Caballero E, Soto C. Valorization of agro-industrial waste into bioactive compounds: techno-economic considerations. In: Bastidas-Oyanedel JR, Schmidt JE, editors. Biorefinery. Cham: Springer; 2019. p. 235–52.
Google Scholar
Cecilia JA, García-Sancho C, Maireles-Torres PJ, Luque R. Industrial food waste valorization: a general overview. In: Bastidas-Oyanedel JR, Schmidt JE, editors. Biorefinery. Cham: Springer; 2019. p. 253–77.
Google Scholar
Thi NBD, Kumar G, Lin CY. An overview of food waste management in developing countries: current status and future perspective. J Environ Manage. 2015;157:220–9.
PubMed
Google Scholar
Dueñas M, García-Estévez I. Agricultural and food waste: analysis, characterization and extraction of bioactive compounds and their possible utilization. Foods. 2020;9:817.
PubMed Central
Google Scholar
Arya SS, Venkatram R, More PR, Vijayan P. The wastes of coffee bean processing for utilization in food: a review. J Food Sci Technol. 2021. https://doi.org/10.1007/s13197-021-05032-5.
Article
PubMed
Google Scholar
Murthy PS, Naidu MM. Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv Recycl. 2012;66:45–58.
Google Scholar
Esquivel P, Jiménez VM. Functional properties of coffee and coffee by-products. Food Res Int. 2012;46:488–95.
CAS
Google Scholar
Mussatto SI, Carneiro LM, Silva JPA, Roberto IC, Teixeira JA. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohyd Polym. 2011;83:368–74.
CAS
Google Scholar
Iriondo-DeHond A, García NA, Fernandez-Gomez B, Guisantes-Batan E, Escobar FV, Blanch GP, Andres MIS, Sanchez-Fortune S, del Castillo MD. Validation of coffee by-products as novel food ingredients. IFSET. 2019;51:194–204.
CAS
Google Scholar
Scully DS, Jaiswal AK, Abu-Ghannam N. An investigation into spent coffee waste as a renewable source of bioactive compounds and industrially important sugars. Bioengineering. 2016. https://doi.org/10.3390/bioengineering3040033.
Article
PubMed
PubMed Central
Google Scholar
Jimenez-Zamora A, Pastoriza S, Rufian-Henares JA. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci Technol. 2015;61:12–8.
CAS
Google Scholar
Oseguera-Castro KY, Madrid JA, Madrid MJM, García OP, Del Castillo MD, Campos-Vega R. Antioxidant dietary fiber isolated from spent coffee (Coffea arabica L.) grounds improves chronotype and circadian locomotor activity in young adults. Food Funct. 2019;10:4546–56.
PubMed
CAS
Google Scholar
Vázquez-Sánchez K, Martinez-Saez N, Rebollo-Hernanz M, del Castillo MD, Gaytán-Martínez M, Campos-Vega R. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem. 2018;261:253–9.
PubMed
Google Scholar
Martinez-Saez N, García AT, Pérez ID, Rebollo-Hernanz M, Mesías M, Morales FJ, Martín-Cabrejas MA, del Castillo MD. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114–22.
PubMed
CAS
Google Scholar
Castaldo L, Lombardi S, Gaspari A, Rubino M, Izzo L, Narváez A, Ritieni A, Grosso M. In vitro bioaccessibility and antioxidant activity of polyphenolic compounds from spent coffee grounds-enriched cookies. 2021. Foods. https://doi.org/10.3390/foods10081837.
Sampaio A, Dragone G, Vilanova M, Oliveira JM, Teixeira JA, Mussatto SI. Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT Food Sci Technol. 2013;54:557–63.
CAS
Google Scholar
Machado E, Mussatto SI, Teixeira J, Vilanova M, Oliveira J. Increasing the sustainability of the coffee agro-industry: spent coffee grounds as a source of new beverages. Beverages. 2018. https://doi.org/10.3390/beverages4040105.
Article
Google Scholar
Tian T, Freeman S, Corey M, German JB, Barile D. Chemical characterization of potentially prebiotic oligosaccharides in brewed coffee and spent coffee grounds. J Agric Food Chem. 2017;65:2784–92.
PubMed
CAS
Google Scholar
Asano I, Hamaguchi K, Fujii S, Iino H. In vitro digestibility and fermentation of mannooligosaccharides from coffee mannan. Food Sci Technol Res. 2003;9:62–6.
