Menšík L, Hlisnikovský L, Pospíšilová L, Kunzová E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J Soil Sediment. 2018;18:2813–22. https://doi.org/10.1007/s11368-018-1933-3.
Article
CAS
Google Scholar
Hati KM, Mandal KG, Misra AK, Ghosh PK, Bandyopadhyay KK. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresource Technol. 2006;97:2182–8. https://doi.org/10.1016/j.biortech.2005.09.033.
Article
CAS
Google Scholar
Gross A, Glaser B. Meta-analysis on how manure application changes soil organic carbon storage. Sci Rep. 2021;11:5516. https://doi.org/10.1038/s41598-021-82739-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, Amundson R, et al. Towards a global-scale soil climate mitigation strategy. Nat Commun. 2020;11:5427. https://doi.org/10.1038/s41467-020-18887-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhardwaj AK, Rajwar D, Mandal UK, Ahamad S, Kaphaliya B, Minhas PS, et al. Impact of carbon inputs on soil carbon fractionation, sequestration and biological responses under major nutrient management practices for rice-wheat cropping systems. Sci Rep. 2019;9:9114. https://doi.org/10.1038/s41598-019-45534-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breyer C, Fasihi M, Bajamundi C, Creutzig F. Direct air capture of CO2: a key technology for ambitious climate change mitigation. Joule. 2019;3:2053–7. https://doi.org/10.1016/j.joule.2019.08.010.
Article
Google Scholar
Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr Ecosyst Environ. 2013;164:80–99. https://doi.org/10.1016/j.agee.2012.10.001.
Article
CAS
Google Scholar
Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biol. 2021;27:1328–48. https://doi.org/10.1111/gcb.15498.
Article
CAS
Google Scholar
Wang J, Wang K, Wang X, Ai Y, Zhang Y, Yu J, et al. Carbon sequestration and yields with long-term use of inorganic fertilizers and organic manure in a six-crop rotation system. Nutr Cycl Agroecosys. 2018;111:87–98. https://doi.org/10.1007/s10705-018-9920-z.
Article
CAS
Google Scholar
Sriprapakhan P, Artkla R, Nuanual S, Maneechot P. Economic and ecological assessment of integrated agricultural bio-energy and conventional agricultural energy frameworks for agriculture sustainability. J Saudi Soc Agr Sci. 2021;20:227–34. https://doi.org/10.1016/j.jssas.2021.02.001.
Article
Google Scholar
Canwat V, Onakuse S. Organic agriculture: A fountain of alternative innovations for social, economic, and environmental challenges of conventional agriculture in a developing country context. Clean Circ Bioecon. 2022;3: 100025. https://doi.org/10.1016/j.clcb.2022.100025.
Article
Google Scholar
Knapp S, van der Heijden MGA. A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun. 2018;9:3632. https://doi.org/10.1038/s41467-018-05956-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U, et al. Soil fertility and biodiversity in organic farming. Science. 2002;296:1694–7. https://doi.org/10.1126/science.1071148.
Article
PubMed
Google Scholar
Köninger J, Lugato E, Panagos P, Kochupillai M, Orgiazzi A, Briones MJ, et al. Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agr Syst. 2021;194: 103251. https://doi.org/10.1016/j.agsy.2021.103251.
Article
Google Scholar
Chalker-Scott L. The science behind biodynamic preparations: a literature review. Hortic Technol. 2013;23:814–9. https://doi.org/10.21273/horttech.23.6.814.
Article
Google Scholar
Turinek M, Grobelnik-Mlakar S, Bavec M, Bavec F. Biodynamic agriculture research progress and priorities. Renew Agr Food Syst. 2009;24:146–54. https://doi.org/10.1017/S174217050900252X.
Article
Google Scholar
Paull J, Hennig B. A world map of biodynamic agriculture. Agr Biol Sci J. 2020;6:114–9.
Google Scholar
Reeve JR, Carpenter-Boggs L, Reganold JP, York AL, Brinton WF. Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth. Bioresource Technol. 2010;101:5658–66. https://doi.org/10.1016/j.biortech.2010.01.144.
Article
CAS
Google Scholar
Steiner R. Agriculture: spiritual foundations for the renewal of agriculture. 1st ed. Hudson, New York: Anthroposophic Press; 1993.
