Power AG. Ecosystem services and agriculture: tradeoffs and synergies. Phil Trans R Soc Lond B Biol Sci. 2010;365(1554):2959–71. https://doi.org/10.1098/rstb.2010.0143.
Article
Google Scholar
Tilman D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices Proc. Natl Acad Sci. 1999;96:5995–6000. https://doi.org/10.1073/pnas.96.11.5995.
Article
CAS
Google Scholar
da Silva JN, Araujo TC, Ponciano NJ, Souza CLM. Diagnóstico do uso de agrotóxicos por tomaticultores do município de São José De Ubá. RJ Rev Bras Agrop Sus. 2020;10:45–50. https://doi.org/10.21206/rbas.v10i1.8579.
Article
Google Scholar
Buralli RJ. Health effects of environmental and occupational exposure to agricultural pesticides. Thesis, Faculdade de Saúde Pública da Universidade de São Paulo. 2020 doi:10.11606/T. 6. 2020. tde- 20022 020- 082631.
Rusinamhodzi L. Challenges in maximizing benefits from ecosystem services and transforming food systems. In: Rusinamhodzi L, editor. The role of ecosystem services in sustainable food systems. Cambridge: Academic Press; 2020. p. 263–74. https://doi.org/10.1016/B978-0-12-816436-5.00013-5 (ISBN 9780128164365).
Chapter
Google Scholar
Sharma A, Kumar V, Shahzad B, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1:1446. https://doi.org/10.1007/s42452-019-1485-1.
Article
CAS
Google Scholar
Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, et al. Humic and fulvic acids as biostimulants in horticulture. Sci Hortic. 2015;196:15–27. https://doi.org/10.1016/j.scienta.2015.09.013.
Article
CAS
Google Scholar
Lamine C. Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. J Rural Stud. 2011;27(2):209–19. https://doi.org/10.1016/j.jrurstud.2011.02.001.
Article
Google Scholar
FAO-GSOC. GlobalSymposium on Soil Organic Carbon Unlocking the Potential of Soil Organic Carbon 21–23 March FAO HD Rome Italy 2017; http://www.fao.org/documents/card/en/c/25eaf720-94e4-4f53-8f50-cdfc2487e1f8/. Acessado em 21 de novembro de 2021.
Nardi S, Pizzeghello D, Schiavon M, Ertani A. Plant biostimulants: physiological responses induced by protein hydro- lyzed-based products and humic substances in plant metabolism. Sci Agric. 2016;73:18–23. https://doi.org/10.1590/0103-9016-2015-0006.
Article
CAS
Google Scholar
Baldock JA, Nelson PN. Soil organic matter. In: Sumner ME, editor. Handbook of soil science. Boca Raton: CRC Press; 2000.
Google Scholar
Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility. A Rev Agron Sustain Dev. 2010;30:401–22. https://doi.org/10.1051/agro/2009040.
Article
CAS
Google Scholar
Lal R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev. 2006;17:197–209. https://doi.org/10.1002/ldr.696.
Article
Google Scholar
Scotti R, Pane C, Spaccini R, Palese AM, Piccolo A, Celano G, Zaccardelli M. On-farm compost: a useful tool to improve soil quality under intensive farming systems. Appl Soil Ecol. 2016;107:13–23. https://doi.org/10.1016/j.apsoil.2016.05.004.
Article
Google Scholar
Wood SA. Soil microbial diversity and ecosystem functioning in smallholder African agroecosystems. C Univ Acad Commons. 2015. https://doi.org/10.7916/D8902335.
Article
Google Scholar
Canellas LP, Olivares FL. Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric. 2014;1:1–11. https://doi.org/10.1186/2196-5641-1-3.
Article
CAS
Google Scholar
Canellas LP, Canellas NOA, Souza LE, Olivares FL, Piccolo A. Plant chemical priming by humic acids. Chemical and Biol Technol Agric. 2020;7(1):1–17. https://doi.org/10.1186/s40538-020-00178-4.
Article
CAS
Google Scholar
García AC, Tavares OCH, Balmori DM, dos Santos AV, Canellas LP, García-Mina JM, Louro Berbara RL. Structure-function relationship of vermicompost humic fractions for use in agriculture. J Soils Sediments. 2018;18:1365–75. https://doi.org/10.1007/s11368-016-1521-3.
Article
CAS
Google Scholar
Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, Fuentes M, São Francisco S, Baigorri R, Cruz F. Microarray analysis of the effects of humic acid on the growth of Brassica napus: Envolvement of N, C and S metabolisms. To plant Solo. 2012;359:297–319. https://doi.org/10.1007/s11104-012-1191-x.