CAS
Google Scholar
Asano I, Ikeda Y, Fujii S, Iino H. Effects of mannooligosaccharides from coffee on microbiota and short chain fatty acids in rat cecum. Food Sci Techno Res. 2004;10:273–7.
CAS
Google Scholar
Asano I, Umemura M, Fujii S, Hoshino H, Iino H. Effects of mannooligosaccharides from coffee mannan on fecal microflora and defecation in healthy volunteers. Food Sci Technol Res. 2004;10:93–7.
CAS
Google Scholar
Panzella L, Pérez-Burillo S, Pastoriza S, Martín MÁ, Cerruti P, Goya L, Ramos S, Rufián-Henares JÁ, Napolitano A, d’ Ischia M. High antioxidant action and prebiotic activity of hydrolyzed spent coffee grounds (HSCG) in a simulated digestion-fermentation model: toward the development of a novel food supplement. J Agric Food Chem. 2017;65:6452–9.
PubMed
CAS
Google Scholar
Wongsiridetchai C, Jonjaroen V, Sawangwan T, Charoenrat T, Chantorn S. Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. LWT Food Sci Technol. 2021. https://doi.org/10.1016/j.lwt.2021.111717.
Article
Google Scholar
Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, Verbeke K, Raes J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017. https://doi.org/10.1136/gutjnl-2016-313271.
Article
PubMed
Google Scholar
Yen W, Wang B, Chang L, Duh P. Antioxidant properties of roasted coffee residues. J Agric Food Chem. 2005;53:2658–63.
PubMed
CAS
Google Scholar
Fulger CV, Stahl HD, Turek EJ, Bayha R. Production of a Mannan Oligomer Hydrolysate. United States Patent and Trademark Office. 1985. Patent No. 4,508,745.
Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr. 2006;1125:76–88.
CAS
Google Scholar
De Prisco A, van Valenberg HGF, Fogliano V, Mauriello G. Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food Bioprocess Technol. 2017;10:1767–77.
Google Scholar
Maresca D, Zotta T, Mauriello G. Adaptation to aerobic environment of Lactobacillus johnsonii/gasseri strains. Front Microbiol. 2018;9:1–11.
Google Scholar
Maresca D, De Filippis F, de Tytgat HLP, Vos WM, Mauriello G. Draft Genome sequences of the aerobic strains Lactobacillus gasseri AL3 and AL5. Genome Announc. 2017;5:1–2.
Google Scholar
Sachslehner A, Foidl G, Foidl N, Gübitz NG, Haltrich D. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol. 2000;80:127–34.
PubMed
CAS
Google Scholar
van Dam JEG, Harmsen P. Coffee residues utilization. Wageningen UR, Food & Biobased Research; 2010. https://edepot.wur.nl/382065.
Ballesteros LF, Teixeira JA, Mussatto SI. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioproc Tech. 2014;7(12):3493–503.
CAS
Google Scholar
López-Barrera DM, Vázquez-Sánchez K, Loarca-Piña MG, Campos-Vega R. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 2016;212:282–90.
PubMed
Google Scholar
Passos CP, Coimbra MA. Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr Polym. 2013;94(1):626–33.
PubMed
CAS
Google Scholar
Jooste T, García-Aparicio MP, Brienzo M, van Zyl WH, Görgens JF. Enzymatic hydrolysis of spent coffee ground. Appl Biochem Biotechnol. 2013;169:2248–62.
PubMed
CAS
Google Scholar
Simões J, Nunes FM, Domingues MR, Coimbra MA. Demonstration of the presence of acetylation and arabinose branching as structural features of locust bean gum galactomannan. Carbohydr Polym. 2011;86:1476–83.
Google Scholar
Nunes FM, Domingues MR, Coimbra MA. Arabinosyl and glucosyl residues as structural features of acetylated galactomannans from green and roasted coffee infusions. Carbohydr Res. 2005;340:1689–98.
PubMed
CAS
Google Scholar
Nunes FM, Reis A, Silva AMS, Domingues MRM, Coimbra MA. Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains as structural features of coffee arabinogalactans. Phytochemistry. 2008;69:1573–85.
PubMed
CAS
Google Scholar
Simões J, Maricato É, Nunes FM, Domingues MR, Coimbra MA. Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans. Carbohydr Polym. 2014;101:256–64.