Google Scholar
Faust S, Heinze S, Ngosong C, Sradnick A, Oltmanns M, Raupp J, et al. Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization. Appl Soil Ecol. 2017;114:82–9. https://doi.org/10.1016/j.apsoil.2017.03.006.
Article
Google Scholar
Carpenter-Boggs L, Reganold JP, Kennedy AC. Biodynamic preparations: short-term effects on crops, soils, and weed populations. Am J Altern Agr. 2000;15:110–8. https://doi.org/10.1017/S0889189300008614.
Article
Google Scholar
Tassoni A, Tango N, Ferri M. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem. 2013;139:405–13. https://doi.org/10.1016/j.foodchem.2013.01.041.
Article
CAS
PubMed
Google Scholar
Morrison-Whittle P, Lee SA, Goddard MR. Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems. Agr Ecosys Environ. 2017;246:306–13. https://doi.org/10.1016/j.agee.2017.05.022.
Article
Google Scholar
Soustre-Gacougnolle I, Lollier M, Schmitt C, Perrin M, Buvens E, Lallemand J-F, et al. Responses to climatic and pathogen threats differ in biodynamic and conventional vines. Sci Rep. 2018;8:16857. https://doi.org/10.1038/s41598-018-35305-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G. Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod. 2014;65:330–41. https://doi.org/10.1016/j.jclepro.2013.08.026.
Article
Google Scholar
Juknevičienė E, Danilčenko H, Jarienė E, Živatkauskienė V, Zeise J, Fritz J, et al. The effect of biodynamic preparations on growth and fruit quality of giant pumpkin (Cucurbita maxima D.). Chem Biol Technol Agr. 2021. https://doi.org/10.1186/s40538-021-00258-z.
Article
Google Scholar
Fritz J, Döring J, Athmann M, Meissner G, Kauer R, Schultz HR, et al. Wine quality under integrated, organic and biodynamic management using image-forming methods and sensory analysis. Chem Biol Technol Agr. 2021. https://doi.org/10.1186/s40538-021-00261-4.
Article
Google Scholar
Fritz J, Jannoura R, Lauer F, Schenk J, Masson P, Joergensen RG, et al. Functional microbial diversity responses to biodynamic management in Burgundian vineyard soils. Biol Agric Hortic. 2020;36:172–86. https://doi.org/10.1080/01448765.2020.1762739.
Article
Google Scholar
Rodas-Gaitán HA, Palma-García JM, Olivares-Sáenz E, Gutiérrez-Castorena EV, Vázquez-Alvarado R. Biodynamic preparations on static pile composting from prickly pear cactus and moringa crop wastes. Open Agr. 2019;4:247–57. https://doi.org/10.1515/opag-2019-0023.
Article
Google Scholar
Rodas-Gaitán HA, Vázquez Alvarado RE, Olivares Sáenz E, Aranda Ruiz J, Palma García JM. Estabilidad de compostas estáticas biodinámicas a partir de restos de cultivos Regionales. Rev Mex Cienc Agr. 2019;10:187–95. https://doi.org/10.29312/remexca.v10i1.1337.
Article
Google Scholar
Giannattasio M, Vendramin E, Fornasier F, Alberghini S, Zanardo M, Stellin F, et al. Microbiological features and bioactivity of a fermented manure product (preparation 500) used in biodynamic agriculture. J Microbiol Biotechn. 2013;23:644–51. https://doi.org/10.4014/jmb.1212.12004.
Article
Google Scholar
Spaccini R, Mazzei P, Squartini A, Giannattasio M, Piccolo A. Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture. Environ Sci Pollut R. 2012;19:4214–25. https://doi.org/10.1007/s11356-012-1022-x.
Article
CAS
Google Scholar
Zaller J, Köpke U. Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol Fert Soils. 2004;40:222–9. https://doi.org/10.1007/s00374-004-0772-0.
Article
Google Scholar
Singh JS, Gupta VK. Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ. 2018;634:497–500. https://doi.org/10.1016/j.scitotenv.2018.03.373.
Article
CAS
PubMed
Google Scholar
Li Y, Chang SX, Tian L, Zhang Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis. Soil Biol Biochem. 2018;121:50–8. https://doi.org/10.1016/j.soilbio.2018.02.024.