Article
CAS
Google Scholar
Nardi S, Pizzeghello D, Muscolo A, Vianello A. Physiological effects of humic substances in higher plants. Soil Biol Biochem. 2002;34:1527–37. https://doi.org/10.1016/s0045-6535(01)00160-6.
Article
CAS
Google Scholar
Nardi S, Carletti P, Pizzeghello D, Muscolo A. Biological activities of humic substances. In: Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental, 2009; chap 8, p 301–337.
Nardi S, Schiavon M, Francioso O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 2021;26:2256. https://doi.org/10.3390/molecules26082256.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olaetxea M, de Hita D, Garcia AC, Fuentesa M, Baigorri R, Mora V, Garnica M, Urrutia O, Erro J, Zamarreño AM, et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot growth. Appl Soil Ecol. 2018;123:521–37. https://doi.org/10.1016/j.apsoil.2017.06.007.
Article
Google Scholar
Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron. 2014;124:37–89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4.
Article
CAS
Google Scholar
Rouphael Y, Colla G. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1655. https://doi.org/10.3389/fpls.2018.01655.
Article
PubMed
PubMed Central
Google Scholar
Trevisan S, Botton A, Vaccaro S, Vezzaro A, Quaggiotti S, Nardi S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ Exp Bot. 2011;74:45–55. https://doi.org/10.1016/j.envexpbot.2011.04.017.
Article
CAS
Google Scholar
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: a global perspective. Front Plant Sci. 2017;7:2049. https://doi.org/10.3389/fpls.2016.02049.
Article
PubMed
PubMed Central
Google Scholar
Yatoo AM, Ali MN, Baba ZA, et al. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A Rev Agron Sustain Dev. 2021;41:7. https://doi.org/10.1007/s13593-020-00657-w.
Article
Google Scholar
Afifi MMI, Ismail AM, Kamel SM, Essa TA. Humic Substances: a powerful tool for controlling fusarium wilt disease and improving the growth of cucumber plants. J Plant Pathol. 2017;99:61–7. https://doi.org/10.4454/jpp.v99i1.3810.
Article
Google Scholar
Bonanomi G, Antignani V, Pane C, Scala F. Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol. 2007;89(3):311–24.
Google Scholar
Loffredo E, Berloco M, Senesi N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol Environ Saf. 2008;69:350–7. https://doi.org/10.1016/j.ecoenv.2007.11.005.
Article
PubMed
CAS
Google Scholar
Jafary-Jahed M, Razmjou J, Nouri-Ganbalani G, Naseri B, Hassanpour M. Bottom-up effects of organic fertilizers on plutella xylostella with selected cruciferous crop plants. J Lepid Soc. 2020;74(1):7–17. https://doi.org/10.18473/lepi.74i1.a2.
Article
Google Scholar
Mottaghinia L, Hassanpour M, Razmjou J, Hosseini M, Chamani E. Functional Response of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) to Aphis gossypii Glover (Hemiptera: Aphididae): effects of vermicompost and host plant cultivar. Neotrop Entomol. 2015. https://doi.org/10.1007/s13744-015-0343-0.
Article
PubMed
Google Scholar
Simsek-Ersahin Y. The use of vermicompost products to control plant diseases and pests. In: Karaca A, editor. Biology of earthworms, soil biology. Berlin: Springer; 2011. p. 191–123. https://doi.org/10.1007/978-3-642-14636-7_12.
Chapter
Google Scholar
Zhang S, Raza W, Yang X, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils. 2008;44:1073–80. https://doi.org/10.1007/s00374-008-0296-0.
Article
Google Scholar
Artavia S, Uribe L, Saborio F, Arauz LF, Castro L. Efecto de la aplicacion de abonos organicos em la supresion de Pythium myriotylum em plantas de tiquisque (Xanthosana sagittifolium). Agronomia Costarricense. 2010;34(1):17–29.
Google Scholar
Bonanomi G, Zotti M, Idbella M, Di Silverio N, Carrino L, Cesarano G, et al. Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off. PLoS ONE. 2020;15(4):e0230925. https://doi.org/10.1371/journal.pone.0230925.
Article
PubMed
PubMed Central
CAS
Google Scholar
Postma J, Nijhuis EH. Pseudomonas chlororaphis and organic amendments controlling Pythium infection in tomato. Eur J Plant Pathol. 2019;154:91–107. https://doi.org/10.1007/s10658-019-01743-w.
Article
CAS
Google Scholar
Silva JM, Medeiros EV, Duda GP, Barros JÁ, Santos UJ. Fames and microbial activities involved in the suppression of cassava root by organic matter. Rev Caatinga. 2017;30(3):708–17. https://doi.org/10.1590/1983-21252017v30n319rc.
