Poddar PK, Sahu O. Quality and management of wastewater in sugar industry. Appl Water Sci. 2017;7:461–8.
Article
CAS
Google Scholar
Nandy T, Shastry S, Kaul SN. Wastewater management in a cane molasses distillery involving bioresource recovery. J Environ Manag. 2002;65:25–38.
Article
Google Scholar
Sriroth K, Vanichsriratana W, Sunthornvarabhas J. The current status of sugar industry and by-products in Thailand. Sugar Tech. 2016;18:576–82.
Article
Google Scholar
Fito J, Tefera N, Demeku S, Kloos H. Water footprint as an emerging environmental tool for assessing sustainable water use of the bioethanol distillery at Metahara sugarcane farm, Oromiya Region, Ethiopia. Water Conserv Sci Eng. 2017;2:165–76.
Article
Google Scholar
Gopal AR, Kammen DM. Molasses for ethanol : the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environ Res Lett. 2009;4:1–5.
Article
Google Scholar
Martinelli L, Filoso S, Aranha CDB, Ferraz SFB, Andrade TMB, Ravagnani EDC, et al. Water use in sugar and ethanol industry in the State of São Paulo (Southeast Brazil). J Sustain Bioenergy Syst. 2013;3:135–42.
Article
Google Scholar
Ingaramo A, Heluane H, Colombo M, Cesca M. Water and wastewater eco-efficiency indicators for the sugar cane industry. J Clean Prod. 2009;17:487–95.
Article
Google Scholar
Memon AR, Suhail Ahmed S, Abdul Khaliq A. Sugar industry effluent characteristics and chemical analysis. J Appl Emerg Sci. 2006;1:156–7.
Google Scholar
Solomon SK. Environmental pollution and its management in sugar industry in India: an appraisal. Sugar Tech. 2005;7:77–81.
Article
Google Scholar
Sahu OP, Chaudhari PK. Electrochemical treatment of sugar industry wastewater: COD and color removal. J Electroanal Chem. 2015;739:122–9.
Article
CAS
Google Scholar
Jadhav PG, Vaidya NG, Dethe SB. Characterization and comparative study of cane sugar industry waste water. Int J Chem Phys Sci. 2013;2:19–25.
Google Scholar
Fito J, Tefera N, Van Hulle SWH. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Tech. 2018. https://doi.org/10.1007/s12355-018-0633-z.
Article
Google Scholar
Samuel S, Muthukkaruppan SM. Physico-chemical analysis of sugar Mill effluent, contaminated soil and its effect on seed germination of Paddy (Oryza sativa L.). Int J Pharm Biol Arch. 2011;2:1469–72.
Google Scholar
Elayaraj B. Physico-chemical analysis of sugar factory effluent stress on seedling growth of black gram (Vigna mungo (L.) Hepper) varieties. Int Lett Nat Sci. 2014;12:85–93.
Google Scholar
Hampannavar U, Shivayogimath C. Anaerobic treatment of sugar industry wastewater by upflow anaerobic. Int J Environ Sci. 2010;1:631–9.
CAS
Google Scholar
Siddiqui WA, Waseem M. A comparative study of sugar mill treated and untreated effluent—a case study. Orient J Chem. 2012;28:1899–904.
Article
Google Scholar
Nataraj SK, Hosamani KM, Aminabhavi TM. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 2006;40:2349–56.
Article
CAS
PubMed
Google Scholar
Kharayat Y. Distillery wastewater: bioremediation approaches. J Integr Environ Sci. 2012;9:69–91.
Article
Google Scholar
Tewari PK, Batra VS, Balakrishnan M. Water management initiatives in sugarcane molasses based distilleries in India. Resour Conserv Recycl. 2007;52:351–67.
Article
Google Scholar
Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol. 2007;98:2321–34.
Article
CAS
PubMed
Google Scholar
Basu S, Mukherjee S, Kaushik A, Batra VS. Integrated treatment of molasses distillery wastewater using micro filtration (MF). J Environ Manag. 2015;158:55–60.