Article
CAS
Google Scholar
Cleveland CC, Liptzin D. C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry. 2007;85:235–52. https://doi.org/10.1007/s10533-007-9132-0.
Article
Google Scholar
Heuck C, Weig A, Spohn M. Soil microbial biomass C:N: P stoichiometry and microbial use of organic phosphorus. Soil Biol Biochem. 2015;85:119–29. https://doi.org/10.1016/j.soilbio.2015.02.029.
Article
CAS
Google Scholar
Joergensen RG. Organic matter and micro-organisms in tropical soils. In: Dion P, editor. Soil biology and agriculture in the tropics. Berlin: Springer Berlin Heidelberg; 2010. p. 17–44.
Chapter
Google Scholar
Thioye B, Legras M, Castel L, Hirissou F, Chaftar N, Trinsoutrot-Gattin I, et al. Understanding arbuscular mycorrhizal colonization in walnut plantations: the contribution of cover crops and soil microbial communities. Agriculture. 2022;12:1. https://doi.org/10.3390/agriculture12010001.
Article
CAS
Google Scholar
Sradnick A, Murugan R, Oltmanns M, Raupp J, Joergensen RG. Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Appl Soil Ecol. 2013;63:23–8. https://doi.org/10.1016/j.apsoil.2012.09.011.
Article
Google Scholar
Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G, de Goede R, et al. Soil quality—a critical review. Soil Biol Biochem. 2018;120:105–25. https://doi.org/10.1016/j.soilbio.2018.01.030.
Article
CAS
Google Scholar
Tlili A, Marechal M, Montuelle B, Volat B, Dorigo U, Bérard A, et al. Use of the MicroResp™ method to assess pollution-induced community tolerance to metals for lotic biofilms. Environ Pollut. 2011;159:18–24. https://doi.org/10.1016/j.envpol.2010.09.033.
Article
CAS
PubMed
Google Scholar
Sufyan M, Abbasi A, Dildar Gogi M, Arshad M, Nawaz A, Neuhoff D, et al. Efficacy of Beauveria Bassiana for the management of economically important wireworm species (Coleoptera: Elateridae) in organic farming. Gesunde Pflanz. 2017;69:197–202. https://doi.org/10.1007/s10343-017-0406-8.
Article
Google Scholar
Kemper R, Bublitz TA, Müller P, Kautz T, Döring TF, Athmann M, et al. Vertical root distribution of different cover crops determined with the profile wall method. Agriculture. 2020;10:503. https://doi.org/10.3390/agriculture10110503.
Article
CAS
Google Scholar
Steiner R. Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft. 5th ed. Dornach: Rudolf-Steiner-Verlag; 1975.
Google Scholar
Koepf HH, Pettersson BD, Schaumann W. Biologisch-dynamische Landwirtschaft. Eine Einführung. 4th ed. Stuttgart: Eugen Ulmet; 1980.
Google Scholar
Struecker J, Joergensen RG. Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biol Biochem. 2015;91:310–7. https://doi.org/10.1016/j.soilbio.2015.09.011.
Article
CAS
Google Scholar
Loeppmann S, Blagodatskaya E, Pausch J, Kuzyakov Y. Enzyme properties down the soil profile—a matter of substrate quality in rhizosphere and detritusphere. Soil Biol Biochem. 2016;103:274–83. https://doi.org/10.1016/j.soilbio.2016.08.023.
Article
CAS
Google Scholar
Jensen JL, Schjønning P, Watts CW, Christensen BT, Munkholm LJ. Soil texture analysis revisited: removal of organic matter matters more than ever. PLoS ONE. 2017;12: e0178039. https://doi.org/10.1371/journal.pone.0178039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobley EU, Prater I. Estimating soil texture from vis-NIR spectra. Eur J Soil Sci. 2019;70:83–95. https://doi.org/10.1111/ejss.12733.
Article
Google Scholar
Blume H-P, Stahr K, Leinweber P. Bodenkundliches Praktikum. 3rd ed. Heidelberg: Spektrum Akademischer Verlag; 2011.
Google Scholar
Asabere SB, Zeppenfeld T, Nketia KA, Sauer D. Urbanization leads to increases in pH, carbonate, and soil organic matter stocks of arable soils of Kumasi, Ghana (West Africa). Front Environ Sci. 2018. https://doi.org/10.3389/fenvs.2018.00119.