Article
Google Scholar
Cardoza YJ. Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment. Pest Manag Sci. 2010;67:233–8. https://doi.org/10.1002/ps.2059.
Article
CAS
Google Scholar
Han Y, Wang Y, Bi JL, et al. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol. 2009;35(2):176–82. https://doi.org/10.1007/s10886-009-9589-5.
Article
PubMed
CAS
Google Scholar
Zhang W, Hoitink HAJ, Dick WA. Compost-induce systemic acquired resistance in cucumber to pythium root rot and anthracnose. Phytopathology. 1996;86:1066–70. https://doi.org/10.1094/Phyto-86-1066.
Article
Google Scholar
Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ. Compost and compost water extract-induced systemic acquired resistance in cucumber and arabidopsis. Phytopathology. 1998;88:450–5. https://doi.org/10.1094/PHYTO.1998.88.5.450.
Article
PubMed
CAS
Google Scholar
Hartmann H, Adams HD, Anderegg WRL, Jansen S, Zeppel MJB. Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytol. 2015;205:965–9. https://doi.org/10.1111/nph.13246.
Article
PubMed
Google Scholar
Hiddink GA, van Bruggen AHC, Termorshuizen AJ, Raaijmakers JM, Semonov AV. Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var tritici and its antagonist Pseudomonas fluorescens. Eur J Plant Pathol. 2005;113:417–35. https://doi.org/10.1007/s10658-005-5402-7.
Article
Google Scholar
Hossain MM, Sultana F, Islam S. Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R, editors. Plant-microbe interactions in agro-ecological perspectives, microbial interactions and agro-ecological impacts, vol. 2. Singapore: Springer; 2017. p. 135–91. https://doi.org/10.1007/978-981-10-6593-4.
Chapter
Google Scholar
Hossain MM, Sultana F. Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation. In: Das SK, editor. Organic agriculture. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.92338.
Chapter
Google Scholar
Pankievicz VCS, do Amaral FP, Ané J-M, Stacey G. Diazotrophic bacteria and their mechanisms to interact and benefit cereals. MPMI. 2021;34:491–8. https://doi.org/10.1094/MPMI-11-20-0316-FI.
Article
PubMed
Google Scholar
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM. Deciphering the rhizosphere microbiome for disease-suppressive bactéria. Science. 2011;332:1097–100. https://doi.org/10.1126/science.1203980.
Article
PubMed
CAS
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9. https://doi.org/10.1038/nature05286.
Article
PubMed
CAS
Google Scholar
González-Hernández AI, Suárez-Fernández MB, Pérez-Sánchez R, Gómez-Sánchez MÁ, Morales-Corts MR. Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in Pepper. Agronomy 2021;11(4),781. https://doi.org/10.3390/AGRONOMY11040781
Palese AM, Pane C, Villecco D, Altieri G, Celano G. Effects of organic additives on chemical, microbiological and plant pathogen suppressive properties of aerated municipal waste compost teas. Appl Sci. 2021. https://doi.org/10.3390/app11167402.
Article
Google Scholar
Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor Biol. Control. 2011;56:115–24. https://doi.org/10.1016/j.biocontrol.2010.10.002.
Article
Google Scholar
Pane C, Spaccini R, Piccolo A, Celano G, Zaccardelli M. Disease suppressiveness of agricultural greenwaste composts as related to chemical and bio-based properties shaped by different on-farm composting methods Biol. Control. 2019. https://doi.org/10.1016/j.biocontrol.2019.104026.
Article
Google Scholar
da Silva APS, Olivares FL, Sudré CP, et al. Attenuations of bacterial spot disease Xanthomonas euvesicatoria on tomato plants treated with biostimulants. Chem Biol Technol Agric. 2021;8:42. https://doi.org/10.1186/s40538-021-00240-9.
Article
CAS
Google Scholar
Ratchaseema MTN, Kladsuwan L, Soulard L, et al. The role of salicylic acid and benzothiadiazole in decreasing phytoplasma titer of sugarcane white leaf disease. Sci Rep. 2021;11:1–9. https://doi.org/10.1038/s41598-021-94746-9.
Article
CAS
Google Scholar
Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85–97. https://doi.org/10.1006/pmpp.1999.0213.
Article
Google Scholar
Abdul Malik NA, Kumar IS, Nadarajah K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci. 2020;21(3):963. https://doi.org/10.3390/ijms21030963.
Article
PubMed Central
CAS
Google Scholar
Mishra AK, Sharma K, Misra RS. Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interact. 2012;7(2):95–120. https://doi.org/10.1080/17429145.2011.597517.
