar
Reigada C, Guimaraes KF, Parra JRP. Relative fitness of Helicoverpa armigera (Lepidoptera: Noctuidae) on seven host plants: a perspective for IPM in Brazil. J Insect Sci. 2016;16(1):1–5.
Article
Google Scholar
Qin JD. The physiological bases of host-plant specificity of phytophagous insects. Acta Entomol Sin. 1980;23(1):106–22.
Google Scholar
He LM, Zhao SY, Wu KM. Study on the damage of fall armyworm Spodoptera frugiperda to peanut. Plant Protect. 2020;46(1):28–33.
Google Scholar
Jones BC, Despland E. Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Can J Zool. 2006;84(4):628–33.
Article
Google Scholar
Chen Y, Ruberson JR, Olson DM. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl. 2008;126(3):244–55.
Article
CAS
Google Scholar
Luo GH, Yao J, Yang Q, Zhang ZC, Hoffmann AA, Fang JC. Variability in development of the striped rice borer, Chilo suppressalis (Lepidoptera: Pyralidae), due to instar number and last instar duration. Sci Rep. 2016;6(1):35231.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotiaho JS, Simmons LW. Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis. J Insect Physiol. 2003;49:817–22.
Article
PubMed
CAS
Google Scholar
Liu HY, Ueno T. The importance of food and host on the fecundity and longevity of a host-feeding parasitoid wasp. J Fac Agr Kyushu U. 2012;57(1):121–5.
Google Scholar
Grandison RC, Piper MDW, Partridge L. Amino acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;24(7276):1061–4.
Article
Google Scholar