Article
Google Scholar
Mirzaeitalarposhti R, Demyan MS, Rasche F, Cadisch G, Müller T. Overcoming carbonate interference on labile soil organic matter peaks for midDRIFTS analysis. Soil Biol Biochem. 2016;99:150–7. https://doi.org/10.1016/j.soilbio.2016.05.010.
Article
CAS
Google Scholar
Wang X, Wang J, Xu M, Zhang W, Fan T, Zhang J, et al. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon. Sci Rep. 2015;5:11439. https://doi.org/10.1038/srep11439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallam J, Hodson ME. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biol Fert Soils. 2020;56:607–17. https://doi.org/10.1007/s00374-020-01432-5.
Article
Google Scholar
Bolat İ. Microbial biomass, basal respiration, and microbial indices of soil in diverse croplands in a region of northwestern Turkey (Bartın). Environ Monit Assess. 2019;191:695. https://doi.org/10.1007/s10661-019-7817-1.
Article
CAS
PubMed
Google Scholar
Brookes PC, Powlson DS, Jenkinson DS. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem. 1982;14:319–29. https://doi.org/10.1016/0038-0717(82)90001-3.
Article
CAS
Google Scholar
Joergensen RG, Anderson T-H, Wolters V. Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L.) forests. Biol Fert Soils. 1995;19:141–7. https://doi.org/10.1007/BF00336150.
Article
Google Scholar
Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem. 1990;22:1167–9. https://doi.org/10.1016/0038-0717(90)90046-3.
Article
CAS
Google Scholar
Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42. https://doi.org/10.1016/0038-0717(85)90144-0.
Article
CAS
Google Scholar
Djajakirana G, Joergensen RG, Meyer B. Ergosterol and microbial biomass relationship in soil. Biol Fert Soils. 1996;22:299–304. https://doi.org/10.1007/BF00334573.
Article
CAS
Google Scholar
Heinze S, Raupp J, Joergensen RG. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil. 2010;328:203–15. https://doi.org/10.1007/s11104-009-0102-2.
Article
CAS
Google Scholar
Linsler D, Taube F, Geisseler D, Joergensen RG, Ludwig B. Temporal variations of the distribution of water-stable aggregates, microbial biomass and ergosterol in temperate grassland soils with different cultivation histories. Geoderma. 2015;241–242:221–9. https://doi.org/10.1016/j.geoderma.2014.11.013.
Article
CAS
Google Scholar
Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microb. 2003;69:3593–9. https://doi.org/10.1128/AEM.69.6.3593-3599.2003.
Article
CAS
Google Scholar
Creamer RE, Stone D, Berry P, Kuiper I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl Soil Ecol. 2016;97:36–43. https://doi.org/10.1016/j.apsoil.2015.08.004.
Article
Google Scholar
Meyer A, Fischer H, Kuzyakov Y, Fischer K. Improved RP-HPLC and anion-exchange chromatography methods for the determination of amino acids and carbohydrates in soil solutions. J Plant Nutr Soil Sc. 2008;171:917–26. https://doi.org/10.1002/jpln.200700235.
Article
CAS
Google Scholar
Kierul K, Voigt B, Albrecht D, Chen X-H, Carvalhais LC, Borriss R, et al. Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology. 2015;161:131–47. https://doi.org/10.1099/mic.0.083576-0.
Article
CAS
PubMed
Google Scholar
Singh R, Kumar M, Mittal A, Mehta PK. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017;7:15. https://doi.org/10.1007/s13205-016-0586-4.
Article
PubMed
PubMed Central
Google Scholar
Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25:280–92. https://doi.org/10.1016/j.tim.2016.12.002.
Article
CAS
PubMed
Google Scholar
Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem. 1992;24:675–83. https://doi.org/10.1016/0038-0717(92)90046-Z.
Article
CAS
Google Scholar
Fließbach A, Oberholzer H-R, Gunst L, Mäder P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr Ecosyst Environ. 2007;118:273–84. https://doi.org/10.1016/j.agee.2006.05.022.
Article
Google Scholar
Das S, Jeong ST, Das S, Kim PJ. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front Microbiol. 2017;8:1702. https://doi.org/10.3389/fmicb.2017.01702.