Article
Google Scholar
Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defence: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49(1):317–43. https://doi.org/10.1146/annurev-phyto-073009-114447.
Article
PubMed
CAS
Google Scholar
Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421.
Article
PubMed
CAS
Google Scholar
Obanor FO, Walter M, Jones EE, et al. Eficácia de indutores de resistência adquirida sistêmica no manejo da mancha foliar da oliveira. Australas Plant Pathol. 2013;42:163–8. https://doi.org/10.1007/s13313-012-0186-7.
Article
CAS
Google Scholar
Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453–83. https://doi.org/10.1146/annurev.phyto.36.1.453.
Article
PubMed
Google Scholar
Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ. The Transcriptome of Rhizobacteria-induced systemic resistance in arabidopsis. Molr Plant-Microbe Interact. 2004;17:895–908. https://doi.org/10.1094/MPMI.2004.17.8.895.
Article
CAS
Google Scholar
Pieterse CMJ, Van Loon LC. Salicylic acid-independent plant defense pathways. Trends Plant Sci. 1999;4:52–8. https://doi.org/10.1016/S1360-1385(98)01364-8.
Article
PubMed
CAS
Google Scholar
Chakraborty BN, Chakraborty U. Molecular detection of fungal pathogens and induction of phytoimmunity using bioinoculants. Indian Phytopathol. 2021;74:307–22. https://doi.org/10.1007/s42360-021-00351-1.
Article
Google Scholar
McCune BE, Mefford MJ. PC-ORD: Multivariate analysis of ecological data, versão 6.0 para windows. MjM software, Gleneden Beach, Oregon, EUA 2011.
Ewel JJ. Natural systems as models for the design of sustainable systems of land use. Agrofor Syst. 1999;45:1–21. https://doi.org/10.1023/A:1006219721151.
Article
Google Scholar
Jacquet F, Jeuffroy M-H, Jouan J, Le Cadre E, Litrico I, Malausa T, Reboud X, Huyghe C. Pesticide free agriculture as a new paradigm for research. Agron Sustain Dev. 2022;42:8. https://doi.org/10.1007/s13593-021-00742-8.
Article
Google Scholar
de Aquino AM, Canellas LP, da Silva APS, Canellas NO, da Lima SL, Olivares FL, Piccolo A, Spaccini R. Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. J Anal Appl Pyrolysis. 2019;141:104634. https://doi.org/10.1016/j.jaap.2019.104634.
Article
CAS
Google Scholar
Martinez-Balmori D, Olivares FL, Spaccini R, Aguiar KP, Araújo MF, Aguiar NO, Guridi F, Canellas LP. Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. J Anal Appl Pyrolysis. 2013;104:540–50. https://doi.org/10.1016/j.jaap.2013.05.015.
Article
CAS
Google Scholar
Pathma J, Sakthive N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springer plus. 2012;1:26. https://doi.org/10.1186/2193-1801-1-26.
Article
PubMed
PubMed Central
Google Scholar
Yatoo AM, et al. Vermicomposting: a green approach to recycling/organic waste management. In: Hakeem K, Bhat R, Qadri H, editors., et al., Bioremediation and biotechnology. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-35691-0_8.
Chapter
Google Scholar
Ravindran B, Wong JW, Selvam A, Sekaran G. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresour Technol. 2018;217:200–4. https://doi.org/10.1016/j.biortech.2016.03.032.
Article
CAS
Google Scholar
Ksheem AM, Bennett JMCL, Antille DL, Raine SR. Towards a method for optimized extraction of soluble nutrients from fresh and composted chicken manures. Waste Manage. 2015;45:76–90. https://doi.org/10.1016/j.wasman.2015.02.011.
Article
CAS
Google Scholar
Riggle D. Compost teas in agriculture. Biocycle. 1996;37:65–7.
Google Scholar
Islam MK, Yaseen T, Traversa A, Ben Kheder M, Brunetti G, Cocozza C. Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manage. 2016;52:62–8. https://doi.org/10.1016/j.wasman.2016.03.042.
Article
CAS
Google Scholar
Bess VH. Understanding compost tea. Biocycle. 2000;41(10):71–2.
Google Scholar
Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ. Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biol Control. 2010;52(2):167–73. https://doi.org/10.1016/j.biocontrol.2009.10.018.
Article
Google Scholar
Sang MK, Kim KD. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology. 2011;101:732–40. https://doi.org/10.1094/PHYTO-10-10-0287.
Article
PubMed
CAS
Google Scholar
Al-Mughrabi KI, Bertheleme C, Livingston T, Burgoyne A, Poirier R, Vikram A. Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci. 2008;3:168–75. https://doi.org/10.3923/jps.2008.168.175.