PubMed
Google Scholar
Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V. Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem. 2002;50:6527–33.
PubMed
CAS
Google Scholar
Takao I, Fujii S, Ishii A, Han L, Kumao T, Ozaki K, Asakawa A. Effects of mannooligosaccharides form coffee mannan on fat storage in mice fed high fat diet. J Health Sci. 2006;52:333–7.
CAS
Google Scholar
Glenn RG, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–12.
Google Scholar
Guarner F, Perdigon G, Corthier G, Salminen S, Koletzko B, Morelli L. Should yoghurt cultures be considered probiotic? Br J Nutr. 2005;93(6):783–6.
PubMed
CAS
Google Scholar
Mater DD, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, Corthier G. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett. 2005;250(2):185–7.
PubMed
CAS
Google Scholar
Maya-Barrios A, Lira-Hernandez K, Jiménez-Escobar I, Hernández L, Ortiz-Hernandez A, Jiménez-Gutiérrez C, López-Velázquez G, Gutiérrez-Castrellón P. Limosilactobacillus reuteri ATCC PTA 5289 and DSM 17938 as adjuvants to improve evolution of pharyngitis/tonsillitis in children: randomised controlled trial. Benef Microbes. 2021;12(2):137–45.
PubMed
CAS
Google Scholar
Satia I, Cusack R, Stevens C, Schlatman A, Wattie J, Mian F, Killian KJ, O’Byrne PM, Bienenstock J, Forsythe P. Limosilactobacillus reuteri DSM-17938 for preventing cough in adults with mild allergic asthma: a double-blind randomized placebo-controlled cross-over study. Clin Exp Allergy. 2021;51(9):1133–43.
PubMed
CAS
Google Scholar
Saviano A, Brigida M, Migneco A, Gunawardena G, Zanza C, Candelli M, Franceschi F, Ojetti V. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in diarrhea and constipation: two sides of the same coin? Medicina. 2021;57(7):643.
PubMed
PubMed Central
Google Scholar
Selle K, Klaenhammer TR. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev. 2013;37(6):915–35.
PubMed
CAS
Google Scholar
Von Wright A, Axelsson L. Lactic acid bacteria: an introduction. In: Lahtinen S, Ouwehand A, Salminen S, Von Wright A, editors. Lactic acid bacteria: microbiological and functional aspects. Boca Raton: Taylor and Francis Group; 2012. p. 1–16.
Google Scholar
Shen X, Yi D, Ni X, Zeng D, Jing B, Lei M, Bian Z, Zeng Y, Li T, Xin J. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Can J Microbiol. 2014;60:193–202.
PubMed
CAS
Google Scholar
Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA. 2004;101:2512–7.
PubMed
PubMed Central
CAS
Google Scholar
Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, Teusink B, Versalovic J. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE. 2011;6:1–14.
Google Scholar
Chervaux C, Ehrlich SD, Maguin E. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl Environ Microbiol. 2000;66(12):5306–11.
PubMed
PubMed Central
CAS
Google Scholar
de Vos P, Faas MM, Spasojevic M, Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J. 2010;20:292–302.
Google Scholar
Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. PNAS. 2003;100:8957–62.
PubMed
PubMed Central
CAS
Google Scholar
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol. 2012;3:1–15.
Google Scholar
Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA. 2008;105:18964–9.
PubMed
PubMed Central
CAS
Google Scholar
Lopes SM, Krausová G, Rada V, Gonçalves JE, Gonçalves RA, de Oliveira AJ. Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.). Bertoni Carbohydr Res. 2015;411:15–21.
PubMed
CAS
Google Scholar
Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2009;69:231–42.
PubMed
CAS
Google Scholar
Van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007;102:452–60.
PubMed
Google Scholar
Ito H, Takemura N, Sonoyama K, Kawagishi H, Topping DL, Conlon MA, Morita T. Degree of polymerization of inulin-type fructans differentially affects number of lactic acid bacteria, intestinal immune functions, and immunoglobulin A secretion in the rat cecum. J Agric Food Chem. 2011;59:5771–8.
PubMed
CAS
Google Scholar
Mandadzhieva T, Ignatova-Ivanova T, Kambarev S, Iliev I, Ivanova I. Utilization of different prebiotics by Lactobacillus Spp. and Lactococcus Spp. Biotechnol Biotechnol Equip. 2011;25:117–20.
Google Scholar