Article
PubMed
PubMed Central
Google Scholar
Fuentes JP, Bezdicek DF, Flury M, Albrecht S, Smith JL. Microbial activity affected by lime in a long-term no-till soil. Soil Till Res. 2006;88:123–31. https://doi.org/10.1016/j.still.2005.05.001.
Article
Google Scholar
Vogel S, Bönecke E, Kling C, Kramer E, Lück K, Nagel A, et al. Base neutralizing capacity of agricultural soils in a quaternary landscape of north-east Germany and its relationship to best management practices in lime requirement determination. Agronomy. 2020;10:877. https://doi.org/10.3390/agronomy10060877.
Article
Google Scholar
Ren F, Sun N, Xu M, Zhang X, Wu L, Xu M, et al. Changes in soil microbial biomass with manure application in cropping systems: a meta-analysis. Soil Till Res. 2019;194: 104291. https://doi.org/10.1016/j.still.2019.06.008.
Article
Google Scholar
Böhme L, Langer U, Böhme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agr Ecosyst Environ. 2005;109:141–52. https://doi.org/10.1016/j.agee.2005.01.017.
Article
Google Scholar
Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol. 2017;113:22–8. https://doi.org/10.1016/j.apsoil.2017.01.008.
Article
Google Scholar
Liu E, Yan C, Mei X, He W, Bing SH, Ding L, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma. 2010;158:173–80. https://doi.org/10.1016/j.geoderma.2010.04.029.
Article
CAS
Google Scholar
Kumar U, Shahid M, Tripathi R, Mohanty S, Kumar A, Bhattacharyya P, et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol Indic. 2017;73:536–43. https://doi.org/10.1016/j.ecolind.2016.10.014.
Article
CAS
Google Scholar
Martín-Lammerding D, Navas M, Del Albarrán MM, Tenorio JL, Walter I. LONG term management systems under semiarid conditions: Influence on labile organic matter, β-glucosidase activity and microbial efficiency. Appl Soil Ecol. 2015;96:296–305. https://doi.org/10.1016/j.apsoil.2015.08.021.
Article
Google Scholar
Frimpong KA, Abban-Baidoo E, Marschner B. Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon. 2021;7(5):E07089. https://doi.org/10.1016/j.heliyon.2021.e07089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toh FA, Ndam LM, Angwafo TE, Christopher N. Effect of land use management patterns on mineralization kinetics of soil organic carbon in Mount Bambouto Caldera Area of Cameroon. Open J Soil Sci. 2020;10:391–409. https://doi.org/10.4236/ojss.2020.109021.
Article
CAS
Google Scholar
Anderson T-H, Domsch KH. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem. 1990;22:251–5. https://doi.org/10.1016/0038-0717(90)90094-G.
Article
Google Scholar
Sradnick A, Oltmanns M, Raupp J, Joergensen RG. Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil. Org Agr. 2018;8:29–38. https://doi.org/10.1007/s13165-016-0170-6.
Article
Google Scholar
Joergensen R, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem. 2008;40:2977–91. https://doi.org/10.1016/j.soilbio.2008.08.017.
Article
CAS
Google Scholar
Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Sahraoui AL-H, et al. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ. 2015;533:488–94. https://doi.org/10.1016/j.scitotenv.2015.07.007.
Article
CAS
PubMed
Google Scholar
Döring J, Frisch M, Tittmann S, Stoll M, Kauer R. Growth, yield and fruit quality of grapevines under organic and biodynamic management. PLoS ONE. 2015;10: e0138445. https://doi.org/10.1371/journal.pone.0138445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oren A, Steinberger Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol Biochem. 2008;40:2569–77. https://doi.org/10.1016/j.soilbio.2008.06.020.
Article
CAS
Google Scholar
de Nobili M, Contin M, Mondini C, Brookes P. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem. 2001;33:1163–70. https://doi.org/10.1016/S0038-0717(01)00020-7.
Article
Google Scholar
Patzel N, Sticher H, Karlen DL. Soil fertility—phenomenon and concept. J Plant Nutr Soil Sc. 2000;163:129–42. https://doi.org/10.1002/(SICI)1522-2624(200004)163:2%3c129::AID-JPLN129%3e3.0.CO;2-D.
Article
CAS
Google Scholar