Article
Google Scholar
El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH. In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotechnol. 2002;18:551–8. https://doi.org/10.1023/A:1016302729218.
Article
CAS
Google Scholar
Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, et al. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere. 2010;78:457–66. https://doi.org/10.1016/j.chemosphere.2009.10.018.
Article
PubMed
CAS
Google Scholar
Canellas LP, Dobbss LB, Oliveira AL, Chagas JG, Aguiar NO, Rumjanek NO, Novotny EH, Olivares FL, Spaccini R, Piccolo A. Chemical properties of humic matter as related to induction of plant lateral roots. Eur J Soil Sci. 2012;63:315–24.
Article
CAS
Google Scholar
García AC, Castro TAVT, Berbara RLL, Tavares OCH, Elias SS, Amaral Sobrinho NMB, Pereira MG, Zonta E. Revisão sobre a relação estrutura-função das substâncias húmicas e a sua regulação do metabolismo oxidativo em plantas. Rev Virtual Quim. 2019;11(3):754–70. https://doi.org/10.21577/1984-6835.20190055.
Article
Google Scholar
Lamar RT, Monda H, Sleighter R. Use of ore-derived humic acids with diverse chemistries to elucidate structure-activity relationships (SAR) of humic acids in plant phenotypic expression front. Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.758424.
Article
Google Scholar
Savarese C, di Meo V, Cangemi S, et al. Bioactivity of two different humic materials and their combination on plants growth as a function of their molecular properties. Plant Soil. 2022. https://doi.org/10.1007/s11104-021-05267-3.
Article
Google Scholar
Pereira RV, Filgueiras CC, Dória J, Peñaflor MFGV, Willett DS. The effects of biostimulants on induced plant defense. Front Agron. 2021;3:630596. https://doi.org/10.3389/fagro.2021.630596.
Article
Google Scholar
Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High molecular size humic substances enhance phenylpropanoid metabolism in maze (Zea mays L.). J Chem Ecol. 2010;36:662–9. https://doi.org/10.1007/s10886-010-9790-6.
Article
PubMed
CAS
Google Scholar
Basco MJ, Bisen K, Keswani C, Singh HB. Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere. 2017;8(3):467–83. https://doi.org/10.5943/mycosphere/8/3/8.
Article
Google Scholar
Canellas LP, da Silva S, Olk D, Olivares FE. Foliar application of plant growth-promoting bacteria and humic acid increases corn yield. J Agric Foods Environ. 2015;13:131–8.
Google Scholar
Giovanardi D, Dallai D, Dondini L, Mantovani V, Stefani E. Elicitation of resistance to bacterial canker of stone fruits by humic and fulvic acids (glucohumates): a cDNA-AFLP-dHPLC approach. Sci Hortic. 2016;212:183–92. https://doi.org/10.1016/j.scienta.2016.09.048.
Article
CAS
Google Scholar
Dempsey DMA, Vlot AC, Wildermuth CM, Klessig FD. Salicylic acid biosynthesis and metabolism. The Arabidopsis Book. 2011;9:e0156. https://doi.org/10.1073/pnas.92.10.4076.
Article
PubMed
PubMed Central
Google Scholar
Vlot AC, Dempsey DMA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202.
Article
PubMed
CAS
Google Scholar
Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology. 2017;28(15):155101. https://doi.org/10.1088/1361-6528/aa61f3.
Article
PubMed
CAS
Google Scholar
Marin-Menguiano M, Morenosanchez I, Barrales RR, Fernandezalvarez A, Ibeas JI. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog. 2019;15:e1007687. https://doi.org/10.1371/journal.ppat.1007687.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kosmidis C, Denning DW. Opportunistic and systemic fungi. In: Infectious diseases. Amsterdam: Elsevier; 2014. p. 1681–709. https://doi.org/10.1016/B978-0-7020-6285-8.00189-1.
Chapter
Google Scholar
Gonzalez M, Pujol M, Metraux JP, Gonzalez-Garcia V, Bolton MD, Borrás-Hidalgo O. Tobacco leaf spot and root rot caused by Rhizoctonia solani Kuhn. Mol Plant Pathol. 2011;12:209–16. https://doi.org/10.1111/j.1364-3703.2010.00664.x.
Article
PubMed
Google Scholar
Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol. 2009;10:311–24. https://doi.org/10.1111/j.1364-3703.2009.00538.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
van West P, Appiah AA, Gow NAR. Advances in research on oomycete root pathogens. Physiol Mol Plant Pathol. 2003;62:99–113. https://doi.org/10.1016/S0885-5765(03)00044-4.