Article
CAS
Google Scholar
Fito J, Tefera N, Van Hulle SWH. Adsorption of distillery spent wash on activated bagasse fly ash: kinetics and thermodynamics. J Environ Chem Eng. 2017;5:5381–8. https://doi.org/10.1016/j.jece.2017.10.009.
Article
CAS
Google Scholar
Fito J, Tefera N, Kloos H, Van Hulle SWH. Anaerobic treatment of blended sugar industry and ethanol distillery wastewater through biphasic high rate reactor. J Environ Sci Health Part A. 2018;53:676–85. https://doi.org/10.1080/10934529.2018.1438826.
Article
CAS
Google Scholar
Dos Reis CM, Carosia MF, Sakamoto IK, Amâncio Varesche MB, Silva EL. Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. Int J Hydrog Energy. 2015;40:8498–509.
Article
Google Scholar
Arimi MM, Zhang Y, Götz G, Kiriamiti K, Geißen SU. Antimicrobial colorants in molasses distillery wastewater and their removal technologies. Int Biodeterior Biodegrad. 2014;87:34–43.
Article
CAS
Google Scholar
Wang H, Qian H, Yao W. Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem. 2011;128:573–84.
Article
CAS
Google Scholar
Nure JF, Shibeshi NT, Asfaw SL, Audenaert W, Van Hulle SWH. COD and colour removal from molasses spent wash using activated carbon produced from bagasse fly ash of Matahara sugar factory, Oromiya region, Ethiopia. Water SA. 2017;43:470–9.
Article
CAS
Google Scholar
David C, Arivazhagan M, Tuvakara F. Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study. Ecotoxicol Environ Saf. 2015;121:142–8.
Article
CAS
PubMed
Google Scholar
Yadav S, Chandra R, Rai V. Characterization of potential MnP producing bacteria and its metabolic products during decolourisation of synthetic melanoidins due to biostimulatory effect of d-xylose at stationary phase. Process Biochem. 2011;46:1774–84.
Article
CAS
Google Scholar
Prasad RK, Srivastava SN. Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. Chem Eng J. 2009;146:90–7.
Article
Google Scholar
Naik N, Jagadeesh KS, Noolvi MN. Enhanced degradation of melanoidin and caramel in biomethanated distillery spentwash by microorganisms isolated from mangroves. Energy Environ. 2010;1:347–51.
Google Scholar
Dahiya J, Singh D, Nigam P. Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour Technol. 2001;78:95–8.
Article
CAS
PubMed
Google Scholar
Zhang W, Xiong R, Wei G. Biological flocculation treatment on distillery wastewater and recirculation of wastewater. J Hazard Mater. 2009;172:1252–7.
Article
CAS
PubMed
Google Scholar
Ansari F, Awasthi AK, Srivastava BP. Physico-chemical characterization of distillery effluent and its dilution effect at different levels. Arch Appl Sci Res. 2012;4:1705–15.
CAS
Google Scholar
Khairnar P, Chavan F, Diware VR. Generation of energy from distillery wastewater. Int J Sci Spiritual Bus Technol. 2013;2:29–35.
Google Scholar
Suganya K, Rajannan G, Valliappan K. Impact of one time application of distillery spent wash on the groundwater quality. Nat Environ Pollut Technol. 2012;11:447–52.
CAS
Google Scholar
Lakshmikanth R, Virupakshi A. Treatment of distillery spentwash using AFBBR and color removal of treated spentwash using adsorbtion. Int J Sci Eng Res. 2012;3:1–7.
Google Scholar
Prado RDM, Caione G, Campos CNS. Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl Environ Soil Sci. 2013;2013:1–8.
Article
Google Scholar
Chaudhary R, Address MA. Study on distillery effluent: chemical analysis and impact on environment. Int J Adv Eng Technol. 2011;2:352–6.
Google Scholar
Chandrakant M, Kedar R. Physico-chemical analysis and microbial degradation of spent wash from sugar industries. Res J Chem Sci. 2013;3:53–6.
Google Scholar
Andrade LH, Mendes FDS, Espindola JC, Amaral MCS. Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep Purif Technol. 2014;126:21–9.