Article
Google Scholar
Töfoli JG, Domingues RJ. Alternarioses em hortaliças: sintomas, etiologia e manejo integrado. 2006; http://www.infobibos.com/Artigos/2006_3/alternarioses/Index.htm Acesso em: 12/12/2021Pel
Pelczar MJ, Kelman A, Shurtleff MC and Pelczar RM. Plant disease. Encyclopedia Britannica. 2021; https://www.britannica.com/science/plant-disease. Acessado em: 21 de dezembro de 2021.
Ding C, Shen Q, Zhang R, Chen W. Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil. 2013;366:453–66. https://doi.org/10.1007/s11104-012-1425-y.
Article
CAS
Google Scholar
Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, Liao B. Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci. 2017;8:1549. https://doi.org/10.3389/fpls.2017.01549.
Article
PubMed
PubMed Central
Google Scholar
Choudhary DK, Nabi SU, Dar MS, Khan KA. Ralstonia solanacearum: a wide spread and global bacterial plant wilt pathogen. J Pharmacogn Phytother. 2018;7:85–90. https://doi.org/10.1111/mpp.12038.
Article
CAS
Google Scholar
Mengesha WK, Powell SM, Evans KJ, et al. Diverse microbial communities in non-aerated compost teas suppress bacterial wilt. World J Microbiol Biotechnol. 2017;33:49. https://doi.org/10.1007/s11274-017-2212-y.
Article
PubMed
CAS
Google Scholar
Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot. 2011;30(10):1251–62. https://doi.org/10.1016/j.cropro.2011.04.016.
Article
Google Scholar
Abd-Elgawad MMM. Optimizing safe approaches to manage plant-parasitic nematodes. Plants. 2021;10(9):1911. https://doi.org/10.3390/plants10091911.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akhtar M, Alam MM. Utilization of waste materials in nematode control: a review. Biores Technol. 1993;45:1–7. https://doi.org/10.1016/0960-8524(93)90134-W.
Article
CAS
Google Scholar
Widmer TL, Mitkowski NA, Abawi GS. Soil organic matter and management of plant parasitic nematodes. J Nematol. 2002;34(4):289–329.
PubMed
PubMed Central
CAS
Google Scholar
Seenivasan, Senthilnathan. Effect of humic acid on Meloidogyne incognita (Kofoid & White) Chitwood infecting banana (Musa spp). Int J Pest Manag. 2017. https://doi.org/10.1080/09670874.2017.1344743.
Article
Google Scholar
Xiao Z, Liu M, Jiang L, Chen X, Griffiths BS, Li H, Hu F. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl Soil Ecol. 2016;105:177–86. https://doi.org/10.1016/j.apsoil.2016.04.003.
Article
Google Scholar
Arancon NQ, Edwards CA, Lee S, Byrne R. Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol. 2006;42:65–9. https://doi.org/10.1016/j.ejsobi.2006.06.004.
Article
CAS
Google Scholar
Arancon NQ, Edwards CA, Yardim EM, Oliver TJ, Byrne RJ, Keeney G. Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicompost. Crop Prot. 2007;26(1):29–39. https://doi.org/10.1016/j.cropro.2006.03.013.
Article
Google Scholar
Oka Y. Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol. 2010;44:101–15. https://doi.org/10.1016/j.apsoil.2009.11.003.
Article
Google Scholar
Mardani-Talaee M, Razmjou J, Nouri-Ganbalani G, et al. Impact of chemical, organic and bio-fertilizers application on bell pepper, capsicum annuum L. and biological parameters of Myzus persicae (Sulzer) (Hem.: Aphididae). Neotrop Entomol. 2017;46:578–86. https://doi.org/10.1007/s13744-017-0494-2.
Article
PubMed
CAS
Google Scholar
Ojaghian MR, Wang L, Cui ZQ, Yang C, Zhongyun T, Xie GL. Antifungal and SAR potential of crude extracts derived from neem and ginger against storage carrot rot caused by Sclerotinia sclerotiorum. Ind Crops Prod. 2014;55(2):130–9. https://doi.org/10.1016/j.indcrop.2014.02.012.
Article
CAS
Google Scholar
Cordeiro FC, Santa-Catarina C, Silveira V, De Souza SR. Humic acid effecton catalase activity and the generation of reactive oxygen species in corn (Zea mays L.). Biosci Biotechnol Biochem. 2011;75:70–4. https://doi.org/10.1271/bbb.100553.
Article
PubMed
CAS
Google Scholar
Aguiar NO, Medici LO, Olivares FL, Dobbss LB, Torres-Netto A, Silva SF, Novotny EH, Canellas LP. Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Ann Appl Biol. 2016;168:203–13. https://doi.org/10.1111/aab.12256.
Article
CAS
Google Scholar
García AC, Santos LA, de Souza ALG, Tavares OCH, Zonta E, Gomes ETM, García-Mina JM, Berbara RL. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J Plant Physiol. 2016;192:56–63. https://doi.org/10.1016/j.jplph.2016.01.008.
Article
PubMed
CAS
Google Scholar
Yildiztekin M, Atum AL, Kaya C. Physiological effects of brown algae (Ascophyllum nodosum) and humic substances on plant growth, enzymatic activities of certain pepper plants grown under salt stress. Future Biology. 2018;69:325–35. https://doi.org/10.1556/018.68.2018.3.8.
Article
CAS
Google Scholar
Silva HAS, Romeiro RS, Macagnan D, Halfeld-Vieira BA, Pereira MCB, Mounteer A. Rhizobacterial induction of systemic resistance in tomato plants: non specific protection and increase enzyme activities. Biol Control. 2004;29(2):288–95. https://doi.org/10.1016/S1049-9644(03)00163-4.
Article
CAS
Google Scholar
Boava LP, Kuhn OJ, Pascholati SF, Di Piero RM, Furtado EL. Effect of biotic and abiotic inducers on the activities of chitinase and peroxidase and rust control caused by Puccinia psidii on Eucalyptus. Summa Phytopathol. 2010;36(2):168–72. https://doi.org/10.1590/S0100-54052010000200012.
Article
Google Scholar
Kurabachew H, Wydra K. Induction of systemic resistance and defense-related enzymes after elicitacion of resistance by rhizobacteria and silicone application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Prot. 2014;57:1–7. https://doi.org/10.1016/j.cropro.2013.10.021.
Article
CAS
Google Scholar
Khaled EE, Mohamed HHA, Enas MM, Mahran ME, Ahmed AA, Basma HA, Ibrahim M, Maha MA. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii. Ecotoxicol Environ Saf. 2019;196:1–12. https://doi.org/10.1016/j.ecoenv.2019.109783.
Article
CAS
Google Scholar
Akthter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406:425–40. https://doi.org/10.1007/s11104-016-2948-4.
Article
CAS
Google Scholar
Ismail N, Rosmana A, Sjam S, Ratnawati R. Shallot basal bulb rot management through integration of trichoderma asperellum, composted plant residues and natural mulch. J Pure Appl Microbiol. 2020;14(3):1779–88. https://doi.org/10.22207/JPAM.14.3.16.
Article
Google Scholar
Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8:137. https://doi.org/10.1186/s40168-020-00892-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sahni S, Kumar S, Prasad BD. Integration of salicylic acid, vermicompost and bioagent for effective management of chickpea wilt disease. J Environ Biol. 2021;42:1274–80. https://doi.org/10.22438/jeb/42/5/MRN-1745.
Article
CAS
Google Scholar
Castro L, Flores L, Uribe L. Efecto del vermicompost y Quitina sobre el control de meloidogyne incognita en tomate a nivel de invernadero. Agron Costarric. 2011;35(2):21–32.
Google Scholar
De Hita D, Fuentes M, Fernández V, Zamarreño AM, Olaetxea M, García-Mina JM. Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Front Plant Sci. 2020;11:493. https://doi.org/10.3389/fpls.2020.00493.
Article
PubMed
PubMed Central
Google Scholar
Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C, Zmora-Nahum S. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biol Biochem. 2006;38(8):2461–2477. https://doi.org/10.1016/j.soilbio.2006.03.002.
Sukamto S. Pengendalian Secara Hayati Penyakit Busuk Buah Kakao com Jamur Antagonis Trichoderma harzianum. Prosiding Kongres Nasional XVII dan Semin Ilmiah PFI Bandung. 2003;6(9):134–7.
Google Scholar
Gerzabek MH, Aquino AJA, Balboa YIE, Petrov D, Tunega DA. Contribution of molecular modeling to supramolecular structures in soil organic matter. J Plant Nutr Soil Sci. 2022;185:44–59. https://doi.org/10.1002/jpln.202100360.
Article
CAS
Google Scholar
Klučáková M. The effect of supramolecular humic acids on the diffusivity of metal ions in agarose hydrogel. Molecules. 2022;27(3):1019. https://doi.org/10.3390/molecules27031019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Razmjou J, Mohammadi M, Hassanpour M. Effect of vermicompost and cucumber cultivar on population growth attributes of the melon aphid (hemiptera: Aphididae). J Econ Entomol. 2011;104:1379–83. https://doi.org/10.1603/EC10120.