Article
CAS
Google Scholar
Chopra AK, Srivastava S, Kumar V, Pathak C. Agro-potentiality of distillery effluent on soil and agronomical characteristics of Abelmoschus esculentus L. (okra). Environ Monit Assess. 2013;185:6635–44.
Article
CAS
PubMed
Google Scholar
Kumar V, Chopra AK. Influence of sugar mill effluent on physico-chemical characteristics of soil at Haridwar (Uttarakhand), India. J Appl Nat Sci. 2010;2:269–79.
Article
Google Scholar
Mohana S, Acharya BK, Madamwar D. Distillery spent wash: treatment technologies and potential applications. J Hazard Mater. 2009;163:12–25.
Article
CAS
PubMed
Google Scholar
Bezuneh TT, Kebede EM. Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. J Environ Earth Sci. 2015;5:41–6.
Google Scholar
Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS. Sugarcane vinasse: environmental implications of its use. Waste Manag. 2013;33:2752–61.
Article
CAS
PubMed
Google Scholar
Latif MA, Ghufran R, Wahid ZA, Ahmad A. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res. 2011;45:4683–99.
Article
CAS
PubMed
Google Scholar
Weber B, Stadlbauer EA. Sustainable paths for managing solid and liquid waste from distilleries and breweries. J Clean Prod. 2017;149:38–48.
Article
CAS
Google Scholar
Ghulam S, Khan MJ, Usman K. Effect of different rates of pressmud on plant growth and yield of lentil in calcareous soil. Sarhad J Agric. 2012;28:8–11.
Google Scholar
Analia A, Juliana MS, Costa SD, Colin VL, Fuentes MS, Sergio Antonio C, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 2017;166:41–62.
Article
Google Scholar
Thanapimmetha A, Srinophakun P, Amat S, Saisriyoot M. Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process. J Environ Chem Eng. 2017;5:2305–12.
Article
CAS
Google Scholar
Fito J, Alemu K. Microalgae–bacteria consortium treatment technology for municipal wastewater management. Nanotechnol Environ Eng. 2019;4:1–9. https://doi.org/10.1007/s41204-018-0050-2.
Article
Google Scholar
Valderrama LT, Del Campo CM, Rodriguez CM, De- Bashan LE, Bashan Y. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res. 2002;36:4185–92.
Article
CAS
PubMed
Google Scholar
Akpor OB, Ohiobor GO, Olaolu TD. Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng. 2014;2:37–43.
Google Scholar
Igwe JC, Abia AA. A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol. 2006;5:1167–79.
CAS
Google Scholar
Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev. 2000;4:135–56.
Article
CAS
Google Scholar
Krishnamoorthy S, Premalatha M, Vijayasekaran M. Characterization of distillery wastewater—an approach to retro fit existing effluent treatment plant operation with phycoremediation. J Clean Prod. 2017;148:735–50.
Article
CAS
Google Scholar
Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res. 2003;7:671–8.
Article
CAS
Google Scholar
Ganesh R, Rajinikanth R, Thanikal JV, Ramanujam RA, Torrijos M. Anaerobic treatment of winery wastewater in fixed bed reactors. Bioprocess Biosyst Eng. 2010;33:619–28.
Article
CAS
PubMed
Google Scholar
Satyawali Y, Balakrishnan M. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag. 2008;86:481–97.
Article
CAS
Google Scholar
Yousefzadeh S, Ahmadi E, Gholami M, Ghaffari HR, Azari A, Ansari M. A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study. Biotechnol Biofuels. 2017;10:1–15.
Article
Google Scholar
Rajagopal R, Saady N, Torrijos M, Thanikal J, Hung Y-T. Sustainable agro-food industrial wastewater treatment using high rate anaerobic process. Water. 2013;5:292–311.
Article
CAS
Google Scholar
Tawfik A, Sobhey M, Badawy M. Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination. 2008;227:167–77.
Article
CAS
Google Scholar
Saleh MMA, Mahmood UF. Anaerobic digestion technology for industrial wastewater treatment. In: eighth international water technology conference, IWTC8, Alexandria, Egypt. 2004. p. 817–33.