Article
PubMed
CAS
Google Scholar
Demir S, Şensoy S, Ocak E, Tüfenkçi S, Durak ED, Erdinç C, Ünsal H. Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt disease caused by Verticillium dahliae Kleb. in three solanaceous crops. Turk J Agric For. 2015;39:300–9. https://doi.org/10.3906/TAR-1403-39.
Article
CAS
Google Scholar
Jaya A, Lautt BS, Antang EU, Supriati L, Dohong S. Effect of individual and combined application of Trichoderma sp. and vermicompost on the management of Sclerotium rolfsii and growth of chilli under peatlands agro-climatic conditions. J Exp Biol Agric Sci 2021;9(4):445–56.
Rasool M, Akhter A, Soja G, Haider MS. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep. 2021;11(1):1–16.
Istifadah N, Firman AR, Desiana MF. Effectiveness of compost and microbial-enriched compost to supress powdery mildew and early blight diseases in tomato. J Anim Plan Sci. 2020;30(2):377–83.
Charoenrak P, Chamswarng C, Intanoo W, Keawprasert N. The effects of vermicompost mixed with tricorderma asperellum on the growth and pythium root the of lettuces. Int J GEOMATE. 2019;17(61):215–21.
Akinnuoye-Adelabu DB, Hatting J, de Villiers C, Terefe T, Bredenhand E. Effect of Redworm Extracts against Fusarium Root Rot during Wheat Seedling Emergence. Agronomy 2019;11(5):2610–18.
Jaiswal AK, Elad Y, Cytryn E, Graber ER, Frenkel O. Activating biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. New Phytol 2018;219(1):363–77.
Zhao J, Liu J, Liang H, Huang J, Chen Z, Nie Y, Wang C, Wang Y. Manipulation of the rhizosphere microbial community through application of a new bioorganic fertilizer improves watermelon quality and health. PLosONE. 2018;2740:1–14.
Seddigh S, Kiani L. Evaluation of different types of compost tea to control rose powdery mildew (Sphaerotheca pannosa var. rosae). Int J Pest Manag. 2017;(64(2):178–84.
Hussain N, Abbasi T, Abbasi SA. Enhancement in the productivity of ladies finger (Abelmoschus esculentus) with concomitant pest control by the vermicompost of the weed salvinia (Salvinia molesta, Mitchell). Int J Recycl Organ Waste Agric. 2017;6(4):335–43.
Mohamadi P, Razmjou J, Naseri B, Hassanpour M. Population growth parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on tomato plant using organic substrate and biofertilizers. J Insect Sci. 2017;17(2):1–7.
El-Mohamedy RSR, Shafeek MR, El-Samad EHA, Salama DM, Rizk FA. Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.). Aust J Crop Sci. 2017;11(5): 496–505.
Blaya J, Marhuenda FC, Pascual JA, Ros M. Microbiota characterization of compost using omics approaches opens new perspectives for phytophthora root rot control. PLOS ONE. 2016;11:8.
Renco M, Kovacik P. Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cyst nematodes Globodera rostochiensis and Globodera pallida. J Plant Prot Res. 2015;55(2):187–92.
Molina OI,Tenuta M, El Hadrami A, Buckley K, Cavers C, Daayf F. Potato early dying and yield responses to compost, green manures, seed meal and chemical treatments. Am J Potato Res. 2018;91(4):414–28.
Uribe-Lorío L, Barquero LC, Cavallini FA, Henríquez CH, Meneses MB Effect of vermicompost on pepper plants inoculated with Phytophthora capsici. Soamericana. 2014;25(2)243–53.
Rostami M, Olia M, Arabi M. Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. Int J Recycl Organ Waste Agric. 2014;3(2):1–8.
Marín F, Diánez F, Santos M, Carretero F, Gea FJG, Castañeda C, Navarro MJ, Yau JA, Control of Phytophthora capsici and Phytophthora parasitica on pepper (Capsicum annuum L.) with compost teas from different sources, and their effects on plant growth promotion. Phytopathologia Mediterranea. 2014;53(2):216–28.
Marín F, Santos M, Diánez F, Carretero F, Gea FJ, Yau JA, Navarro MJ. Characters of compost teas from different sources and their suppressive effect on fungal phytopathogens. World J Microbiol Biotechnol 2013;29:1371–82.
Little AG, Cardoza YJ. Host plant effects on generalist and specialist lepidopterous cabbage pests modulated by organic soil amendment. Pedobiologia. 2011;54:353–59.
Dukare AS, Prasanna R, Dubey SC, Nain L, Chaudhary V, Singh R, Saxena AK. Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protect. 2011;30(4):436–42.