Fuess LT, Kiyuna LSM, Ferraz ADN, Persinoti GF, Squina FM, Garcia ML, et al. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy. 2017;189:480–91.
Article
CAS
Google Scholar
Yasar A, Tabinda AB. Anaerobic treatment of industrial wastewater by UASB reactor integrated with chemical oxidation processes; an overview. Pol J Environ Stud. 2010;19:1051–61.
CAS
Google Scholar
Hossain SM, Das M. Biomethanation of distillery wastewaters in fluidised-bed bioreactor and mathematical modelling. Indian Chem Eng. 2010;52:23–36.
Article
CAS
Google Scholar
Tauseef SM, Abbasi T, Abbasi SA. Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev. 2013;19:704–41.
Article
CAS
Google Scholar
Singh SP, Prerna P. Review of recent advances in anaerobic packed-bed biogas reactors. Renew Sustain Energy Rev. 2009;13:1569–75.
Article
CAS
Google Scholar
Hassan S, Dahlan I. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review. Cent Eur J Eng. 2013;3:389–99.
CAS
Google Scholar
Nikolaeva S, Sánchez E, Borja R. Dairy wastewater treatment by anaerobic fixed bed reactors from laboratory to pilot-scale plant: a case study in Costa Rica operating at ambient temperature. Int J Environ Res. 2013;7:759–66.
Google Scholar
Acharya BK, Mohana S, Madamwar D. Anaerobic treatment of distillery spent wash—a study on upflow anaerobic fixed film bioreactor. Bioresour Technol. 2008;99:4621–6.
Article
CAS
PubMed
Google Scholar
Masłoń A, Tomaszek JA. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor. Bioresour Technol. 2015;196:577–85.
Article
PubMed
Google Scholar
Rais M, Sheoran A. Treatment of sugarcane industry effluents: science & technology issues. Int J Eng Res Appl. 2015;5:11–9.
Google Scholar
Chine SS, Korake SR. Physico-chemical methods for colour removal of wastewater in molasses-based alcohol distilleries: a review. Deccant Curr Sci. 2012;07:150–5.
Google Scholar
Lin S, Juang R. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manag. 2009;90:1336–49.
Article
CAS
Google Scholar
Kaushik G. Bioremediation of industrial effluents: distillery effluent. Appl Environ Biotechnol Present Scenar Future Trends. 2015;19–28: https://doi.org/10.1007/978-81-322-2123-4.
Chandra R, Naresh R, Rai V. Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol. 2008;99:4648–60.
Article
CAS
PubMed
Google Scholar
Modrogan C, Miron AR, Orbulet OD, Costache C, Apostol G. Ion exchange processes on weak acid resins for wastewater containing cooper ions treatment. Environ Eng Manag J. 2015;14:449–54.
Article
CAS
Google Scholar
Kushwaha JP, Srivastava VC, Mall ID. Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies. Bioresour Technol. 2010;101:3474–83.
Article
CAS
PubMed
Google Scholar
De Gisi S, Lofrano G, Grassi M, Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol. 2016;9:10–40.
Google Scholar
Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. Adsorption of phenol onto activated carbon from seaweed: determination of the optimal experimental parameters using factorial design. Appl Water Sci. 2014;42:952–6.
Google Scholar
Mall ID, Srivastava VC, Agarwal NK. Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigm. 2006;69:210–23.
Article
CAS
Google Scholar
Özbay N, Yarg AFJ, Yarbay- RZF, Önal E. Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J Chem. 2013;2013:1–14.
Article
Google Scholar
Elwakeel KZ, Elgarahy AM, Mohammad SH. Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. J Environ Chem Eng. 2017;5:578–87.
Article
CAS
Google Scholar
Satyawali Y, Balakrishnan M. Removal of color from biomethanated distillery spentwash by treatment with activated carbons. Bioresour Technol. 2007;98:2629–35.
Article
CAS
PubMed
Google Scholar
Fito J. Treatment of blended sugar industry and ethanol distillery wastewater through the integration of anaerobic digestion with adsorption. PhD dissertation submitted to Addis Ababa University; 2018.